Self-stabilizing Systems in Spite of High Dynamics

Karine Altisen¹ Stéphane Devismes² Anaïs Durand ³ <u>Colette Johnen⁴</u> Franck Petit⁵

¹ VERIMAG, Grenoble
² MIS, Amiens
³ LIMOS, Clermont Ferrand
⁴ LaBRI, Bordeaux
⁵ LIP6, Paris

ANR TEMPOGRAL, November 2022

Self-stabilization, [Dijkstra, ACM Com., 74]

Self-stabilization, [Dijkstra, ACM Com., 74]

Colette Johnen

Transient faults :

Self-stabilization

Permanent failures :

- ▶ process crashes ~→ fault-tolerant self-stabilization [Beauquier, Kekkonen-Moneta, 97]
- ▶ Byzantine failures → strict stabilization [Nesterenko, Arora, 02]

Intermittent failures :

message loss, duplication, and/or reordering [Delaët et al., 06]

... in static networks

Self-stabilization vs. Dynamic Networks

- If topological changes are :
 - rare
 - eventually locally detected

 \rightsquigarrow self-stabilization is a good approach

- Variants **dedicated** to dynamic networks, *e.g.*:
 - Superstabilization: quick convergence after few topological changes from a legitimate configuration [Dolev and Herman, Chicago Journal of Theoretical Computer Science, 1997]
 - Robust convergence: quick convergence to a safe configuration, then convergence to a legitimate configuration [Johnen and Nguyen, OPODIS'06, Kakugawa and Masuzawa, IPDPS'06]
- But, highly ineffective when the frequency of topological changes increases

Self-stabilization in Highly Dynamic Networks?

where **topological changes** are not : { transient an anomaly
but
{
intermittent inherent
inherent

To tolerate both transient faults and high dynamics

Case Study: Leader Election

Negative result: Even if the network is always connected over the time, silent self-stabilization is (almost always) impossible! [Braud-Santoni *et al.*, IJNC, 2016]

Silence: converges within finite time to a configuration from which the values of the communication registers used by the algorithm remain fixed.

Self-stabilizing leader election in highly dynamic message-passing systems

Finding conditions under which self-stabilizing leader election can be achieved.

We look for (non-silent) self-stabilizing algorithm for general classes of dynamic networks

(e.g., we do not enforce the network to be in a particular topology at a given time)

- Finding the limits where self-stabilizing leader election becomes impossible?
- Studying lower bounds on the convergence time

Context

Dynamics modeled with a **Dynamic Graph on** V, V set of nodes.

[Xuan et al., 03], [Casteigts et al., 13]

1, (d, c)

1, (d, c); 2, (c, b)

1, (d, c); 2, (c, b)

1, (d, c); 2, (c, b); 4, (b, a) = Journey from d to a of length 4.

Computation Model

Synchronous Rounds:

[Charron-Bost and Moran, STACS'18 / Barjon et al., CJ, 2019]

Execution in \mathcal{G} : infinite sequence of configurations $\gamma_0, \gamma_1, \ldots$ such that

- γ_0 is arbitrary
- $\forall i > 0$, γ_i is obtained from γ_{i-1} as follows:

Every node p sends a message consisting of all or a part of its local state in γ_{i-1} ,

 $\swarrow p$ receives all messages sent by nodes in $\mathcal{N}(p)^i$, and

 \mathcal{P} p computes its state in γ_i .

 $\forall i > 0$,

- $\mathcal{N}(p)^i$ set of nodes that are neighbor of p during the round i.
- γ_{i-1} is the configuration at the beginning of Round *i*
- γ_i is the configuration at the end of Round *i*

Considered Classes of TVGs

Class $\mathcal{TC}^{\mathcal{B}}(\Delta)$ with $\Delta \in \mathbb{N}^*$ (Bounded Temporal Diameter): Every node can always reach any other node through a journey of length $\leq \Delta$, *i.e.*, the temporal diameter is bounded by Δ , [Gómez-Calzado *et al.*, Euro-Par'15]

Class $\mathcal{TC}^{\mathcal{Q}}(\Delta)$ with $\Delta \in \mathbb{N}^*$ (Quasi Bounded Temporal Diameter): Every node can infinitely often reach any other node through a journey of length $\leq \Delta$. [Altisen *et al.*, ICDCN'21]

Class $TC^{\mathcal{R}}$ (Recurrent Temporal Connectivity): every node can infinitely often reach any other node through a journey. [Casteigts *et al.*, IJPEDS, 2012]

$$\mathcal{TC}^{\mathcal{B}}(\Delta)\subseteq\mathcal{TC}^{\mathcal{Q}}(\Delta)\subseteq\mathcal{TC}^{\mathcal{R}}$$

Self-stabilization in an Highly Dynamic Context

Adaptation of the definition in the book [Self-Stabilization, Dolev, 2000]

Let V be a set of nodes.

