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I. Trees and maps
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Coloured plane maps

Proper colouring:

Non-proper colouring:

Monochromatic edge



Who studies plane maps?
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combinatorialists (enumeration, graph theory)
probabilists (large random maps; matrix integrals)
theoretical physicists (quantum gravity)
algebraists (factorizations in classical groups)
computational geometers, graph drawers
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probabilists (large random maps; matrix integrals)
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II. Recursive descriptions and
enumeration



A recursive description of trees

Delete the root edge

⇒ An ordered pair of trees

Enumeration: let a(n) be the number of rooted plane trees with n edges.
Then a(0) = 1 and

a(n) =
∑

i+j=n−1

a(i)a(j)

Generating function: the associated formal power series

A :=
∑
n≥0

a(n)tn =
∑

T tree

te(T )

Functional equation:
A = 1 + tA2
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A recursive description of maps: delete the root edge

isthmus

Enumeration: let b(n) be the number of rooted plane maps with n edges.
Then b(0) = 1 and

where b(n; e) is the number of maps with n edges and outer degree e.
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A recursive description of maps: delete the root edge

outer degree d

d + 1 maps

Enumeration: let b(n) be the number of rooted plane maps with n edges.
Then b(0) = 1 and

b(n) =
∑

i+j=n−1

b(i)b(j) +
∑
d≥0

b(n − 1; d)(d + 1)

where b(n; e) is the number of maps with n edges and outer degree e.



A recursive description of maps: delete the root edge

outer degree d

d + 1 maps

Enumeration: let b(n) be the number of rooted plane maps with n edges.
Then b(0) = 1 and

b(n; e) =
∑

i+j=n−1
c+d=e−2

b(i ; c)b(j ; d) +
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Generating function of plane maps

Enumeration: let b(n; d) be the number of rooted plane maps with n
edges and outer degree d . Then b(0; e) = δe,0 and

b(n; e) =
∑

i+j=n−1
c+d=e−2

b(i ; c)b(j ; d) +
∑

d≥e−1

b(n − 1; d)

Generating function: the associated bivariate formal power series

B(x) :=
∑

n,d≥0

b(n; d)tnxd =
∑

M map

te(M)xdf(M)

Note: B(1) =
∑

n b(n)tn is the GF we want to compute

Functional equation:

B(x) = 1 + tx2B(x)2 + tx
xB(x)− B(1)

x − 1
A discrete differential equation

[Tutte 68]
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Another description of maps: contract the root edge

Enumeration: let b̃(n; e) be the number of rooted plane maps with n
edges and root degree e.
Then b̃(0; e) = δe,0 and

b̃(n; e) =
∑

i+j=n−1
c+d=e−2

b̃(i ; c)b̃(j ; d) +
∑

d≥e−1

b̃(n − 1; d)

Same recurrence relation

Functional equation:

B̃(y) = 1 + ty2B̃(y)2 + ty
yB̃(y)− B̃(1)

y − 1
where

B̃(y) :=
∑
n≥0

a(n; d)tnyd =
∑

M map

te(M)ydf(M)
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A recursive description of coloured maps: delete/contract
the root edge

Deletion/contraction relation for the chromatic polynomial: the
number χM(q) of proper q-colourings of the map M satisfies:

χM(q) = χM\e(q)− χM↔e(q)

More generally, if PM(q, ν) counts all q-colourings of M with a
weight ν per monochromatic edge:

PM(q, ν) = PM\e(q, ν) + (ν − 1)PM↔e(q, ν)

e

⇒ Use this to write a recurrence relation (then a functional equation) to
count coloured maps, with two additional parameters.

Remark. The polynomial PM(q, ν) is equivalent to the Tutte polynomial
of M
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A functional equation for coloured maps

• Let C (x , y) =
1
q

∑
M

PM(q, ν)te(M)xdv(M)ydf(M)

=
1
q

∑
M q−coloured

te(M)xdv(M)ydf(M)νm(M)

where dv(M) (resp. df(M)) is the degree of the root-vertex (resp.
root-face) and m(M) the number of monochromatic edges.

t12x3y6ν

Proposition [Tutte 68]

C (x , y) = 1 + xyt ((ν − 1)(y − 1) + qy) C (x , y)C (1, y)

+xyt(xν − 1)C (x , y)C (x , 1)

