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degree 3
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(outer degree 6)



Proper colouring:

Non-proper colouring:

Monochromatic edge



Who studies plane maps?
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Delete the root edge /



Delete the root edge

o

= An ordered pair of trees



Delete the root edge

oo -0l

= An ordered pair of trees




Delete the root edge

oo -0l

= An ordered pair of trees

Enumeration: let a(n) be the number of rooted plane trees with n edges.
Then a(0) =1 and

an)= Y a(i)a())

i+j=n—1



A recursive description of trees

Delete the root edge

0@ -0
= An ordered pair of trees

Enumeration: let a(n) be the number of rooted plane trees with n edges.
Then a(0) =1 and
()= a(ha(j)
i+j=n—1
Generating function: the associated formal power series

A= Za(n)t” = Z te(7)

n>0 T tree



A recursive description of trees

Delete the root edge

o0

= An ordered pair of trees

Enumeration: let a(n) be the number of rooted plane trees with n edges.
Then a(0) =1 and

a(n)y=Y_ a(i)a()

i+j=n—1
Generating function: the associated formal power series
A= Za(n)t” = Z te(T)
n>0 T tree

Functional equation:
A =1+ tA
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A recursive description of maps: delete the root edge

L T

/o
Q outer degree d

Enumeration: let b(n) be the number of rooted plane maps with n edges.
Then b(0) =1 and

b= 3 B(bG) + 3 b(n— L:d)(d + 1)
i+j=n—1 d>0

where b(n; e) is the number of maps with n edges and outer degree e.



A recursive description of maps: delete the root edge

L T

/o
Q outer degree d

Enumeration: let b(n) be the number of rooted plane maps with n edges.
Then b(0) =1 and

b(me)= > b(i;c)b(jid)+ > b(n—1;d)

i+j=n—1 d>e—1
ctd=e—2 -

where b(n; €) is the number of maps with n edges and outer degree e.



Enumeration: let b(n; d) be the number of rooted plane maps with n
edges and outer degree d. Then b(0; €) = de o and

b(me)= Y b(i;c)b(jid)+ > b(n—1;d)

i+j=n—1 d>e—1
ct+d=e—2 -



Generating function of plane maps

Enumeration: let b(n; d) be the number of rooted plane maps with n
edges and outer degree d. Then b(0; e) = 0,0 and

Zb/c an—ld

i+j=n—1 d>e—1
ct+d=e—2

Generating function: the associated bivariate formal power series
= Z b(n; d)t”xd = Z ¢e(M)  df (M)
n,d>0 M map
Note: B(1) =), b(n)t" is the GF we want to compute



Generating function of plane maps

Enumeration: let b(n; d) be the number of rooted plane maps with n
edges and outer degree d. Then b(0; e) = 0,0 and

Zb/c an—ld

i+j=n—1 d>e—1
ct+d=e—2

Generating function: the associated bivariate formal power series
= Z b(n; d)t”xd = Z ¢e(M)  df (M)
n,d>0 M map
Note: B(1) =), b(n)t" is the GF we want to compute

Functional equation:
xB(x) — B(1)
x—1

A discrete differential equation

B(x) = 1+ tx*B(x)? + tx

[Tutte 68]
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Another description of maps: contract the root edge

@JQ d + 1 maps
I

T

@/ ¥Q @ degree of root vertex

Enumeration: let b (n; e) be the number of rooted plane maps with n

edges and root degree e.
Then b(0; e) = 0,0 and

= Y b(i;0)b(jid)+ Y b(n—1;d)

i+j=n—1 d>e 1
ct+d=e—2

Same recurrence relation



@ Deletion/contraction relation for the chromatic polynomial: the
number xu(q) of proper g-colourings of the map M satisfies:

xm(9) = xme(q) — Xmese(q)

e




A recursive description of coloured maps: delete/contract
the root edge

@ Deletion/contraction relation for the chromatic polynomial: the
number xu(q) of proper g-colourings of the map M satisfies:

xm(9) = Xme(q) — Xmese(q)

e More generally, if Pps(g, v) counts all g-colourings of M with a
weight v per monochromatic edge:

Pm(q,v) = Pwe(q,v) + (¥ — 1) Puese(q, v)

= Use this to write a recurrence relation (then a functional equation) to
count coloured maps, with two additional parameters.

