## On the Freeze-Tag Problem

# **Cyril Gavoille** joint work with N. Bonichon, A. Casteigts, N. Hanusse



1st ANR TEMPOGRAL Meeting Château du Clos de la Ribaudière – Chasseneuil-du-Poitou November 24th, 2022 A robot in charge of awaking a team of asleep robots.

#### Subject to:

- awaking by contacts (need a move to meet)
- any awaked robot can help to awake others
- robots lie and move in the Euclidean plane
- constant velocity moves

#### Goal:

- to minimize the **time** to awake all the robots
- with a good schedule ...



#pts = 8 diam = 1.890 ecc = 1.000









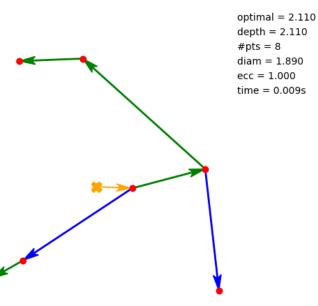




.

.

## (1/3)

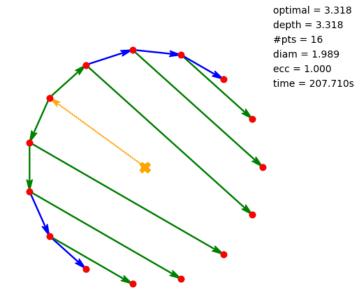


.



#pts = 16 diam = 1.989 ecc = 1.000

## (2/3)



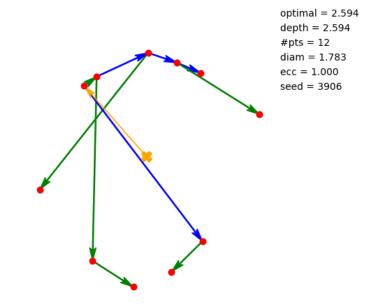
## (3/3)

convex pts #pts = 12 diam = 1.783 ecc = 1.000 time = 1.372s seed = 3906

\*

•

## (3/3)



## https://topp.openproblem.net/p35



#### **The Open Problems Project**

Next: Problem 36: Inplace Convex Hull of a Simple Polygonal Chain

Previous: Problem 34: Extending Pseudosegment Arrangements by Subdivision

#### Problem 35: Freeze-Tag: Optimal Strategies for Awakening a Swarm of Robots

#### Statement

An optimization problem that naturally arises in the study of "swarm robotics" is to wake up a set of "asleep" robots, starting with only one "awake" robot. One robot can only awaken another when they are in the same location. As soon as a robot is awake, it may assist in waking up other robots. The goal is to compute an optimal *awakening schedule* such that all robots are awake by time t<sup>\*</sup>, for the smallest possible value of t<sup>\*</sup> (the optimal *makespan*). The *n* robots are initially at *n* points of a metric space. The problem is equivalent to finding a spanning tree with maximum out-degree two that minimizes the radius from a fixed source.

Is it NP-hard to determine an optimal awakening schedule for robots in the Euclidean (or  $L_1$ ) plane? In more general metric spaces, can one obtain an approximation algorithm with better than  $O(\log n)$  performance ratio?

Origin

[ABF+02]

#### Status/Conjectures

[ABF+02] conjecture that the freeze-tag problem is NP-hard in the Euclidean (or  $L_1$ ) plane. (They show it to be NP-complete in star metrics.)

FREEZE-TAG PROBLEM (basic) Input: a source  $s \in \mathbb{R}^2$ a set  $P \subseteq \mathbb{R}^2$  of *n* points Output: a wake-up tree for (s, P) of minimum depth w.r.t.  $\ell_2$ -norm

A wake-up tree for (s, P) is a binary tree spanning  $\{s\} \cup P$  of root s which has at most 1 child.

**Variants** (space for moves):  $\ell_p$ -norm, other metrics, weighted graph, non-metric, ...

(1/3)

(1/3)

#### [AY16,J17] NP-Hard for $(\mathbb{R}^3, \ell_2)$ , from Hamiltonian Path in 2D Subgrid

(1/3)

[AY16,J17] NP-Hard for  $(\mathbb{R}^3, \ell_2)$ , from Hamiltonian Path in 2D Subgrid

[DR17] NP-Hard for  $(\mathbb{R}^3, \ell_p)$ , p > 1, from Dominating Set

(1/3)

- [AY16,J17] NP-Hard for  $(\mathbb{R}^3, \ell_2)$ , from Hamiltonian Path in 2D Subgrid
  - [DR17] NP-Hard for  $(\mathbb{R}^3, \ell_p)$ , p > 1, from Dominating Set
  - [AAY17] NP-Hard for  $(\mathbb{R}^2, \ell_2)$ , from Monotone 3SAT