An algorithm \mathcal{A} is **self-stabilizing** for the specification SP(V) on a class \mathcal{C} of DGs if there exists a subset of configurations $\mathcal{L}(V)$ of \mathcal{A} , called *legitimate configurations*, such that:

I for every $\mathcal{G}(\mathcal{V}) \in \mathcal{C}$ and every execution of \mathcal{A} in $\mathcal{G}(\mathcal{V})$ contains a legitimate configuration $\gamma' \in \mathcal{L}(\mathcal{V})$ (Convergence), and

2 for every G(V) ∈ C, every legitimate configuration γ ∈ L(V), SP(V) holds on the execution of A in G(V) starting from γ (Correctness).

n identified nodes: $\forall p \in V$, id(p) is the unique identifier of p

Let *IDSET* be the definition domain of identifiers $(|IDSET| \gg n)$

 $\forall v \in IDSET$,

- v is a real ID if $\exists p \in V$, id(p) = v
- v is a **fake ID** otherwise

lid(p) contains the identifier of the leader computed by p Initially, lid(p) may contain a fake ID

GOAL: converge to a configuration from which all *lid* variables constantly designates **the same real ID**

Convergence Time of a Leader Election algorithm Unboundable in $\mathcal{TC}^\mathcal{Q}(\Delta)$

 $\mathcal{TC}^\mathcal{Q}(\Delta)$ – every node can infinitely often reach any other node through a journey of length $\leq \Delta$

For $i \in \mathbb{N}^*$ and $\mathcal{G}(V) \in \mathcal{TC}^{\mathcal{Q}}(\Delta)$, let $\mathcal{G}_i(V)$ be the dynamic graph $G_{isolated}(V)^i \mathcal{G}(V)$. $\mathcal{G}_i(V) \in \mathcal{TC}^{\mathcal{Q}}(\Delta)$ In $G_{isolated}(V)$ no node has a neighbor. $G_{isolated}(\{a, b\}) \quad G_{isolated}(\{a, b\}) \quad G_{isolated}(\{a, b\})$ a b \sim a b \sim a b \sim a b \sim

Along $G_{isolated}(V)^i$, no information is exchanged: leader election impossible!

In $\mathcal{G}_i(V)$ the leader election requires at least i + 1 rounds. Since $\mathcal{TC}^{\mathcal{Q}}(\Delta) \subset \mathcal{TC}^{\mathcal{R}}$, the result also holds for $\mathcal{TC}^{\mathcal{R}}$.

Colette Johnen

Speculation [Kotla et al., ACM Trans. Comput. Syst., 2009]:

- the system satisfies its requirements for all executions,
- but also exhibits significantly better performances in a subset of executions.

Idea: worst possible scenarios are often rare in practice.

When the stabilization time of an algorithm cannot be bounded in a class (*i.e.* $\mathcal{TC}^{\mathcal{Q}}(\Delta)$ and $\mathcal{TC}^{\mathcal{R}}$), we exhibit a bound of this algorithm in the class $\mathcal{TC}^{\mathcal{B}}(\Delta)$ (i.e. every node can always reach any other node through a journey of length $\leq \Delta$).

n identified nodes: $\forall p \in V$, id(p) is the unique identifier of p

Let *IDSET* be the definition domain of identifiers $(|IDSET| \gg n)$

 $\forall v \in IDSET$,

- v is a real ID if $\exists p \in V$, id(p) = v
- v is a fake ID otherwise

Every node p computes the identifier of the leader in lid(p)Initially, the value of lid(p) may be a fake ID

Strategy:

- **1** First, **eliminate all fake IDs**, and then
- **2** Compute in all output variables the **minimum real ID**, **noted** $id(\ell)$.

	Algorithm 3	Algorithm 2	Algorithm 1	
Knowledge	n	n , Δ	Δ	
Class	$\mathcal{TC}^{\mathcal{R}}$	$\mathcal{TC}^\mathcal{Q}(\Delta)$	$\mathcal{TC}^{\mathcal{B}}(\Delta)$	
Time	not bounded	not bounded	3Δ	
Memory	not bounded	$O(n\log(n+\Delta))$	$O(\log(n+\Delta))$	

n: number of nodes

	Algorithm 3			Algorithm 2		Algorithm 1		
Knowledge	n			n , Δ		Δ		
Class	$\mathcal{TC}^{\mathcal{R}}$	$\mathcal{TC}^{\mathcal{B}}(\Delta)$)	$\mathcal{TC}^{\mathcal{Q}}(\Delta) = \mathcal{TC}^{\mathcal{B}}(\Delta)$			$\mathcal{TC}^{\mathcal{B}}(\Delta)$	
Time	not bounded	$\Delta + 1$	•	not bounded	2Δ		3Δ	
Memory	not bounded			$O(n\log(n+\Delta))$		$O(\log(n+\Delta))$		
Speculation								

n: number of nodes

Results :

- **Definition** of self-stabilization in highly dynamic networks
- Focus on self-stabilizing leader election

Negative Results:

- in $\mathcal{TC}^{\mathcal{B}}(\Delta)$ if n is not known then the legitimate configurations set cannot be closed
- in $\mathcal{TC}^{\mathcal{R}}$ or $\mathcal{TC}^{\mathcal{Q}}(\Delta)$, the leader election is impossible if **n** is not known

Positive Results:

• we have circumvented the impossibility result of [Braud-Santoni *et al.*, IJNC, 2016] by considering non-silent solutions algorithms for $\mathcal{TC}^{\mathcal{R}}$, $\mathcal{TC}^{\mathcal{Q}}(\Delta)$, $\mathcal{TC}^{\mathcal{B}}(\Delta)$

Future work: Other TVG classes

Thank you for your attention

Joint Work:

- Karine Altisen, Stéphane Devismes, and Anaïs Durand, Colette Johnen, and Franck Petit. Self-stabilizing Systems in Spite of High Dynamics. ICDCN'21.
- full version of the paper in HAL :

[https://hal.archives-ouvertes.fr/hal-02376832]

Funding: ANR Estate & Descartes