Remark. The polynomial Py(q,v) is equivalent to the Tutte polynomial
of M



A functional equation for coloured maps

o Let ZP’V’ q,v e(M dv(M )df( )

_1 ST M) (M), (M)

q M g—-coloured

where dv(M) (resp. df(M)) is the degree of the root-vertex (resp.
root-face) and m(M) the number of monochromatic edges.

t12x3y61/



1
o Let Clx.y) = E Z Pu(q, V)te(M)de(M)ydf(M)
M

_ 1 ST oM M) (M) ()
M q—coloured

where dv(M) (resp. df(M)) is the degree of the root-vertex (resp.
root-face) and m(M) the number of monochromatic edges.

= 1+xyt((v—1)( —1)+ay) C(1,y)
+xyt(xv — 1)

—C 1q
( Y) th)/
x—1

+xyt(v —1) =

A discrete partial differential equation (in two variables)

This equation has been sleeping for 40 years



e Plane trees
A=1+ tA?
e Plane maps
B(x) = 1+ tx*B(x)? + tx L_lB(l)
X —
e Coloured plane maps

Clx,y) = 1+xyt((v—1)(y — 1) +aqy) C(x,y)C(1.y)
+xyt(xv —1)C(x, y)C(x,1)
xC(x,y) — C(L,y) +thyC(X7y) - C(x,1)

+xyt(v — 1) ] y -1




e Plane triangulations (every finite face has degree 3):

B(x) = tx(1 + xB(x))? + t w

e Properly g-coloured triangulations [Tutte 73]:

T(x,y)=x(q—1)+xyzT(x,y)T(L,y)
Xz T(Xay) B T(X70) —x2yz T(Xay) B T(lay)

+ y x—1




Recurrences produce coefficients




Given the first terms of a series (a(0), a(1), a(2), ...), Gfun can guess:

o linear rec. relations with polynomial coefficients for a(n)

pe(n)a(n+£) +- -+ po(n)a(n) = 0

Gfun: [Salvy & Zimmermann 94]



Guessing with Maple and Gfun

Given the first terms of a series (a(0), a(1), a(2),...), Gfun can guess:

o linear rec. relations with polynomial coefficients for a(n)
pe(n)a(n+€) + -+ po(n)a(n) =0
@ equivalently, linear diff. equations with polynomial coefficients for the

GF A(t)
Pa(t)AD () + - + Po(t)A(t) = 0

Gfun: [Salvy & Zimmermann 94]



Guessing with Maple and Gfun

Given the first terms of a series (a(0), a(1), a(2),...), Gfun can guess:

o linear rec. relations with polynomial coefficients for a(n)
pe(m)a(n+£) + - -+ po(n)a(n) = 0

@ equivalently, linear diff. equations with polynomial coefficients for the
GF A(t)
Pa(t) A (t) + - - + Po(t)A(t) = 0

@ also polynomial equations with polynomial coefficients for A(t)

Py(t)A(t)? + -+ + Po(t) =0

Gfun: [Salvy & Zimmermann 94]



Guessing the number/generating function of plane maps

[ > b:=proc(n,e) option renenber:
if n=0 and e=0 then 1 elif n=0 or e=0 then O
el se add(add(b(i,c)*b(n-1-i,e-2-c¢),i1=0..n-1)
,€c=0..e-2) + add(b(n-1,d),d=e-1..2*n):
fi: end:
r>liste:=[seq(b(n,1),n=1..10)];
liste:=[1, 2,9, 54, 378, 2916, 24057, 208494, 187644
[> w th(gfun):
> listtorec(liste,bb(n));
[{ (<12 n —=6) bb(n) + (n + 3) bb(n + 1), bb(0) = 1
> |listtodiffeq(liste,B(t));