## Known Results: Approximation (2/3)

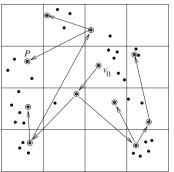
[ABF+06] O(log n)-approximation for locally-bounded weighted graphs (bounded aspect ratio for incident edges)

## Known Results: Approximation (2/3)

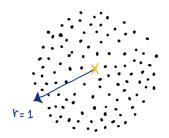
[ABF+06] O(log n)-approximation for locally-bounded weighted graphs (bounded aspect ratio for incident edges)

[ABF+06]  $(1 + \varepsilon)$ -approximation for  $(\mathbb{R}^d, \ell_p)$  for fixed d and any p, in time  $O(n \log n) + 2^{(1/\varepsilon)^{O(1)}}$ 

if *ε* < 1/57



#### [YBMK15] For $(\mathbb{R}^2, \ell_2)$ and unit source radius, $\exists$ wake-up tree of depth < 10.1 computable in O(n) time







•  $\forall P$  in convex position,  $\exists$  wake-up tree of depth  $\leq 1 + 2\sqrt{2} \approx 3.83$ , achieved for n = |P| = 4



- $\forall P$  in convex position,  $\exists$  wake-up tree of depth  $\leq 1 + 2\sqrt{2} \approx 3.83$ , achieved for n = |P| = 4
- $\forall P, \exists$  wake-up tree of depth  $\leq 3 + o(1)$



- $\forall P$  in convex position,  $\exists$  wake-up tree of depth  $\leq 1 + 2\sqrt{2} \approx 3.83$ , achieved for n = |P| = 4
- $\forall P, \exists$  wake-up tree of depth  $\leq 3 + o(1)$
- $\exists P, \forall$  wake-up tree has depth  $\geq 3 + \Omega(1/n)$



- $\forall P$  in convex position,  $\exists$  wake-up tree of depth  $\leq 1 + 2\sqrt{2} \approx 3.83$ , achieved for n = |P| = 4
- $\forall P, \exists$  wake-up tree of depth  $\leq 3 + o(1)$
- $\exists P, \forall$  wake-up tree has depth  $\geq 3 + \Omega(1/n)$
- Exact algorithm running in time  $3^n \cdot n^{O(1)}$ (holds for any non-metric space)



- $\forall P \text{ in convex position, } \exists \text{ wake-up tree of depth} \\ \leq 1 + 2\sqrt{2} \approx 3.83 \text{, achieved for } n = |P| = 4$
- $\forall P, \exists$  wake-up tree of depth  $\leq 3 + o(1)$
- $\exists P, \forall$  wake-up tree has depth  $\geq 3 + \Omega(1/n)$
- Exact algorithm running in time  $3^n \cdot n^{O(1)}$ (holds for any non-metric space)
- Experiments, heuristics,  $\ell_1$ -norm, ...

## **Brute-Force Algorithms**

#### Looks like to TSP (cycle / path)



 $n!c^n$  outputs (= wake-up trees) to explore !

## Dynamic Programming

FOR RELEASE: A.M's, Thursday January 2, 1964 FROM: International Business Machines Corp. Data Processing Division 112 East Post Road White Plains, New York

> Bert Reisman 914 WHite Plains 9-1900

WHITE PLAINS, N.Y., Jan. 2.... IBM mathematicians (left to right) Michael Held, Richard Shareshian and Richard M. Karp review the manual describing a new computer program which provides business and industry with a practical scientific method for handling a wide variety of complex scheduling tasks. The program, available to users of the IBM 7090 and 7094 data processing systems, consists of a set of 4, 500 instructions which tell the computer what to do with data fed into it. It grew out of the trio's efforts to find solutions for a classic mathematical problem -- the "Traveling Salesman" problem -- which has long defied eolution by man, or by the fastest computers he uses.



#### [Held-Karp'64] $O(n^2 2^n)$ Best known complexity for non-metric TSP

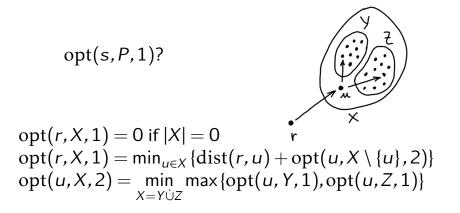
### Recurrence & Memorization

opt(r, X, b) := optimal time to awake all asleep robots of  $X \subseteq P$  from  $r \notin X$  with  $b \in \{1, 2\}$  awaked robots at r

opt(s, P, 1)?

