Compter des cartes planaires (colorées)

Mireille Bousquet-Mélou, CNRS, LaBRI, Université de Bordeaux

I. Trees and maps

Plane trees

Plane trees

Plane trees

Mark a corner

Mark a corner

Mark a corner

Plane maps

Plane maps

Plane maps

Plane maps: rooted version

Plane maps: rooted version

Coloured plane maps

Proper colouring:

Non-proper colouring:

Monochromatic edge

Who studies plane maps?

Who studies plane maps?

- combinatorialists (enumeration, graph theory)
- probabilists (large random maps; matrix integrals)
- theoretical physicists (quantum gravity)
- algebraists (factorizations in classical groups)
- computational geometers, graph drawers

Who studies plane maps?

- combinatorialists (enumeration, graph theory)
- probabilists (large random maps; matrix integrals)
- theoretical physicists (quantum gravity) Potts model
- algebraists (factorizations in classical groups)
- computational geometers, graph drawers

II. Recursive descriptions and enumeration

 \Rightarrow An ordered pair of trees

Delete the root edge

 \Rightarrow An ordered pair of trees

Delete the root edge

 \Rightarrow An ordered pair of trees

Enumeration: let a(n) be the number of rooted plane trees with n edges. Then a(0) = 1 and

$$a(n) = \sum_{i+j=n-1} a(i)a(j)$$

Delete the root edge

 \Rightarrow An ordered pair of trees

Enumeration: let a(n) be the number of rooted plane trees with n edges. Then a(0) = 1 and

$$a(n) = \sum_{i+j=n-1} a(i)a(j)$$

Generating function: the associated formal power series

$$A := \sum_{n \ge 0} a(n)t^n = \sum_{T \text{ tree}} t^{e(T)}$$

Delete the root edge

 \Rightarrow An ordered pair of trees

Enumeration: let a(n) be the number of rooted plane trees with n edges. Then a(0) = 1 and

$$a(n) = \sum_{i+j=n-1} a(i)a(j)$$

Generating function: the associated formal power series

$$A := \sum_{n \ge 0} a(n)t^n = \sum_{T \text{ tree}} t^{e(T)}$$

Functional equation:

 $A = 1 + tA^2$

Enumeration: let b(n) be the number of rooted plane maps with n edges. Then b(0) = 1 and

$$b(n) = \sum_{i+j=n-1} b(i)b(j) + \sum_{d\geq 0} b(n-1;d)(d+1)$$

where b(n; e) is the number of maps with *n* edges and outer degree *e*.

Enumeration: let b(n) be the number of rooted plane maps with n edges. Then b(0) = 1 and

$$b(n; e) = \sum_{\substack{i+j=n-1\\c+d=e-2}} b(i; c)b(j; d) + \sum_{d \ge e-1} b(n-1; d)$$

where b(n; e) is the number of maps with *n* edges and outer degree *e*.

Generating function of plane maps

Enumeration: let b(n; d) be the number of rooted plane maps with n edges and outer degree d. Then $b(0; e) = \delta_{e,0}$ and

$$b(n; e) = \sum_{\substack{i+j=n-1\\c+d=e-2}} b(i; c)b(j; d) + \sum_{d \ge e-1} b(n-1; d)$$

Generating function of plane maps

Enumeration: let b(n; d) be the number of rooted plane maps with n edges and outer degree d. Then $b(0; e) = \delta_{e,0}$ and

$$b(n; e) = \sum_{\substack{i+j=n-1\\c+d=e-2}} b(i; c)b(j; d) + \sum_{d \ge e-1} b(n-1; d)$$

Generating function: the associated bivariate formal power series

$$B(x) := \sum_{n,d\geq 0} b(n;d)t^n x^d = \sum_{M \text{ map}} t^{e(M)} x^{df(M)}$$

Note: $B(1) = \sum_{n} b(n)t^{n}$ is the GF we want to compute

Generating function of plane maps

Enumeration: let b(n; d) be the number of rooted plane maps with n edges and outer degree d. Then $b(0; e) = \delta_{e,0}$ and

$$b(n; e) = \sum_{\substack{i+j=n-1\\c+d=e-2}} b(i; c)b(j; d) + \sum_{d \ge e-1} b(n-1; d)$$

Generating function: the associated bivariate formal power series

$$B(x) := \sum_{n,d \ge 0} b(n;d) t^n x^d = \sum_{M \text{ map}} t^{e(M)} x^{df(M)}$$

Note: $B(1) = \sum_{n} b(n)t^{n}$ is the GF we want to compute

Functional equation:

$$B(x) = 1 + tx^{2}B(x)^{2} + tx \frac{xB(x) - B(1)}{x - 1}$$

A discrete differential equation

[Tutte 68]