2
EG B(t)+ (30t -23) %t B(t)%+ (12t° -t) E?Z B(t)% B(0)=1

> listtoal geq(liste,B(t));
[16t -1 + (=181t +1) B(t) +27 t* B(t)?, ogf




Is it true that

implies
16t — 1+ (1 — 18t)B(1) + 27t°B(1)> = 0

that is,

B(1) =

(1—126)%2—1+18¢ Yo e,

2 T -t
54t pod nl n+2)



Is it true that

implies
16t — 1+ (1 — 18t)B(1) + 27t°B(1)> = 0

that is,

B(1) =

(1-12t)%2 — 1418t ~Y o e .,

2 I( !
54t = nl(n+2)!

e Cf. for plane trees:

1—(1—4t)1/2 (2n)!
_ 2 P S A
A=1+tA and A= T an(n+1)lt



Guessing with Maple and Gfun

Given the first terms of a series (a(0), a(1), a(2),...), Gfun can guess:
@ linear rec. relations with polynomial coefficients for a(n)

pe(n)a(n + ) + -+ po(n)a(n) = 0

@ equivalently, linear diff. equations with polynomial coefficients for the
GF A(t)
Pa(t)AD(t) + -+ + Po(t)A(t) = 0

@ also polynomial equations with polynomial coefficients for A(t)

Pa(t)A(t) + -+ Py(t) =0



Guessing with Maple and Gfun

Given the first terms of a series (a(0), a(1), a(2),...), Gfun can guess:
@ linear rec. relations with polynomial coefficients for a(n)

pe(n)a(n + ) + -+ po(n)a(n) = 0

@ equivalently, linear diff. equations with polynomial coefficients for the
GF A(t)
Pa(t)AD(t) + -+ + Po(t)A(t) = 0

@ also polynomial equations with polynomial coefficients for A(t)
Pa(t)A(t)? + -+ Po(t) =0

More generally
@ linear relations with polynomial coefficients between given series

Ao(t), - ,Ad(t)
Pa(t)Aq(t) + -+ Po(t)Ao(t) =0

(Important) example: non-linear differential equations



e Triangulations with n vertices and outer-degree 2:

(c(mM)n>2=¢q—1,(q—1)(q —2),(4g — 9)(qg — 1)(q — 2),
3(g—1)(g—2)(8¢°—37q+43), (176> —1245¢°+29519—2344)(q—1)(q—2) . .

T(x,y)=x(q—1)+xyzT(x,y)T(L,y)

X7 T(va) — T(X7O) —x2yz T(Xv.}/) — T(]-:y)

+ y x—1




Guessing the number of properly g-coloured triangulations

e Triangulations with n vertices and outer-degree 2:

(c(M)r>2=q—1,(g—1)(q—2),(49 = 9)(g — 1)(q — 2),
3(q—1)(g—2)(8q°—37q+43), (1764 —1245¢q>+2951q—2344)(q—1)(q—2) ..

e Differential equation:

2(1 —q)t + (t+10C — 6tC")C" + (4 — q)(20C — 18tC" +9t>C") =0

e Recurrence relation:
(n+1)(n+2)c(n+2)=(g—4)(B3n—1)(3n—2)c(n+1)

+2Z i+1)3n—3i+1)c(i+ 1)c(n+2—1i),
with ¢(2) =g — 1.

[Tutte 84] — A combinatorial mystery



xB(x) — B(1)

x—1

B(x) = 1+ tx*B(x)? + tx



e Plane trees: no derivative (polynomial equation)
A=1+tA

e Plane maps: discrete ordinary diff. eq.

xB(x) — B(1)

B(x) = 1+ tx*B(x)? + tx
x—1
e Coloured plane maps: discrete partial diff. eq.