+xyt(ν − 1)
xC (x , y)− C (1, y)

x − 1
+ xyt

yC (x , y)− C (x , 1)

y − 1

A discrete partial differential equation (in two variables)

This equation has been sleeping for 40 years
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Our bestiary

• Plane trees
A = 1 + tA2

• Plane maps

B(x) = 1 + tx2B(x)2 + tx
xB(x)− B(1)

x − 1

• Coloured plane maps

C (x , y) = 1 + xyt ((ν − 1)(y − 1) + qy) C (x , y)C (1, y)

+xyt(xν − 1)C (x , y)C (x , 1)

+xyt(ν − 1)
xC (x , y)− C (1, y)

x − 1
+ xyt

yC (x , y)− C (x , 1)

y − 1



Recursive constructions are robust

• Plane triangulations (every finite face has degree 3):

B(x) = tx(1 + xB(x))2 + t
B(x)− B(0)

x

• Properly q-coloured triangulations [Tutte 73]:

T (x , y) = x(q − 1) + xyzT (x , y)T (1, y)

+ xz
T (x , y)− T (x , 0)

y
− x2yz

T (x , y)− T (1, y)

x − 1



II. Guessing
Recurrences produce coefficients



Guessing with Maple and Gfun

Given the first terms of a series (a(0), a(1), a(2), . . .), Gfun can guess:
linear rec. relations with polynomial coefficients for a(n)

p`(n)a(n + `) + · · ·+ p0(n)a(n) = 0

equivalently, linear diff. equations with polynomial coefficients for the
GF A(t)

Pd (t)A(d)(t) + · · ·+ P0(t)A(t) = 0

also polynomial equations with polynomial coefficients for A(t)

Pd (t)A(t)d + · · ·+ P0(t) = 0

Gfun: [Salvy & Zimmermann 94]
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Guessing the number/generating function of plane maps

> b:=proc(n,e) option remember:

if n=0 and e=0 then 1 elif n=0 or e=0 then 0

else add(add(b(i,c)*b(n-1-i,e-2-c),i=0..n-1)

,c=0..e-2) + add(b(n-1,d),d=e-1..2*n):

fi: end:

> liste:=[seq(b(n,1),n=1..10)];

 := liste [ ], , , , , , , , ,1 2 9 54 378 2916 24057 208494 1876446 17399772
> with(gfun):
> listtorec(liste,bb(n));

[ ],{ },+( )− −12 n 6 ( )bb n ( )+n 3 ( )bb +n 1 =( )bb 0 1 ogf
> listtodiffeq(liste,B(t));
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d

d2

t2 ( )B t =( )B 0 1 =( )( )D B 0 2 ogf

> listtoalgeq(liste,B(t));

[ ],− + +16 t 1 ( )− +18 t 1 ( )B t 27 t2 ( )B t 2 ogf



Oh?

Is it true that

B(x) = 1 + tx2B(x)2 + tx
xB(x)− B(1)

x − 1

implies
16t − 1 + (1− 18t)B(1) + 27t2B(1)2 = 0

that is,

B(1) =
(1− 12t)3/2 − 1 + 18t

54t2 =
∑
n≥0

2 · 3n (2n)!

n!(n + 2)!
tn ?

• Cf. for plane trees:

A = 1 + tA2 and A =
1− (1− 4t)1/2

2t
=
∑
n≥0

(2n)!

n!(n + 1)!
tn
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Guessing the number of properly q-coloured triangulations

• Triangulations with n vertices and outer-degree 2:

(c(n))n≥2 = q − 1, (q − 1)(q − 2), (4q − 9)(q − 1)(q − 2),

3(q−1)(q−2)(8q2−37q+43), (176q3−1245q2+2951q−2344)(q−1)(q−2) . . .

T (x , y) = x(q − 1) + xyzT (x , y)T (1, y)

+ xz
T (x , y)− T (x , 0)

y
− x2yz

T (x , y)− T (1, y)

x − 1

• Differential equation:
2(1− q)t + (t + 10C − 6tC ′)C ′′ + (4− q)(20C − 18tC ′ + 9t2C ′′) = 0

• Recurrence relation:
(n + 1)(n + 2)c(n + 2) = (q − 4)(3n − 1)(3n − 2)c(n + 1)

+ 2
n∑

i=1

i(i + 1)(3n − 3i + 1)c(i + 1)c(n + 2− i),

with c(2) = q − 1.