Another description of maps: contract the root edge

Another description of maps: contract the root edge

Another description of maps: contract the root edge

Another description of maps: contract the root edge

Enumeration: let $\tilde{b}(n; e)$ be the number of rooted plane maps with n edges and root degree e. Then $\tilde{b}(0; e) = \delta_{e,0}$ and

$$\tilde{b}(n; e) = \sum_{\substack{i+j=n-1\\c+d=e-2}} \tilde{b}(i; c)\tilde{b}(j; d) + \sum_{d\geq e-1} \tilde{b}(n-1; d)$$

Same recurrence relation

A recursive description of coloured maps: delete/contract the root edge

 Deletion/contraction relation for the chromatic polynomial: the number χ_M(q) of proper q-colourings of the map M satisfies:

$$\chi_{M}(q) = \chi_{M \setminus e}(q) - \chi_{M \leftrightarrow e}(q)$$

A recursive description of coloured maps: delete/contract the root edge

• Deletion/contraction relation for the chromatic polynomial: the number $\chi_M(q)$ of proper q-colourings of the map M satisfies:

$$\chi_{M}(q) = \chi_{M \setminus e}(q) - \chi_{M \leftrightarrow e}(q)$$

More generally, if P_M(q, ν) counts all q-colourings of M with a weight ν per monochromatic edge:

$$\mathsf{P}_{M}(q,\nu) = \mathsf{P}_{M \setminus e}(q,\nu) + (\nu-1) \,\mathsf{P}_{M \leftrightarrow e}(q,\nu)$$

 \Rightarrow Use this to write a recurrence relation (then a functional equation) to count coloured maps, with two additional parameters.

Remark. The polynomial $P_M(q, \nu)$ is equivalent to the Tutte polynomial of M

A functional equation for coloured maps

• Let

$$C(x, y) = \frac{1}{q} \sum_{M} \mathsf{P}_{M}(q, \nu) t^{\mathsf{e}(M)} x^{\mathsf{d}\mathsf{v}(M)} y^{\mathsf{d}\mathsf{f}(M)}$$

$$= \frac{1}{q} \sum_{M \ q-coloured} t^{\mathsf{e}(M)} x^{\mathsf{d}\mathsf{v}(M)} y^{\mathsf{d}\mathsf{f}(M)} \nu^{\mathsf{m}(M)}$$

where dv(M) (resp. df(M)) is the degree of the root-vertex (resp. root-face) and m(M) the number of monochromatic edges.

A functional equation for coloured maps

• Let

$$C(x, y) = \frac{1}{q} \sum_{M} P_{M}(q, \nu) t^{e(M)} x^{dv(M)} y^{df(M)}$$

$$= \frac{1}{q} \sum_{M \ q-coloured} t^{e(M)} x^{dv(M)} y^{df(M)} \nu^{m(M)}$$

where dv(M) (resp. df(M)) is the degree of the root-vertex (resp. root-face) and m(M) the number of monochromatic edges.

Proposition [Tutte 68]

$$C(x, y) = 1 + xyt((\nu - 1)(y - 1) + qy)C(x, y)C(1, y) + xyt(x\nu - 1)C(x, y)C(x, 1) + xyt(\nu - 1)\frac{xC(x, y) - C(1, y)}{x - 1} + xyt\frac{yC(x, y) - C(x, 1)}{y - 1}$$

A discrete partial differential equation (in two variables) This equation has been sleeping for 40 years • Plane trees

$$A = 1 + tA^2$$

• Plane maps

$$B(x) = 1 + tx^{2}B(x)^{2} + tx \frac{xB(x) - B(1)}{x - 1}$$

• Coloured plane maps

$$C(x,y) = 1 + xyt((\nu - 1)(y - 1) + qy)C(x,y)C(1,y) + xyt(x\nu - 1)C(x,y)C(x,1) + xyt(\nu - 1)\frac{xC(x,y) - C(1,y)}{x - 1} + xyt\frac{yC(x,y) - C(x,1)}{y - 1}$$

Recursive constructions are robust

• Plane triangulations (every finite face has degree 3):

$$B(x) = tx(1 + xB(x))^{2} + t \frac{B(x) - B(0)}{x}$$

• Properly *q*-coloured triangulations [Tutte 73]:

$$T(x,y) = x(q-1) + xyzT(x,y)T(1,y) + xz\frac{T(x,y) - T(x,0)}{y} - x^2yz\frac{T(x,y) - T(1,y)}{x-1}$$

II. Guessing

Recurrences produce coefficients

Given the first terms of a series $(a(0), a(1), a(2), \ldots)$, Gfun can guess:

• linear rec. relations with polynomial coefficients for a(n)

 $p_{\ell}(n)a(n+\ell)+\cdots+p_0(n)a(n)=0$

• equivalently, linear diff. equations with polynomial coefficients for the GF A(t)

 $P_d(t)A^{(d)}(t) + \dots + P_0(t)A(t) = 0$

• also polynomial equations with polynomial coefficients for A(t)