Clay) = Tyt ((v =1y = 1) +qy) C(x,y)C(L,y)

+xyt(xv —1)C(x, y)C(x,1)
xCx,y) = C(1,y) yClxy) = C(x,1)
x—1 ot y—1

+xyt(v — 1)



A hierarchy of formal power series




A hierarchy of formal power series

o Rational series

A(t) = %
e Algebraic series
P(t,A(t)) =0

o Differentially finite series (D-finite)
d
> Pi(t)A(r) =0
i=0

e D-algebraic series
P(t, A(t), A(t),..., A (1)) =0




e Plane trees: no derivative (polynomial equation)
A =1+ xA?

e Plane maps: discrete ordinary diff. eq.

xB(x) — B(1)

B(x) =1+ tx*B(x)? + tx
x—1
e Coloured plane maps: discrete partial diff. eq.

Clay) = Tyt ((v =1y = 1) +qy) C(x,y)C(L,y)

+xyt(xv —1)C(x, y)C(x,1)
xCx,y) = C(1,y) yClxy) = C(x,1)
x—1 ot y—1

+xyt(v — 1)



Every series A(t; x) = A(x) solution of a (proper) discrete ordinary
differential equation of any degree and order is algebraic:

P(t,x,A(t;x)) =0

for some polynomial P.




Every series A(t; x) = A(x) solution of a (proper) discrete ordinary
differential equation of any degree and order is algebraic:

P(t,x,A(t;x)) =0

for some polynomial P.

e Plane maps
xB(x) — B(1)

B(x) =1+ tx®B(x)? + tx 1



Every series A(t; x) = A(x) solution of a (proper) discrete ordinary
differential equation of any degree and order is algebraic:

P(t,x,A(t;x)) =0

for some polynomial P.

e Plane maps

xB(x) — B(1)
-1

= 27t?B(1)* 4+ (1 — 18t)B(1) + 16t — 1 =10

B(x) =1+ tx®B(x)? + tx



Every series A(t; x) = A(x) solution of a (proper) discrete ordinary
differential equation of any degree and order is algebraic:

P(t,x,A(t;x)) =0

for some polynomial P.

e Plane 3-constellations (degree 3, order 2)
Ax) = 1+ txA(x)*
(Alx) = A(1)) RA(x) + A(1))
x—1
L (A — A1) = (x = 1) A(1))
(x—1)°
= A(1) = 1 — 47t + 3t% + 3t(22 — 9t)A(1) + 9t(9t — 2)A(1)? — 81t%A(1)®

+ tx




e Algebraic

Ax,y) =1+ txyA+ tAA+tA A

e D-finite but not algebraic
Alx,y) =1+ t(x+y)A+tAA+tA A

e Not D-finite
Ax,y) =14+ tx(1+ y) A+ tAA+ LA A

_A(x) — AQ)

ALA



e Algebraic

Ax,y) =1+ txyA+ tAA+tA A

e D-finite but not algebraic
Alx,y) =1+ t(x+y)A+tAA+tA A

e Not D-finite
Ax,y) =1+ tx(1 + y)A+ tAA+ tA A

Now a complete classification: [mbm-Mishna 10], [Bostan-Kauers 10],
[Kurkova-Raschel 12], [Mishna-Rechnitzer 07], [Melczer-Mishna 13],
[Bostan-Raschel-Salvy 14]



A non-linear discrete differential equation in two variables:

Clx,y) = 14+xyt((v—1)(y —1) +qy) C(x,y)C(1,y)
+xyt(xv — 1)C(x,y)C(x,1)
XC(X,);) - C(1,y) +thyC(X,y) — C(x,1)

+xyt(v — 1) — 1

.. sleeping since 1968 [Tutte]



e For the GF T(x, y) of properly g-coloured triangulations:

T(x,y)=x(q—1)+xyzT(x,y)T(1,y)

QTN = T(x0) 5 Tley) = T(Ly)

+ y x—1




In the footsteps of W. Tutte

e For the GF T(x,y) of properly g-coloured triangulations:

T(x,y)=x(q—1)+xyzT(x,y)T(L,y)