[Tutte 84] — A combinatorial mystery
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III. Solving discrete differential
equations?

B(x) = 1 + tx2B(x)2 + tx
xB(x)− B(1)

x − 1



Our bestiary

• Plane trees: no derivative (polynomial equation)

A = 1 + tA2

• Plane maps: discrete ordinary diff. eq.

B(x) = 1 + tx2B(x)2 + tx
xB(x)− B(1)

x − 1

• Coloured plane maps: discrete partial diff. eq.

C (x , y) = 1 + xyt ((ν − 1)(y − 1) + qy) C (x , y)C (1, y)

+xyt(xν − 1)C (x , y)C (x , 1)

+xyt(ν − 1)
xC (x , y)− C (1, y)

x − 1
+ xyt

yC (x , y)− C (x , 1)

y − 1



A hierarchy of formal power series

• Rational series

A(t) =
P(t)

Q(t)

• Algebraic series

P(t,A(t)) = 0

• Differentially finite series (D-finite)
d∑

i=0

Pi (t)A(i)(t) = 0

• D-algebraic series

P(t,A(t),A′(t), . . . ,A(d)(t)) = 0
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Discrete ordinary differential equations are simple

Theorem [mbm-Jehanne 2006] (after [Knuth 72] and [Brown 65])
Every series A(t; x) ≡ A(x) solution of a (proper) discrete ordinary
differential equation of any degree and order is algebraic:

P(t, x ,A(t; x)) = 0

for some polynomial P .
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xB(x)− B(1)

x − 1
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Discrete ordinary differential equations are simple

Theorem [mbm-Jehanne 2006] (after [Knuth 72] and [Brown 65])
Every series A(t; x) ≡ A(x) solution of a (proper) discrete ordinary
differential equation of any degree and order is algebraic:

P(t, x ,A(t; x)) = 0

for some polynomial P .

• Plane 3-constellations (degree 3, order 2)

A(x) = 1 + txA(x)3

+ tx
(A(x)− A(1)) (2A(x) + A(1))

x − 1

+
tx (A(x)− A(1)− (x − 1) A′(1))

(x − 1)2 .

⇒ A(1) = 1− 47t + 3t2 + 3t(22− 9t)A(1) + 9t(9t − 2)A(1)2 − 81t2A(1)3



Discrete partial differential equations are not that easy!
Even in the linear case

• Algebraic
A(x , y) = 1 + txyA + t∆xA + t∆yA

• D-finite but not algebraic

A(x , y) = 1 + t(x + y)A + t∆xA + t∆yA

• Not D-finite
A(x , y) = 1 + tx(1 + y)A + t∆xA + t∆yA

∆xA =
A(x)− A(0)

x

Now a complete classification: [mbm-Mishna 10], [Bostan-Kauers 10],
[Kurkova-Raschel 12], [Mishna-Rechnitzer 07], [Melczer-Mishna 13],
[Bostan-Raschel-Salvy 14]
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What about coloured maps?

A non-linear discrete differential equation in two variables:

C (x , y) = 1 + xyt ((ν − 1)(y − 1) + qy) C (x , y)C (1, y)

+xyt(xν − 1)C (x , y)C (x , 1)

+xyt(ν − 1)
xC (x , y)− C (1, y)

x − 1
+ xyt

yC (x , y)− C (x , 1)

y − 1
.

ν

... sleeping since 1968 [Tutte]



In the footsteps of W. Tutte

• For the GF T (x , y) of properly q-coloured triangulations:

T (x , y) = x(q − 1) + xyzT (x , y)T (1, y)

+ xz
T (x , y)− T (x , 0)

y
− x2yz

T (x , y)− T (1, y)

x − 1
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T (x , y) = x(q − 1) + xyzT (x , y)T (1, y)

+ xz
T (x , y)− T (x , 0)

y
− x2yz

T (x , y)− T (1, y)

x − 1
[Tutte 73] Chromatic sums for rooted planar triangulations: the cases λ = 1 and
λ = 2
[Tutte 73] Chromatic sums for rooted planar triangulations, II : the case
λ = τ + 1
[Tutte 73] Chromatic sums for rooted planar triangulations, III : the case λ = 3
[Tutte 73] Chromatic sums for rooted planar triangulations, IV : the case λ =∞
[Tutte 74] Chromatic sums for rooted planar triangulations, V : special equations
[Tutte 78] On a pair of functional equations of combinatorial interest
[Tutte 82] Chromatic solutions
[Tutte 82] Chromatic solutions II
[Tutte 84] Map-colourings and differential equations

/ C � B .