 $P_d(t)A(t)^d + \dots + P_0(t) = 0$

Gfun: [Salvy & Zimmermann 94]

Given the first terms of a series $(a(0), a(1), a(2), \ldots)$, Gfun can guess:

• linear rec. relations with polynomial coefficients for a(n)

$$p_{\ell}(n)a(n+\ell)+\cdots+p_0(n)a(n)=0$$

• equivalently, linear diff. equations with polynomial coefficients for the GF A(t)

$$P_d(t)A^{(d)}(t) + \cdots + P_0(t)A(t) = 0$$

• also polynomial equations with polynomial coefficients for A(t)

 $P_d(t)A(t)^d + \dots + P_0(t) = 0$

Gfun: [Salvy & Zimmermann 94]

Given the first terms of a series $(a(0), a(1), a(2), \ldots)$, Gfun can guess:

• linear rec. relations with polynomial coefficients for a(n)

$$p_{\ell}(n)a(n+\ell)+\cdots+p_{0}(n)a(n)=0$$

• equivalently, linear diff. equations with polynomial coefficients for the GF A(t)

$$P_d(t)A^{(d)}(t) + \cdots + P_0(t)A(t) = 0$$

• also polynomial equations with polynomial coefficients for A(t)

$$P_d(t)A(t)^d + \cdots + P_0(t) = 0$$

Gfun: [Salvy & Zimmermann 94]

Guessing the number/generating function of plane maps

> b:=proc(n,e) option remember: if n=0 and e=0 then 1 elif n=0 or e=0 then 0 else add(add(b(i,c)*b(n-1-i,e-2-c),i=0..n-1)) (c=0..e-2) + add(b(n-1,d),d=e-1..2*n): fi: end: > liste:=[seq(b(n,1),n=1..10)]; *liste* := [1, 2, 9, 54, 378, 2916, 24057, 208494, 1876440 [> with(gfun): > listtorec(liste,bb(n)); $[\{(-12 n - 6) bb(n) + (n + 3) bb(n + 1), bb(0) = 1\}$ > listtodiffeq(liste,B(t)); $\left\{ 6 \operatorname{B}(t) + (30 t - 3) \left(\frac{d}{dt} \operatorname{B}(t) \right) + (12 t^{2} - t) \left(\frac{d^{2}}{dt^{2}} \operatorname{B}(t) \right) \operatorname{B}(0) = 1 \right\}$ > listtoalgeq(liste,B(t)); $[16 t - 1 + (-18 t + 1) B(t) + 27 t^{2} B(t)^{2}, ogt$

Oh?

Is it true that

$$B(x) = 1 + tx^{2}B(x)^{2} + tx \frac{xB(x) - B(1)}{x - 1}$$

implies

$$16t - 1 + (1 - 18t)B(1) + 27t^2B(1)^2 = 0$$

that is,

$$B(1) = \frac{(1-12t)^{3/2} - 1 + 18t}{54t^2} = \sum_{n \ge 0} 2 \cdot 3^n \frac{(2n)!}{n!(n+2)!} t^n$$
?

Oh?

Is it true that

$$B(x) = 1 + tx^{2}B(x)^{2} + tx \frac{xB(x) - B(1)}{x - 1}$$

implies

$$16t - 1 + (1 - 18t)B(1) + 27t^2B(1)^2 = 0$$

that is,

$$B(1) = \frac{(1-12t)^{3/2} - 1 + 18t}{54t^2} = \sum_{n \ge 0} 2 \cdot 3^n \frac{(2n)!}{n!(n+2)!} t^n ?$$

• Cf. for plane trees:

$$A = 1 + tA^2$$
 and $A = \frac{1 - (1 - 4t)^{1/2}}{2t} = \sum_{n \ge 0} \frac{(2n)!}{n!(n+1)!} t^n$

Guessing with Maple and Gfun

Given the first terms of a series $(a(0), a(1), a(2), \ldots)$, Gfun can guess:

• linear rec. relations with polynomial coefficients for a(n)

 $p_{\ell}(n)a(n+\ell)+\cdots+p_0(n)a(n)=0$

• equivalently, linear diff. equations with polynomial coefficients for the GF A(t)

 $P_d(t)A^{(d)}(t) + \cdots + P_0(t)A(t) = 0$

• also polynomial equations with polynomial coefficients for A(t)

 $P_d(t)A(t)^d + \cdots + P_0(t) = 0$

Guessing with Maple and Gfun

Given the first terms of a series $(a(0), a(1), a(2), \ldots)$, Gfun can guess:

• linear rec. relations with polynomial coefficients for a(n)

 $p_{\ell}(n)a(n+\ell)+\cdots+p_0(n)a(n)=0$

• equivalently, linear diff. equations with polynomial coefficients for the GF A(t)