4oz T(xy)=T(x,0) yz T(x,y)— 1T(1‘y)
y X —

[Tutte 73] Chromatic sums for rooted planar triangulations: the cases A = 1 and
A=2

[Tutte 73] Chromatic sums for rooted planar triangulations, Il : the case
A=7+1
[Tutte 73] Chromatic sums for rooted planar triangulations, Ill : the case A =3

[Tutte 73] Chromatic sums for rooted planar triangulations, IV : the case A = o0
[Tutte 74] Chromatic sums for rooted planar triangulations, V : special equations
[Tutte 78] On a pair of functional equations of combinatorial interest

[Tutte 82] Chromatic solutions

[Tutte 82] Chromatic solutions I

[Tutte 84] Map-colourings and differential equations

440> D>

[Tutte 95]: Chromatic sums revisited



e For the GF T(x, y) of properly g-coloured triangulations:

T(x,y)=x(q—1)+xyzT(x,y)T(L,y)

xzw - x2sz

+ y x—1

e For g =2+ 2cos 2% q # 0,4, the series T(1,y) satisfies a discrete

differential equation in one variable y.




e For the GF T(x, y) of properly g-coloured triangulations:

T(x,y) =x(q—1)+xyzT(x,y)T(1,y)
xzw —x2sz

+ y x—1

e For g =2+ 2cos 2% q # 0,4, the series T(1,y) satisfies a discrete

differential equation in one variable y.
e When g is generic, the generating function of properly g-coloured
planar triangulations is differentially algebraic in t:

with H(t) = t?T(1,0) and t = \/z.




e Let C(x, y) be the generating function of g-coloured planar maps:
C(x,y) = 1 Z te(l\/l)xdv(M)ydf(M)Vm(M),
M q—coloured

where dv(M) (resp. df(M)) is the degree of the root-vertex (resp.
root-face) and m(M) the number of monochromatic edges.

e Forg=2+ 2cos%, q # 0,4, the series C(1,y) = C(y) satisfies a
discrete ordinary differential equation in variable y,

[Bernardi-mbm 09] Counting coloured planar maps: algebraicity results.
[Bernardi-mbm 147 157] Counting coloured planar maps: differential equations



e Let C(x, y) be the generating function of g-coloured planar maps:
C(x,y) = 1 Z te(l\/l)xdv(M)ydf(M)Vm(M),
M q—coloured

where dv(M) (resp. df(M)) is the degree of the root-vertex (resp.
root-face) and m(M) the number of monochromatic edges.

e Forg=2+ 2cos%, q # 0,4, the series C(1,y) = C(y) satisfies a
discrete ordinary differential equation in variable y, and the generating

function C(x,y) is algebraic.

[Bernardi-mbm 09] Counting coloured planar maps: algebraicity results.
[Bernardi-mbm 147 157] Counting coloured planar maps: differential equations



e Let C(x, y) be the generating function of g-coloured planar maps:
C(x,y) = 1 Z te(l\/l)xdv(M)ydf(M)Vm(M),
M q—coloured

where dv(M) (resp. df(M)) is the degree of the root-vertex (resp.
root-face) and m(M) the number of monochromatic edges.

e Forg=2+ 2cos%, q # 0,4, the series C(1,y) = C(y) satisfies a
discrete ordinary differential equation in variable y, and the generating

function C(x,y) is algebraic.
e When q is generic, C(1,1) is differentially algebraic in t:
(an explicit system of differential equations)

[Bernardi-mbm 09] Counting coloured planar maps: algebraicity results.
[Bernardi-mbm 147 157] Counting coloured planar maps: differential equations



g = 2: The Ising model on planar maps

Let A be the series in t, with polynomial coefficients in v, defined by

(1+3VA—3VA2 —V2A3)2
1—-2A+212A3 — 1244

Then the generating function of bicoloured planar maps is

1+3vA—3vA% —12A3
(1—2A+202A3 — 12A%)?

C(2,v,t;1,1) = P(v, A)

where
P(v,A) = 13A% +202(1 — v)A° + v (1 — 6v)A
—v(1-50)A3+ (14 2v)A> - (3+v)A+ 1.