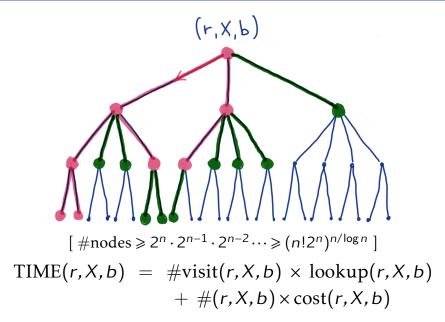
### Recurrence & Memorization

opt(r, X, b) := optimal time to awake all asleep robots of  $X \subseteq P$  from  $r \notin X$  with  $b \in \{1, 2\}$  awaked robots at r













### $TIME(r, X, b) = \#visit(r, X, b) \times lookup(r, X, b)$ $+ \#(r, X, b) \times cost(r, X, b)$





## $TIME(r, X, b) = \#visit(r, X, b) \times lookup(r, X, b)$ $+ \#(r, X, b) \times cost(r, X, b)$

 $\#(r, X, b) = (1 + n) \times {n \choose x} \times 2$  x := |X|





## $TIME(r,X,b) = \#visit(r,X,b) \times lookup(r,X,b)$ $+ \#(r,X,b) \times cost(r,X,b)$

$$\#(r, X, b) = (1+n) \times \binom{n}{x} \times 2 \qquad x := |X|$$
  
 
$$\#\text{visit} < \#(r, X, b) \times \Delta \qquad \Delta = 2^{x}$$





## $TIME(r,X,b) = \#visit(r,X,b) \times lookup(r,X,b)$ $+ \#(r,X,b) \times cost(r,X,b)$

$$#(r, X, b) = (1 + n) \times {\binom{n}{x}} \times 2 \qquad x := |X|$$
  
#visit < #(r, X, b) × \Delta   
lookup = O(log #(r, X, b)) = O(n) \Delta = 2^x





## $TIME(r,X,b) = \#visit(r,X,b) \times lookup(r,X,b)$ $+ \#(r,X,b) \times cost(r,X,b)$

$$\begin{aligned} \#(r,X,b) &= (1+n) \times \binom{n}{x} \times 2 & x := |X| \\ \#\text{visit} &< \#(r,X,b) \times \Delta & \Delta = 2^x \\ \text{lookup} &= O(\log \#(r,X,b)) = O(n) \\ \cos t &= O(\text{lookup} + x \cdot 2^x) \end{aligned}$$





$$TIME(r,X,b) = \#visit(r,X,b) \times lookup(r,X,b) + \#(r,X,b) \times cost(r,X,b)$$

$$\begin{aligned} \#(r,X,b) &= (1+n) \times \binom{n}{x} \times 2 & x := |X| \\ \#\text{visit} &< \#(r,X,b) \times \Delta & \Delta = 2^x \\ \text{lookup} &= O(\log \#(r,X,b)) = O(n) \\ \text{cost} &= O(\text{lookup} + x \cdot 2^x) \\ \max_{X \subseteq P} \left\{ 2^x \cdot \binom{n}{x} \right\} &= 3^n / \Theta(\sqrt{n}) \end{aligned}$$





$$TIME(r,X,b) = \#visit(r,X,b) \times lookup(r,X,b) + \#(r,X,b) \times cost(r,X,b)$$

$$\begin{aligned} \#(r,X,b) &= (1+n) \times \binom{n}{x} \times 2 & x := |X| \\ \#\text{visit} &< \#(r,X,b) \times \Delta & \Delta = 2^{x} \\ \text{lookup} &= O(\log \#(r,X,b)) = O(n) \\ \text{cost} &= O(\text{lookup} + x \cdot 2^{x}) \end{aligned}$$

$$\max_{X\subseteq P}\left\{2^{x}\cdot\binom{n}{x}\right\}=3^{n}/\Theta(\sqrt{n})$$