 $P_d(t)A^{(d)}(t) + \cdots + P_0(t)A(t) = 0$

• also polynomial equations with polynomial coefficients for A(t)

 $P_d(t)A(t)^d + \cdots + P_0(t) = 0$

More generally

• linear relations with polynomial coefficients between given series $A_0(t), \ldots, A_d(t)$

$$P_d(t)A_d(t) + \cdots + P_0(t)A_0(t) = 0$$

(Important) example: non-linear differential equations

Guessing the number of properly *q*-coloured triangulations

• Triangulations with *n* vertices and outer-degree 2:

$$(c(n))_{n\geq 2} = q-1, (q-1)(q-2), (4q-9)(q-1)(q-2),$$

 $3(q-1)(q-2)(8q^2-37q+43), (176q^3-1245q^2+2951q-2344)(q-1)(q-2).$

$$T(x,y) = x(q-1) + xyzT(x,y)T(1,y) + xz\frac{T(x,y) - T(x,0)}{y} - x^2yz\frac{T(x,y) - T(1,y)}{x-1}$$

Guessing the number of properly q-coloured triangulations

• Triangulations with *n* vertices and outer-degree 2:

$$(c(n))_{n\geq 2} = q-1, (q-1)(q-2), (4q-9)(q-1)(q-2), \ 3(q-1)(q-2)(8q^2-37q+43), (176q^3-1245q^2+2951q-2344)(q-1)(q-2).$$

• Differential equation:

 $2(1-q)t + (t+10C - 6tC')C'' + (4-q)(20C - 18tC' + 9t^2C'') = 0$

• Recurrence relation:

$$(n+1)(n+2)c(n+2) = (q-4)(3n-1)(3n-2)c(n+1)$$

 $+ 2\sum_{i=1}^{n} i(i+1)(3n-3i+1)c(i+1)c(n+2-i),$
with $c(2) = q-1$.

[Tutte 84] — A combinatorial mystery

III. Solving discrete differential equations?

$$B(x) = 1 + tx^{2}B(x)^{2} + tx\frac{xB(x) - B(1)}{x - 1}$$

Our bestiary

• Plane trees: no derivative (polynomial equation)

 $A = 1 + tA^2$

• Plane maps: discrete ordinary diff. eq.

$$B(x) = 1 + tx^{2}B(x)^{2} + tx \frac{xB(x) - B(1)}{x - 1}$$

• Coloured plane maps: discrete partial diff. eq.

$$C(x,y) = 1 + xyt((\nu - 1)(y - 1) + qy)C(x,y)C(1,y) + xyt(x\nu - 1)C(x,y)C(x,1) + xyt(\nu - 1)\frac{xC(x,y) - C(1,y)}{x - 1} + xyt\frac{yC(x,y) - C(x,1)}{y - 1}$$

A hierarchy of formal power series

A hierarchy of formal power series

• Rational series

$$A(t) = \frac{P(t)}{Q(t)}$$

• Algebraic series

$$P(t,A(t))=0$$

• Differentially finite series (D-finite) $\int_{a}^{d} P(x) f(x) dx$

$$\sum_{i=0}^{n} P_i(t) A^{(i)}(t) = 0$$

• D-algebraic series

$$P(t,A(t),A'(t),\ldots,A^{(d)}(t))=0$$

Our bestiary

• Plane trees: no derivative (polynomial equation)

 $A = 1 + xA^2$

• Plane maps: discrete ordinary diff. eq.

$$B(x) = 1 + tx^{2}B(x)^{2} + tx \frac{xB(x) - B(1)}{x - 1}$$

• Coloured plane maps: discrete partial diff. eq.

$$C(x,y) = 1 + xyt((\nu - 1)(y - 1) + qy)C(x,y)C(1,y) + xyt(x\nu - 1)C(x,y)C(x,1) + xyt(\nu - 1)\frac{xC(x,y) - C(1,y)}{x - 1} + xyt\frac{yC(x,y) - C(x,1)}{y - 1}$$

Discrete ordinary differential equations are simple

Theorem [mbm-Jehanne 2006] (after [Knuth 72] and [Brown 65]) Every series $A(t;x) \equiv A(x)$ solution of a (proper) discrete ordinary differential equation of any degree and order is algebraic:

P(t,x,A(t;x))=0

for some polynomial *P*.

Discrete ordinary differential equations are simple

Theorem [mbm-Jehanne 2006] (after [Knuth 72] and [Brown 65]) Every series $A(t; x) \equiv A(x)$ solution of a (proper) discrete ordinary differential equation of any degree and order is algebraic:

P(t,x,A(t;x))=0

for some polynomial *P*.

• Plane maps

$$B(x) = 1 + tx^{2}B(x)^{2} + tx \frac{xB(x) - B(1)}{x - 1}$$

Discrete ordinary differential equations are simple

Theorem [mbm-Jehanne 2006] (after [Knuth 72] and [Brown 65]) Every series $A(t; x) \equiv A(x)$ solution of a (proper) discrete ordinary differential equation of any degree and order is algebraic:

P(t,x,A(t;x))=0

for some polynomial *P*.