~ Asymptotics: Phase transition at v, = 3‘*'2—‘/5 critical exponents...



g = 2: The Ising model on planar maps

Fix n (large) and choose a bi-coloured planar map M with n edges at
random, with probability proportional to
Vm(M).

When v = 0, the colouring is proper.
When v is small, we favour maps with few monochromatic edges.
When v is large, we favour maps with many monochromatic edges.

A non-analytic

1

Ve



Let A be the quartic series in t defined by

A (1+2A)3
12437

Then the generating function of properly 3-coloured planar maps is

(14 2A)(1 — 2A2 — 4A3 — 4A%)
(1—243)2

C(3,0,t;1,1) =



Simple formulas cry for bijective proofs

() = <2nn> - %

B 2.3" 2n\ _ . .o (2n)!
M) = o T n) =2 YA 2

Plane trees

Plane maps



A tree with n edges is a Dyck path of length 2n




A tree with n edges is a Dyck path of length 2n




A tree with n edges is a Dyck path of length 2n




A tree with n edges is a Dyck path of length 2n

add a tail...

a(n) =



A tree with n edges is a Dyck path of length 2n

add a tail...
mark a step ((2n + 1) choices)...

(2n+1)a(n) =



Bijective enumeration of rooted plane trees

A tree with n edges is a Dyck path of length 2n

add a tail...
mark a step ((2n + 1) choices)...
and read the path cyclically starting from that step

(2n + 1)a(n) = <2” + 1)

n



Bijective enumeration of rooted plane trees

A tree with n edges is a Dyck path of length 2n

add a tail...
mark a step ((2n + 1) choices)...
and read the path cyclically starting from that step

(2n+1)a(n) = <2n N 1) = a(n)= (2”)'

n



A plane map with n edges is a 4-valent map with n vertices

[Schaeffer 97]



A plane map with n edges is a 4-valent map with n vertices

[Schaeffer 97]



A plane map with n edges is a 4-valent map with n vertices

[Schaeffer 97]



A plane map with n edges is a 4-valent map with n vertices

[Schaeffer 97]



A plane map with n edges is a 4-valent map with n vertices
or a balanced blossoming binary tree with n vertices

A

[Schaeffer 97]



A plane map with n edges is a 4-valent map with n vertices
or a balanced blossoming binary tree with n vertices

A

[Schaeffer 97]



A plane map with n edges is a 4-valent map with n vertices
or a balanced blossoming binary tree with n vertices

A

[Schaeffer 97]



A plane map with n edges is a 4-valent map with n vertices
or a balanced blossoming binary tree with n vertices

A

[Schaeffer 97]



A plane map with n edges is a 4-valent map with n vertices
or a balanced blossoming binary tree with n vertices

. J/

[Schaeffer 97]



A plane map with n edges is a 4-valent map with n vertices
or a balanced blossoming binary tree with n vertices

A

[Schaeffer 97]



A plane map with n edges is a 4-valent map with n vertices
or a balanced blossoming binary tree with n vertices

. /
N

o
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B
N—r

w
3
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S 3
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(n+1)

[Schaeffer 97]



A plane map with n edges is a 4-valent map with n vertices
or a balanced blossoming binary tree with n vertices

- J/
2\

o
—~
B
N—r

w
3
TN
S 3
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(n+1)

[Schaeffer 97]



A plane map with n edges is a 4-valent map with n vertices
or a balanced blossoming binary tree with n vertices

. %
/N 3

o
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B
N—r

w
3
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(n+1)

[Schaeffer 97]



A plane map with n edges is a 4-valent map with n vertices
or a balanced blossoming binary tree with n vertices

A

[Schaeffer 97]



A plane map with n edges is a 4-valent map with n vertices
or a balanced blossoming binary tree with n vertices

oA

o) wroln)

[Schaeffer 97]
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Bijective enumeration of rooted plane maps
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The strength of bijections