[Tutte 95]: Chromatic sums revisited
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• For the GF T (x , y) of properly q-coloured triangulations:

T (x , y) = x(q − 1) + xyzT (x , y)T (1, y)

+ xz
T (x , y)− T (x , 0)

y
− x2yz

T (x , y)− T (1, y)

x − 1

Theorem [Tutte]

• For q = 2 + 2 cos 2πm , q 6= 0, 4, the series T (1, y) satisfies a discrete
differential equation in one variable y .

• When q is generic, the generating function of properly q-coloured
planar triangulations is differentially algebraic in t:

2(1− q)t + (t + 10H − 6tH ′)H ′′ + (4− q)(20H − 18tH ′ + 9t2H ′′) = 0

with H(t) = t2T (1, 0) and t =
√

z .
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Our results

• Let C (x , y) be the generating function of q-coloured planar maps:

C (x , y) =
1
q

∑
M q−coloured

te(M)xdv(M)ydf(M)νm(M),

where dv(M) (resp. df(M)) is the degree of the root-vertex (resp.
root-face) and m(M) the number of monochromatic edges.

Theorem [Bernardi-mbm]

• For q = 2 + 2 cos jπ
m , q 6= 0, 4, the series C (1, y) ≡ C (y) satisfies a

discrete ordinary differential equation in variable y ,

and the generating
function C (x , y) is algebraic.
• When q is generic, C (1, 1) is differentially algebraic in t:
(an explicit system of differential equations)

[Bernardi-mbm 09] Counting coloured planar maps: algebraicity results.
[Bernardi-mbm 14? 15?] Counting coloured planar maps: differential equations
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q = 2: The Ising model on planar maps

Let A be the series in t, with polynomial coefficients in ν, defined by

A = t

(
1 + 3 ν A− 3 ν A2 − ν2A3)2
1− 2A + 2 ν2A3 − ν2A4 .

Then the generating function of bicoloured planar maps is

C (2, ν, t; 1, 1) =
1 + 3 ν A− 3 ν A2 − ν2A3

(1− 2A + 2 ν2A3 − ν2A4)2 P(ν,A)

where

P(ν,A) = ν3A6 + 2 ν2(1− ν)A5 + ν (1− 6 ν)A4

− ν (1− 5 ν)A3 + (1 + 2 ν)A2 − (3 + ν)A + 1.

 Asymptotics: Phase transition at νc = 3+
√

5
2 , critical exponents...



q = 2: The Ising model on planar maps

Fix n (large) and choose a bi-coloured planar map M with n edges at
random, with probability proportional to

νm(M).

When ν = 0, the colouring is proper.
When ν is small, we favour maps with few monochromatic edges.
When ν is large, we favour maps with many monochromatic edges.

1

νc

non-analytic



q = 3, ν = 0: Properly 3-coloured planar maps

Let A be the quartic series in t defined by

A = t
(1 + 2A)3

1− 2A3 .

Then the generating function of properly 3-coloured planar maps is

C (3, 0, t; 1, 1) =
(1 + 2A)(1− 2A2 − 4A3 − 4A4)

(1− 2A3)2



IV. Bijections, at last!

Simple formulas cry for bijective proofs

Plane trees

a(n) =
1

n + 1

(
2n
n

)
=

(2n)!

n!(n + 1)!

Plane maps

b(n) =
2 · 3n

(n + 2)(n + 1)

(
2n
n

)
= 2 · 3n (2n)!

n!(n + 2)!