• Plane maps

$$B(x) = 1 + tx^{2}B(x)^{2} + tx \frac{xB(x) - B(1)}{x - 1}$$

$$\Rightarrow 27t^{2}B(1)^{2} + (1 - 18t)B(1) + 16t - 1 = 0$$

Theorem [mbm-Jehanne 2006] (after [Knuth 72] and [Brown 65]) Every series $A(t; x) \equiv A(x)$ solution of a (proper) discrete ordinary differential equation of any degree and order is algebraic:

P(t,x,A(t;x))=0

for some polynomial P.

• Plane 3-constellations (degree 3, order 2)

$$A(x) = 1 + txA(x)^{3} + tx \frac{(A(x) - A(1))(2A(x) + A(1))}{x - 1} + \frac{tx(A(x) - A(1) - (x - 1)A'(1))}{(x - 1)^{2}}.$$

 $\Rightarrow A(1) = 1 - 47t + 3t^{2} + 3t(22 - 9t)A(1) + 9t(9t - 2)A(1)^{2} - 81t^{2}A(1)^{3}$

Discrete **partial** differential equations are not that easy! Even in the linear case

• Algebraic

$$A(x,y) = 1 + txyA + t\Delta_xA + t\Delta_yA$$

• D-finite but not algebraic

$$A(x,y) = 1 + t(x+y)A + t\Delta_x A + t\Delta_y A$$

• Not D-finite

$$A(x,y) = 1 + tx(1+y)A + t\Delta_x A + t\Delta_y A$$

$$\Delta_{x}A = \frac{A(x) - A(0)}{x}$$

Discrete **partial** differential equations are not that easy! Even in the linear case

• Algebraic

$$A(x,y) = 1 + txyA + t\Delta_xA + t\Delta_yA$$

• D-finite but not algebraic

$$A(x,y) = 1 + t(x+y)A + t\Delta_x A + t\Delta_y A$$

Not D-finite

$$A(x,y) = 1 + tx(1+y)A + t\Delta_x A + t\Delta_y A$$

Now a complete classification: [mbm-Mishna 10], [Bostan-Kauers 10], [Kurkova-Raschel 12], [Mishna-Rechnitzer 07], [Melczer-Mishna 13], [Bostan-Raschel-Salvy 14]

What about coloured maps?

A non-linear discrete differential equation in two variables:

$$C(x,y) = 1 + xyt((\nu - 1)(y - 1) + qy)C(x,y)C(1,y) + xyt(x\nu - 1)C(x,y)C(x,1) + xyt(\nu - 1)\frac{xC(x,y) - C(1,y)}{x - 1} + xyt\frac{yC(x,y) - C(x,1)}{y - 1}$$

... sleeping since 1968 [Tutte]

• For the GF T(x, y) of properly q-coloured triangulations:

$$T(x,y) = x(q-1) + xyzT(x,y)T(1,y) + xz\frac{T(x,y) - T(x,0)}{y} - x^2yz\frac{T(x,y) - T(1,y)}{x-1}$$

• For the GF T(x, y) of properly *q*-coloured triangulations:

$$T(x,y) = x(q-1) + xyzT(x,y)T(1,y) + xz\frac{T(x,y) - T(x,0)}{y} - x^2yz\frac{T(x,y) - T(1,y)}{x-1}$$

[Tutte 73] Chromatic sums for rooted planar triangulations: the cases $\lambda=1$ and $\lambda=2$

[Tutte 73] Chromatic sums for rooted planar triangulations, II : the case $\lambda=\tau+1$

[Tutte 73] Chromatic sums for rooted planar triangulations, III : the case $\lambda = 3$ [Tutte 73] Chromatic sums for rooted planar triangulations, IV : the case $\lambda = \infty$ [Tutte 74] Chromatic sums for rooted planar triangulations, V : special equations [Tutte 78] On a pair of functional equations of combinatorial interest [Tutte 82] Chromatic solutions

- [Tutte 82] Chromatic solutions II
- [Tutte 84] Map-colourings and differential equations

 $\triangleleft \ \lhd \ \diamond \ \vartriangleright \ \triangleright$

[Tutte 95]: Chromatic sums revisited

• For the GF T(x, y) of properly q-coloured triangulations:

$$T(x,y) = x(q-1) + xyzT(x,y)T(1,y) + xz\frac{T(x,y) - T(x,0)}{y} - x^2yz\frac{T(x,y) - T(1,y)}{x-1}$$

Theorem [Tutte]

• For $q = 2 + 2\cos\frac{2\pi}{m}$, $q \neq 0, 4$, the series T(1, y) satisfies a discrete differential equation in one variable y.