$$\Rightarrow \quad \text{TIME}(s, P, 1) = 3^n \cdot O(n^{3/2})$$

## Python

| •••   |                                                                                            |                                       |                                            |                              |                 |
|-------|--------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------|------------------------------|-----------------|
| G     | 🔹 freez                                                                                    | -tag.py •                             |                                            |                              |                 |
| -     | Users > gavoille > Desktop > Recherches > Freeze-Tag-Problem > 🌵 freeze-tag.py > 🛇 optimal |                                       |                                            |                              |                 |
|       |                                                                                            |                                       |                                            |                              |                 |
|       | 708                                                                                        | @lru_cache(maxsize=None)              |                                            |                              |                 |
|       |                                                                                            | <pre>def optimal(r,A,b):</pre>        |                                            |                              |                 |
|       |                                                                                            |                                       |                                            |                              |                 |
|       |                                                                                            | n = len(A)                            |                                            |                              |                 |
|       |                                                                                            |                                       |                                            |                              |                 |
| æ     |                                                                                            | <pre>xmin = UPPER_BOUND # major</pre> |                                            |                              |                 |
|       |                                                                                            |                                       |                                            |                              | nerine concerne |
| ß     |                                                                                            | if b:                                 |                                            |                              | ESERCENCERCER,  |
| ш     |                                                                                            |                                       |                                            |                              |                 |
|       |                                                                                            |                                       |                                            |                              |                 |
|       |                                                                                            |                                       | ******                                     |                              |                 |
|       |                                                                                            |                                       |                                            |                              |                 |
|       |                                                                                            | 1f n == 0: return 0, [                | <b>r]</b> # c'est fini: r est une feui     |                              |                 |
|       | 721                                                                                        |                                       |                                            |                              |                 |
|       | 722                                                                                        |                                       |                                            |                              |                 |
|       | 723<br>724                                                                                 | for v in A: # pour cha                |                                            |                              |                 |
|       | 724                                                                                        | B = C[:] # B = cop                    |                                            |                              |                 |
|       | 725                                                                                        |                                       | Re de A<br>B\{v} = A\{v}, NB: pas possible | do fairo romavo ci tualo     |                 |
|       | 726                                                                                        |                                       | <pre>ble(B),False) # calcul de la so</pre> |                              |                 |
| 8     | 728                                                                                        | x += dist(r, v) # a                   |                                            | caciton pour (470)           |                 |
|       | 729                                                                                        |                                       | a trouvé mieux en commençant pa            |                              |                 |
| ર્જી  | 730                                                                                        |                                       | f # on garde la meilleure solut            |                              |                 |
|       | 731                                                                                        | x x x x x x x x x x x x x x x x x x x |                                            |                              |                 |
| ⊗ o ∆ | 10                                                                                         |                                       | L 708. col 1 Espaces : 4 UTF               | -8 LF ( Pvthon 3.7.364-bit 🗸 | Spell 🖉 🗋       |

In practice, 17 points takes 5'30" (Python) vs.  $17! \times 10^{-9}s \approx 355,687s \approx 4.1$  days

 $\alpha_0 = 0$ 

 $\begin{array}{c} \alpha_0 = \mathbf{0} \\ \alpha_1 = \mathbf{1} \end{array}$ 

$$a_0 = 0$$
  

$$a_1 = 1$$
  

$$a_2 = 3, \quad \forall n \ge 2, a_n \ge 3$$

$$\alpha_0 = 0$$
  

$$\alpha_1 = 1$$
  

$$\alpha_2 = 3, \quad \forall n \ge 2, \alpha_n \ge 3$$
  

$$\alpha_3 = 3$$

$$\alpha_{0} = 0$$
  

$$\alpha_{1} = 1$$
  

$$\alpha_{2} = 3, \quad \forall n \ge 2, \alpha_{n} \ge 3$$
  

$$\alpha_{3} = 3$$
  

$$\alpha_{4} = 1 + 2\sqrt{2}$$

$$\alpha_{0} = 0$$

$$\alpha_{1} = 1$$

$$\alpha_{2} = 3, \quad \forall n \ge 2, \alpha_{n} \ge 3$$

$$\alpha_{3} = 3$$

$$\alpha_{4} = 1 + 2\sqrt{2}$$

$$\alpha_{5,6,7} \le \alpha_{4}$$

$$\vdots$$

$$\alpha_{n} < 5 + 2\sqrt{2} + \sqrt{5} \quad \text{from [YBMK15]}$$

## Bounds on $\alpha_n$

Theorem  $\forall n \in \mathbb{N}, \quad \alpha_n \leq 3 + 8\pi/\sqrt{n}$  $\sum_{i} \ell_i + \sum_{i} \frac{\Theta_i}{2^i}$ ei 20

The time to awake robots in a slope- $\theta$  cone from its apex is  $cone(\theta) \leq 1 + 2\theta$ 

## Bounds on $\alpha_n$

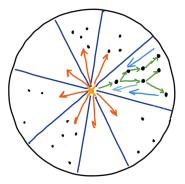
#### Theorem

- $\forall n \in \mathbb{N}, \quad \alpha_n \leq 3 + 8\pi/\sqrt{n}$
- $\Rightarrow \alpha_n \leq \operatorname{cone}(2\pi) \leq 1 + 4\pi$

## Bounds on $\alpha_n$

#### Theorem

 $\forall n \in \mathbb{N}, \quad \alpha_n \leq 3 + 8\pi/\sqrt{n}$ 



split in In cones
awake a dense cone
go back to the source
awake all cones

 $\Rightarrow \alpha_n \leq 2\text{cone}(2\pi/\sqrt{n}) + 1 \leq 3 + 8\pi/\sqrt{n}$ 

- $\alpha_n \leq \alpha_4$ ?
- $\alpha_{n,p} \leq \alpha_{4,p} = 1 + 2^{1+1/p}$ ?
- Polynomial time if *P* is convex?
- What if the moves are restricted to a temporal graph?
- What if the moves are restricted to other families? (path, binary tree, short cycles, ...)