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Temporal graphs
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Also known as :
• time-dependent networks [Cooke, Halsey 1966],
• edge scheduled networks [Berman 1996], dynamic graphs

[Harary, Gupta 1997], temporal networks [Kempe, Kleinberg,
Kumar 2002], evolving graphs [Bhadra, Ferreira 2003],

• time-varying graphs [Casteigts, Flocchini, Quattrociocchi,
Santoro 2012],

• link streams [Latapy, Viard, Magnien 2018],...
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Temporal path
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A path with increasing time labels.
Temporal paths are strict and waiting is allowed.
Reachable set R(u) : the set of nodes v that u can reach by
a temporal path (we let uRv denote v ∈ R(u)).
Above, we have : eRb,bRh,¬aRf,¬aRh
.
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Multidigraph temporalisation

Given a multidigraph M = (V,A) assign time labels to edges.

Maximum reachability goal (MRTT) : maximise total
reachability

∑
u |R(u)|.
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Undirected temporalisation and label connectivity

Label-connected graph : assign time labels to an undirected
graph (V,E) such that R(u) = V for all u ∈ V.

Undirected setting : if uv is available at time t, both (u, v)
and (v, u) are available at time t.

Known results [Göbel, Cerdeira, Veldman 1991] :
• Deciding label-connectivity is NP-hard.
• A graph is label-connected iff it contains two

edge-disjoint spanning tree-pairs and some 4-cycle
condition.

Undirected and directed settings differ on a path.

⇐ ? ⇒ 1 / 4 5 / 19
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Public transport

Temporal edge : a vehicle on a line going from one stop to
the next one.

The trip of a vehicle produces a sequence of temporal edges.
⇐ ? ⇒ 1 / 2 6 / 19
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Public transport
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Temporal edges are grouped into walks called trips.
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Trip temporalisation

Trip temporalisation : Given a multidigraph M whose edges
are partionned into t trips, set a starting time for each trip
(we note n = |V(M)| and m = |E(M)|).
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No trip temporalisation satisfies both aRh and eRd.
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One-to-one reachability is hard

O2O-RTT : given u, v ∈ V decide if there exists a trip
temporalisation such that uRv.

Theorem O2O-RTT is NP-complete.
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One-to-one reachability is hard

3-SAT reduction :
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Consequence and work-around

Theorem For any ε > 0, MRTT cannot be approximated
within O(n1−ε) unless P=NP.

Idea : connect many sources to v1 and many sinks to wm+1.

Theorem O2O-RTT using at most k trips can be solved in
2O(k)m logT where m = |E(M)| and T is the number of trips.

Idea : use the k-color coding technique of [Alon, Yuster,
Zwick 2016].

⇐ ? ⇒ 1 / 4 11 / 19
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Strong temporalisabilty

A trip network is strongly temporisable when for each pair
u, v ∈ V, there exists a temporalisation such that uRv.
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A difficult strongly temporisable network
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Bounded reachability :
∑

u |R(u)| = O(n1.5) (
√
n gap).
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Unapproximability of MRTT
Theorem MRTT cannot be approximated within

√
n/12

unless P=NP even in strongly temporisable trip networks.

c1c2c3· · ·cr−2cr−1cr u1 u2 · · · ur−1 t
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(D = (V,E),T)

Reduction from O2O-MRTT.
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Symmetricity

For every trip ⟨v1, . . . , vk⟩, there is a reverse trip ⟨vk, . . . , v1⟩.

⇐ ? ⇒ 1 / 1 15 / 19



MRTT is hard in symmetric trip networks
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Approximability of symmetric trip networks

Fact A symmetric trip network is strongly temporisable iff
M is (strongly) connected.

Theorem MRTT can be approximated within 9/2 in strongly
temporisable symmetric trip networks.

Idea :
• group trips and reverse trips into pairs,
• compute a centroid pair C, and a partition A, {C},B of

trip pairs,
• schedule trips pairs in A, {C},B respectively so that :

• each node in V(A ∪ {C}) can reach V({C} ∪ B).

⇐ ? ⇒ 1 / 3 17 / 19
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Going further

All results hold with arbitrary positive delays on edges,

and with fixed waiting times at stops.

Open : varying waiting times can be chosen in the
temporalisation.

Open : each trip is duplicated K times.

Open : directed graph temporalisation (more tomorrow).

⇐ ? ⇒ 1 / 5 18 / 19
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Thanks.

⇐ ? ⇒ 1 / 1 19 / 19



Directed graph temporalisation

Define the temporal reachability of a temporal graph as the
number of node pairs that are temporally connected.

Problem : given a strongly connected multi-digraph, assign
one time label per edge so that temporal reachability is
maximal.

or within a constant factor from maximal (approximation).
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Directed graph temporalisation

Define the temporal reachability of a temporal graph as the
number of node pairs that are temporally connected.

Problem : given a strongly connected multi-digraph, assign
one time label per edge so that temporal reachability is
maximal.

or within a constant factor from maximal (approximation).

⇐ ? ⇒ 2 / 3 20 / 19



Directed graph temporalisation

Define the temporal reachability of a temporal graph as the
number of node pairs that are temporally connected.

Problem : given a strongly connected multi-digraph, assign
one time label per edge so that temporal reachability is
maximal.

or within a constant factor from maximal (approximation).

⇐ ? ⇒ 3 / 3 20 / 19



Undirected graph temporalisation is quite known

Given an undirected graph G, deciding whether there exists
an assignment of one time label per edge such that all pairs
are temporally connected is NP-complete. [Göbel, Cerdeira,
Veldman 1991]

Approximation is obvious : take a spanning tree and assign
time labels that connect (n/2)2 pairs.

Related (Gossip/telephone problem [Bumby 1981]) : The
minimum number of time labels allowing to temporally
connect all pairs is 2n− 2, or 2n− 4 if G has a C4 (one or two
time labels per edge).

⇐ ? ⇒ 1 / 3 21 / 19
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Directed graph temporalisation : what we know

Given a strong digraph D, deciding whether there exists an
assignment of one time label per edge such that all pairs are
temporally connected is NP-complete. [Unpublished, ask
Filippo]

(The above is not implied by the undirected hardness.)
Approximation? : there exists strong digraphs where it is
not possible to connect (n/2)2 pairs (but (n/3)(2n/3) is
possible).
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Edge-disjoint in-tree and out-tree : related work

Related problem : Find an in-tree and an out-tree with same
root that are edge disjoint and have size Ω(n).

It is NP-hard to decide if a strong digraph has such a pair.
[Bang-Jensen 1991]

Conjecture : There exist c such that any c-edge-connected
digraph has such a pair. [Thomassen 1989]

Every strong digraph with stability α is spanned by the
disjoint union of max{1, α− 1} paths. [Thomassé 2001]

⇐ ? ⇒ 1 / 4 23 / 19
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