

On the constructive power of monadic second-order logic

Bruno Courcelle

Institut Universitaire de France & Université Bordeaux 1, LaBRI

References: B.C. & J. Engelfriet, Graph structure and monadic second-order logic, book to be published by Cambridge University Press (April 2012)

B.C. & A. Blumensath, Monadic second-order graph orderings, in preparation.

See for both: http://www.labri.fr/perso/courcell/ActSci.html

Presentation of the talk

Monadic Second-Order (MSO) logic can express graph properties and mappings from (labelled) graphs to (labelled) graphs.

Main facts:

- 1. MSO graph properties are FPT with respect to cliquewidth and tree-width.
 - 2. So are MSO counting and optimizing functions.

- 3. MSO definable sets of graphs are *recognizable* (by finite congruences, there is no good notion of graph automaton).
- 4. Recognizable sets behave well with respect to the equational sets (which generalize context-free languages).
- 5. There is no good notion of automaton-based transducer. But the *MSO definable transductions* behave well w.r.t. equational and recognizable sets (respectively: direct and inverse preservation results).

An overview chart

Summary

- 1) MSO logic without and with edge quantifications.
- 2) MSO definitions of orientations.
- 3) MSO definitions of linear orders.
- 4) Other constructions.
- 5) Open problems.

Two types of MSO formulas or rather two logical graph representations

MSO formulas

MSO₂ formulas with edge quantifications

= MSO formulas over incidence graphs

$$G = (V_G, edg_G(.,.))$$
 Inc(G) = $(V_G \cup E_G, inc_G(.,.))$

for G undirected: $inc_G(e, v) \Leftrightarrow$

v is a vertex (in V_G) of edge e (in E_G)

FPT for clique-width FPT for tree-width

For G directed: $Inc(G) = (V_G \cup E_G, inc_{1G}(.,.), inc_{2G}(.,.))$ (1=tail, 2=head)

Typical MSO graph properties

MSO properties: 3-colorablility

$$\exists X,Y \text{ ("X,Y are disjoint" } \land \forall u,v \text{ edg(u,v)} \Rightarrow$$

$$[(u \in X \Rightarrow v \notin X) \land (u \in Y \Rightarrow v \notin Y) \land (u \notin X \cup Y \Rightarrow v \in X \cup Y)]$$

Connectedness, negation of:

$$\exists Z (\exists x \in Z \land \exists y \notin Z \land \forall u, v (u \in Z \land edg(u,v) \Rightarrow v \in Z))$$

Planarity (via two forbidden minors K_5 and $K_{3,3}$)

Perfectness (via forbidden holes and anti-holes)

Typical MSO₂ graph properties

```
MSO_2 property that is not MSO: has a perfect matching or has a Hamiltonian circuit or has a spanning tree of degree \leq 3
```

The expressions have the form:

"There exists a set of edges that is ..."

Monadic Second-Order definitions of orientations

Particular monadic second-order transductions:

G undirected -> G', orientation of G

Two cases: by MSO or by MSO₂ formulas

All cases: with parameters (that "guess" an appropriate coloring or spanning tree or ...)

By MSO₂ formulas (the easiest case, of course)

Idea: for a graph G, "guess", by means of 2 parameters (X, set of edges and Y, set of vertices), a *depth-first* rooted spanning forest F ("depth-first" - or "normal" - means that every edge of the graph links a vertex and one of its ancestors w.r.t. F).

From F one obtains an acyclic orientation of G.

An additional parameter Z can specify the set of edges "to be reversed".

Fact: By means of 3 parameters X,Y,Z (over Inc(G)), one can specify by MSO₂ formulas *all orientations* of a given graph.

Formally: there are MSO₂ formulas $\alpha(X,Y,Z)$ and $\beta(X,Y,Z,u,v)$ such that, for every graph G,

- 1) there exist X,Y,Z satisfying α in Inc(G), meaning that X,Y define a depth-first rooted spanning forest and Z is a set of edges,
- 2) for every X,Y,Z satisfying α and every two adjacent vertices u,v:

$$\beta(X,Y,Z,u,v) \Rightarrow \neg \beta(X,Y,Z,v,u),$$

hence, $\beta(X,Y,Z,...)$ defines one orientation of each edge.