• For the GF T(x, y) of properly q-coloured triangulations:

$$T(x,y) = x(q-1) + xyzT(x,y)T(1,y) + xz\frac{T(x,y) - T(x,0)}{y} - x^2yz\frac{T(x,y) - T(1,y)}{x-1}$$

Theorem [Tutte]

For q = 2 + 2 cos ^{2π}/_m, q ≠ 0, 4, the series T(1, y) satisfies a discrete differential equation in one variable y.
When q is generic, the generating function of properly q-coloured planar triangulations is differentially algebraic in t:

 $2(1-q)t + (t+10H - 6tH')H'' + (4-q)(20H - 18tH' + 9t^2H'') = 0$

with $H(t) = t^2 T(1,0)$ and $t = \sqrt{z}$.

Our results

• Let C(x, y) be the generating function of *q*-coloured planar maps:

$$\mathcal{C}(x,y) = rac{1}{q} \sum_{M \ q-coloured} t^{\mathrm{e}(M)} x^{\mathrm{dv}(M)} y^{\mathrm{df}(M)}
u^{\mathrm{m}(M)},$$

where dv(M) (resp. df(M)) is the degree of the root-vertex (resp. root-face) and m(M) the number of monochromatic edges.

Theorem [Bernardi-mbm]

• For $q = 2 + 2\cos\frac{j\pi}{m}$, $q \neq 0, 4$, the series $C(1, y) \equiv C(y)$ satisfies a discrete ordinary differential equation in variable y,

[Bernardi-mbm 09] Counting coloured planar maps: algebraicity results. [Bernardi-mbm 14? 15?] Counting coloured planar maps: differential equations
Our results

• Let C(x, y) be the generating function of *q*-coloured planar maps:

$$\mathcal{C}(x,y) = rac{1}{q} \sum_{M \ q-coloured} t^{\mathrm{e}(M)} x^{\mathrm{dv}(M)} y^{\mathrm{df}(M)}
u^{\mathrm{m}(M)},$$

where dv(M) (resp. df(M)) is the degree of the root-vertex (resp. root-face) and m(M) the number of monochromatic edges.

Theorem [Bernardi-mbm]

• For $q = 2 + 2\cos\frac{j\pi}{m}$, $q \neq 0, 4$, the series $C(1, y) \equiv C(y)$ satisfies a discrete ordinary differential equation in variable y, and the generating function C(x, y) is algebraic.

[Bernardi-mbm 09] Counting coloured planar maps: algebraicity results. [Bernardi-mbm 14? 15?] Counting coloured planar maps: differential equations

Our results

• Let C(x, y) be the generating function of *q*-coloured planar maps:

$$\mathcal{C}(x,y) = rac{1}{q} \sum_{M \ q-coloured} t^{\mathrm{e}(M)} x^{\mathrm{dv}(M)} y^{\mathrm{df}(M)}
u^{\mathrm{m}(M)},$$

where dv(M) (resp. df(M)) is the degree of the root-vertex (resp. root-face) and m(M) the number of monochromatic edges.

Theorem [Bernardi-mbm]

For q = 2 + 2 cos ^{jπ}/_m, q ≠ 0, 4, the series C(1, y) ≡ C(y) satisfies a discrete ordinary differential equation in variable y, and the generating function C(x, y) is algebraic.
When q is generic, C(1, 1) is differentially algebraic in t: (an explicit system of differential equations)

[Bernardi-mbm 09] Counting coloured planar maps: algebraicity results. [Bernardi-mbm 14? 15?] Counting coloured planar maps: differential equations

q = 2: The Ising model on planar maps

Let A be the series in t, with polynomial coefficients in ν , defined by

$$A = t \frac{\left(1 + 3\nu A - 3\nu A^2 - \nu^2 A^3\right)^2}{1 - 2A + 2\nu^2 A^3 - \nu^2 A^4}.$$

Then the generating function of bicoloured planar maps is

$$C(2,\nu,t;1,1) = \frac{1+3\nu A - 3\nu A^2 - \nu^2 A^3}{(1-2A+2\nu^2 A^3 - \nu^2 A^4)^2} P(\nu,A)$$

where

$$P(\nu, A) = \nu^{3} A^{6} + 2 \nu^{2} (1 - \nu) A^{5} + \nu (1 - 6 \nu) A^{4} - \nu (1 - 5 \nu) A^{3} + (1 + 2 \nu) A^{2} - (3 + \nu) A + 1.$$

 \rightsquigarrow Asymptotics: Phase transition at $\nu_c = \frac{3+\sqrt{5}}{2}$, critical exponents...

Fix n (large) and choose a bi-coloured planar map M with n edges at random, with probability proportional to

 $\nu^{\mathrm{m}(M)}$

When $\nu = 0$, the colouring is proper. When ν is small, we favour maps with few monochromatic edges. When ν is large, we favour maps with many monochromatic edges.