Bijective enumeration of rooted plane trees

A tree with n edges is a Dyck path of length 2n

add a tail...
mark a step ((2n + 1) choices)...
and read the path cyclically starting from that step

(2n + 1)a(n) =

(
2n + 1

n

)
⇒ a(n) =

(2n)!

n!(n + 1)!
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Bijective enumeration of rooted plane maps

A plane map with n edges is a 4-valent map with n vertices

or a balanced blossoming binary tree with n vertices

b(n)

=

3n

(n + 1)

(
2n
n

)

× 2
n + 2

[Schaeffer 97]
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The strength of bijections

Improve our understanding of the nature of planar maps
I nice numbers
I algebraic generating functions

I recurrence relations
Compact encoding

Random generation

Give a handle on other parameters: the average diameter of a
random map of size n scales like n1/4 [Chassaing-Schaeffer 02]

The starting point of many recent results in probability theory on the
asymptotic properties of large random maps [Le Gall, Miermont,
Marckert, Paulin...]
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I nice numbers
I algebraic generating functions

I recurrence relations

Plane maps (n edges) ⇐⇒ balanced blossoming trees (n nodes)

• Blossoming trees:

Bl = 1 + 3tBl2

• An unbalanced blossoming tree is a 3-tuple
of blossoming subtrees [Bouttier et al. 02]:

⇒ B = Bl− tBl3.
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More bijections

• Many, many families of uncoloured maps are now well-understood
[Arquès, Bernardi, mbm, Bouttier, Chapuy, Cori, Di Francesco, Fusy,
Guitter, Poulalhon, Schaeffer, Vauquelin]

• What about coloured maps? (D-algebraic)

/ C � B .
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[Arquès, Bernardi, mbm, Bouttier, Chapuy, Cori, Di Francesco, Fusy,
Guitter, Poulalhon, Schaeffer, Vauquelin]

• What about coloured maps? (D-algebraic)

/ C � B .

The Ising model: 2-coloured planar maps
(algebraic)
[mbm-Schaeffer 02], [Bouttier et al. 04]

ν

ν

ν

ν



More bijections

• Many, many families of uncoloured maps are now well-understood
[Arquès, Bernardi, mbm, Bouttier, Chapuy, Cori, Di Francesco, Fusy,
Guitter, Poulalhon, Schaeffer, Vauquelin]

• What about coloured maps? (D-algebraic)

/ C � B .

Maps equipped with a spanning tree
(q = 0, ν = 1; D-finite)
[Mullin 67], [Bernardi 07]
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Guitter, Poulalhon, Schaeffer, Vauquelin]

• What about coloured maps? (D-algebraic)

/ C � B .

Maps equipped with a spanning forest
(q = 0; D-algebraic)
[Bouttier et al. 07], [mbm-Courtiel 13a]



More bijections

• Many, many families of uncoloured maps are now well-understood
[Arquès, Bernardi, mbm, Bouttier, Chapuy, Cori, Di Francesco, Fusy,
Guitter, Poulalhon, Schaeffer, Vauquelin]

• What about coloured maps? (D-algebraic)

/ C � B .

Maps equipped with a bipolar orientation
((−1)v(M)χ′M(1); D-finite)
[Felsner-Fusy-Noy-Orden 08],
[Fusy-Poulalhon-Schaeffer 08],
[Bonichon-mbm-Fusy 08]



More bijections ?

• Many, many families of uncoloured maps are now well-understood
[Arquès, Bernardi, mbm, Bouttier, Chapuy, Cori, Di Francesco, Fusy,
Guitter, Poulalhon, Schaeffer, Vauquelin]

• What about coloured maps? (D-algebraic)

/ C � B .

Properly 3-coloured planar maps
(algebraic; OPEN)

C (3, 0, t; 1, 1) =
(1 + 2A)(1− 2A2 − 4A3 − 4A4)

(1− 2A3)2

with

A = t
(1 + 2A)3

1− 2A3 .



More bijections ?

• Many, many families of uncoloured maps are now well-understood
[Arquès, Bernardi, mbm, Bouttier, Chapuy, Cori, Di Francesco, Fusy,
Guitter, Poulalhon, Schaeffer, Vauquelin]

• What about coloured maps? (D-algebraic)

/ C � B .

Properly q-coloured triangulations
(D-algebraic; OPEN)

(n + 1)(n + 2)c(n + 2) =

(q − 4)(3n − 1)(3n − 2)c(n + 1)

+2
n∑

i=1

i(i +1)(3n−3i +1)c(i + 1)c(n + 2− i)



Pour résumer...

Combinatoire

énumérative

Séries formelles

Objets aléatoires

Transitions de phase

Calcul formel
Divination

Bijections

Dessin de graphes

B(x) = 1 + tx2B(x)2 + tx xB(x)−B(1)
x−1