@ Improve our understanding of the nature of planar maps
> nice numbers
» algebraic generating functions

Plane maps (n edges) <= balanced blossoming trees (n nodes)

e Blossoming trees:

Bl =1+ 3tBI°

e An unbalanced blossoming tree is a 3-tuple
of blossoming subtrees [Bouttier et al. 02]:

= B = Bl — tBP.
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The strength of bijections

@ Improve our understanding of the nature of planar maps
» nice numbers
» algebraic generating functions
» recurrence relations
e Compact encoding
@ Random generation
@ Give a handle on other parameters: the average diameter of a
random map of size n scales like n'/# [Chassaing-Schaeffer 02]
@ The starting point of many recent results in probability theory on the
asymptotic properties of large random maps [Le Gall, Miermont,
Marckert, Paulin...]
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e Many, many families of uncoloured maps are now well-understood
[Arqués, Bernardi, mbm, Bouttier, Chapuy, Cori, Di Francesco, Fusy,
Guitter, Poulalhon, Schaeffer, Vauquelin]

e What about coloured maps? (D-algebraic)
40> D>
The Ising model: 2-coloured planar maps Y

(algebraic) -
[mbm-Schaeffer 02], [Bouttier et al. 04]



More bijections

e Many, many families of uncoloured maps are now well-understood
[Arqués, Bernardi, mbm, Bouttier, Chapuy, Cori, Di Francesco, Fusy,
Guitter, Poulalhon, Schaeffer, Vauquelin]

e What about coloured maps? (D-algebraic)
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Maps equipped with a spanning tree
(g =0,v = 1; D-finite)
[Mullin 67], [Bernardi 07]



More bijections

e Many, many families of uncoloured maps are now well-understood
[Arqués, Bernardi, mbm, Bouttier, Chapuy, Cori, Di Francesco, Fusy,
Guitter, Poulalhon, Schaeffer, Vauquelin]

e What about coloured maps? (D-algebraic)

410> D

Maps equipped with a spanning forest »
(g = 0; D-algebraic)
[Bouttier et al. 07], [mbm-Courtiel 13a]



e Many, many families of uncoloured maps are now well-understood
[Arqués, Bernardi, mbm, Bouttier, Chapuy, Cori, Di Francesco, Fusy,
Guitter, Poulalhon, Schaeffer, Vauquelin]

e What about coloured maps? (D-algebraic)

40> D>

Maps equipped with a bipolar orientation
((—=1)"™M)x/,(1); D-finite)
[Felsner-Fusy-Noy-Orden 08],
[Fusy-Poulalhon-Schaeffer 08],
[Bonichon-mbm-Fusy 08]



e Many, many families of uncoloured maps are now well-understood
[Arqués, Bernardi, mbm, Bouttier, Chapuy, Cori, Di Francesco, Fusy,
Guitter, Poulalhon, Schaeffer, Vauquelin]

e What about coloured maps? (D-algebraic)

40> D>

Properly 3-coloured planar maps
(algebraic; OPEN)

(14 2A)(1 — 2A% — 4A3 — 4A%)
(1—2A3)2 \

C(3,0,t;1,1) =

with ( A)3
142
A= 1-2A3 "



More bijections 7

e Many, many families of uncoloured maps are now well-understood
[Arqués, Bernardi, mbm, Bouttier, Chapuy, Cori, Di Francesco, Fusy,
Guitter, Poulalhon, Schaeffer, Vauquelin]

e What about coloured maps? (D-algebraic)

410> D

Properly g-coloured triangulations
(D-algebraic; OPEN) /

(n+1)(n+2)c(n+2)= \

(g —4)(3n—1)(3n — 2)c(n+ 1) \

+2 Z i(i+1)3n—3i+1)c(i + 1)c(n+2 — i)
i=1



Pour résumer...

Objets aléatoires

Transitions de phase

Combinatoire

énumeérative

Calcul formel
Divination Dessin de graphes
Bijections

Séries formelles

B(x) = 1+ tx*B(x)? + tx B-E@