$q = 3, \nu = 0$: Properly 3-coloured planar maps

Let A be the quartic series in t defined by

$$A = t \ \frac{(1+2A)^3}{1-2A^3}.$$

Then the generating function of properly 3-coloured planar maps is

$$C(3,0,t;1,1) = \frac{(1+2A)(1-2A^2-4A^3-4A^4)}{(1-2A^3)^2}$$

IV. Bijections, at last!

Simple formulas cry for bijective proofs

Plane trees

$$a(n) = \frac{1}{n+1} \binom{2n}{n} = \frac{(2n)!}{n!(n+1)!}$$

Plane maps

$$b(n) = \frac{2 \cdot 3^n}{(n+2)(n+1)} \binom{2n}{n} = 2 \cdot 3^n \frac{(2n)!}{n!(n+2)!}$$

A tree with n edges is a Dyck path of length 2n

A tree with n edges is a Dyck path of length 2n

A tree with n edges is a Dyck path of length 2n

$$a(n) =$$

A tree with n edges is a Dyck path of length 2n

add a tail...

$$a(n) =$$

A tree with n edges is a Dyck path of length 2n

add a tail... mark a step ((2n + 1) choices)...

$$(2n+1)a(n) =$$

A tree with n edges is a Dyck path of length 2n

add a tail... mark a step ((2n + 1) choices)... and read the path cyclically starting from that step

$$(2n+1)a(n) = \binom{2n+1}{n}$$

A tree with n edges is a Dyck path of length 2n

add a tail... mark a step ((2n + 1) choices)... and read the path cyclically starting from that step

$$(2n+1)a(n) = \binom{2n+1}{n} \Rightarrow a(n) = \frac{(2n)!}{n!(n+1)!}$$

A plane map with n edges is a 4-valent map with n vertices

b(n)

A plane map with n edges is a 4-valent map with n vertices

b(n)

A plane map with n edges is a 4-valent map with n vertices

b(n)

A plane map with n edges is a 4-valent map with n vertices

b(n)

A plane map with n edges is a 4-valent map with n vertices or a balanced blossoming binary tree with n vertices

b(n)

A plane map with n edges is a 4-valent map with n vertices or a balanced blossoming binary tree with n vertices

A plane map with n edges is a 4-valent map with n vertices or a balanced blossoming binary tree with n vertices

b(n)

 $\frac{3^n}{(n+1)}\binom{2n}{n}$

A plane map with n edges is a 4-valent map with n vertices or a balanced blossoming binary tree with n vertices

b(n)

 $\frac{3^n}{(n+1)}\binom{2n}{n}$

A plane map with n edges is a 4-valent map with n vertices or a balanced blossoming binary tree with n vertices

b(n)

 $\frac{3^n}{(n+1)}\binom{2n}{n}$

A plane map with n edges is a 4-valent map with n vertices or a balanced blossoming binary tree with n vertices

A plane map with n edges is a 4-valent map with n vertices or a balanced blossoming binary tree with n vertices

b(n)

$$\frac{3^n}{(n+1)}\binom{2n}{n}$$

A plane map with n edges is a 4-valent map with n vertices or a balanced blossoming binary tree with n vertices

b(n)

$$\frac{3^n}{(n+1)}\binom{2n}{n}$$

A plane map with n edges is a 4-valent map with n vertices or a balanced blossoming binary tree with n vertices

b(n)

 $\frac{3^n}{(n+1)}\binom{2n}{n}$

A plane map with n edges is a 4-valent map with n vertices or a balanced blossoming binary tree with n vertices

b(n)

 $\frac{3^n}{(n+1)}\binom{2n}{n}$

A plane map with n edges is a 4-valent map with n vertices or a balanced blossoming binary tree with n vertices

b(n)

$$\frac{3^n}{(n+1)}\binom{2n}{n}$$

A plane map with n edges is a 4-valent map with n vertices or a balanced blossoming binary tree with n vertices

A plane map with n edges is a 4-valent map with n vertices or a balanced blossoming binary tree with n vertices

b(n)

A plane map with n edges is a 4-valent map with n vertices or a balanced blossoming binary tree with n vertices

b(n)

A plane map with n edges is a 4-valent map with n vertices or a balanced blossoming binary tree with n vertices

- Improve our understanding of the nature of planar maps
 - nice numbers
 - algebraic generating functions

- Improve our understanding of the nature of planar maps
 - nice numbers
 - algebraic generating functions

Plane maps $(n \text{ edges}) \iff \text{balanced}$ blossoming trees (n nodes)

• Blossoming trees:

 $\mathsf{BI} = 1 + 3t\mathsf{BI}^2$

• An unbalanced blossoming tree is a 3-tuple of blossoming subtrees [Bouttier et al. 02]:

 $\Rightarrow B = \mathsf{BI} - t\mathsf{BI}^3.$

- Improve our understanding of the nature of planar maps
 - nice numbers
 - algebraic generating functions
 - recurrence relations

- Improve our understanding of the nature of planar maps
 - nice numbers
 - algebraic generating functions
 - recurrence relations
- Compact encoding
The strength of bijections

- Improve our understanding of the nature of planar maps
 - nice numbers
 - algebraic generating functions
 - recurrence relations
- Compact encoding
- Random generation

The strength of bijections

- Improve our understanding of the nature of planar maps
 - nice numbers
 - algebraic generating functions
 - recurrence relations
- Compact encoding
- Random generation
- Give a handle on other parameters: the average diameter of a random map of size *n* scales like $n^{1/4}$ [Chassaing-Schaeffer 02]
- The starting point of many recent results in probability theory on the asymptotic properties of large random maps [Le Gall, Miermont, Marckert, Paulin...]

- Many, many families of uncoloured maps are now well-understood [Arquès, Bernardi, mbm, Bouttier, Chapuy, Cori, Di Francesco, Fusy, Guitter, Poulalhon, Schaeffer, Vauquelin]
- What about coloured maps? (D-algebraic)

 $\triangleleft \ \vartriangleleft \ \diamond \ \triangleright \ \triangleright$

- Many, many families of uncoloured maps are now well-understood [Arquès, Bernardi, mbm, Bouttier, Chapuy, Cori, Di Francesco, Fusy, Guitter, Poulalhon, Schaeffer, Vauquelin]
- What about coloured maps? (D-algebraic)

 $\triangleleft \, \triangleleft \, \diamond \, \triangleright \, \triangleright$

The Ising model: 2-coloured planar maps (algebraic) [mbm-Schaeffer 02], [Bouttier et al. 04]

- Many, many families of uncoloured maps are now well-understood [Arquès, Bernardi, mbm, Bouttier, Chapuy, Cori, Di Francesco, Fusy, Guitter, Poulalhon, Schaeffer, Vauquelin]
- What about coloured maps? (D-algebraic)

$$\triangleleft \ \Diamond \ \triangleright \ \triangleright$$

Maps equipped with a spanning tree $(q = 0, \nu = 1; \text{ D-finite})$ [Mullin 67], [Bernardi 07]

- Many, many families of uncoloured maps are now well-understood [Arquès, Bernardi, mbm, Bouttier, Chapuy, Cori, Di Francesco, Fusy, Guitter, Poulalhon, Schaeffer, Vauquelin]
- What about coloured maps? (D-algebraic)

$$\triangleleft \, \triangleleft \, \diamond \, \triangleright \, \triangleright$$

Maps equipped with a spanning forest (q = 0; D-algebraic)[Bouttier et al. 07], [mbm-Courtiel 13a]

- Many, many families of uncoloured maps are now well-understood [Arquès, Bernardi, mbm, Bouttier, Chapuy, Cori, Di Francesco, Fusy, Guitter, Poulalhon, Schaeffer, Vauquelin]
- What about coloured maps? (D-algebraic)

$$\triangleleft \, \triangleleft \, \diamond \, \triangleright \, \triangleright$$

Maps equipped with a bipolar orientation $((-1)^{v(M)}\chi'_{M}(1); \text{ D-finite})$ [Felsner-Fusy-Noy-Orden 08], [Fusy-Poulalhon-Schaeffer 08], [Bonichon-mbm-Fusy 08]

- Many, many families of uncoloured maps are now well-understood [Arquès, Bernardi, mbm, Bouttier, Chapuy, Cori, Di Francesco, Fusy, Guitter, Poulalhon, Schaeffer, Vauquelin]
- What about coloured maps? (D-algebraic)

 $\triangleleft \ \Diamond \ \diamond \ \triangleright \ \diamond$

Properly 3-coloured planar maps (algebraic; OPEN)

$$C(3,0,t;1,1) = \frac{(1+2A)(1-2A^2-4A^3-4A^4)}{(1-2A^3)^2}$$

with
$$A = t \frac{(1+2A)^3}{1-2A^3}.$$

- Many, many families of uncoloured maps are now well-understood [Arquès, Bernardi, mbm, Bouttier, Chapuy, Cori, Di Francesco, Fusy, Guitter, Poulalhon, Schaeffer, Vauquelin]
- What about coloured maps? (D-algebraic)

$$\triangleleft \, \triangleleft \, \diamond \, \triangleright \, \triangleright$$

i)

Properly *q*-coloured triangulations (D-algebraic; OPEN)

$$(n+1)(n+2)c(n+2) =$$

$$(q-4)(3n-1)(3n-2)c(n+1)$$

$$+2\sum_{i=1}^{n}i(i+1)(3n-3i+1)c(i+1)c(n+2-3i+1)c(n+2)$$

Pour résumer...