Furthermore, for every such X,Y and every orientation H of G, there is Z such that $\beta(X,Y,Z,...)$ defines the orientation H.

Consequences:

If Q is an MSO₂ property of directed graphs, then the property of undirected graphs G:

 $P(G) \Leftrightarrow G$ has an orientation satisfying Q is MSO₂. (False for MSO).

Analogy: Tree-width is invariant under changes of orientation. Here MSO₂ formulas can specify arbitrary (changes of) orientation(s).

By MSO formulas : more difficult

Fact: No pair of MSO formulas can specify at least one orientation of any graph.

Proof: Assume this possible with p parameters X_1, \ldots, X_p .

Take a clique K_n with $n > 2^p$. There are adjacent vertices u, v that belong to the same sets X_i , hence

$$\beta(X_1,\ldots,X_p,u,v) \iff \beta(X_1,\ldots,X_p,v,u),$$

so that the edge u—v is not oriented by $\beta(X_1, \ldots, X_p, ...)$. (There is an automorphism that preserves the sets X_1, \ldots, X_p .) Hence, MSO orientability *needs* some combinatorial conditions.

Case 1: Defining an orientation of p-colorable graphs.

Parameters X_1, \ldots, X_p are intended to specify a p-coloring. The orientation is $u \to v$ if $u \in X_i$, $v \in X_j$ and i < j.

One defines particular orientations, not all of them.

Remarks: With 4 parameters (4 colors), one can define some orientations of each planar graph. With 80 parameters (80 colors, by Raspaud & Sopena), one can define *all* orientations of each simple planar graph. (Actually 2 and 7 parameters can encode 4 and 80 colors respectively).

Case 2: Defining an orientation of indegree $\leq p$.

Let $m = 2^{2p(p+1)+1}$ -1. There is a tournament T with $V_T = [m]$ such that for every oriented graph H of indegree $\leq p$, there is a homomorphism h: H \rightarrow T (by Nesetril et al.). Such h can be specified by parameters X_1, \ldots, X_m .

Then $u \rightarrow v \Leftrightarrow u \in X_i$, $v \in X_i$ and $i \rightarrow j$ in T.

Consequence: Uniform p-sparsity of G is MSO expressible. Means: $|E_K| \le p$. $|V_K|$ for every subgraph K of G. Because (by Nash-Williams) it is equivalent to the existence of an orientation of indegree $\le p$. (No MSO expression of the definition).

Monadic Second-Order definitions of *linear orders*

Facts: 1) A linear order yields an orientation.

2) Impossible to define all linear orders, even with edge quantifications.

Proof: *Counting argument* by considering P_n for large n. (n! linears orders but only 2^{pn} different ones defined from p parameters).

3) Impossible to define with fixed MSO₂ formulas a linear order on each graph.

Proof: Assume this possible with p parameters and consider an edgeless graph with n vertices, $n > 2^p$. Same argument based on automorphisms as for orientations.

By MSO₂ formulas (the easiest case)

Case 1: Rooted trees of degree $\leq d$.

With *d* parameters (defining sets of edges), a formula can order the successors of every node. Another one can order lexicographically the access paths to nodes.

Case 2: Graphs with a spanning tree of degree $\leq d$.

One parameter can choose such a tree, and we use Case 1.

In particular. Cliques: d = 1; 3-connected planar graphs: d = 3, (by Barnette).

Now some necessary conditions.

Basic "separation" condition: If an MSO₂ formula β of quantifier-height h and using p parameters orders a graph G, this graph has (h, p) connected components for some fixed function f.

Proof sketch: Let G with connected components $C_1, ..., C_N$, and chosen p parameters. Let u_i be a vertex of C_i .

Whether $\beta(X_1, ..., X_p, u_i, u_j)$ is true depends (by a fixed function) on $(\Theta_i, \Theta_j, \{\Theta_k / k \neq i, j\})$ where Θ_i is the "h-theory" of u_i in C_i i.e., the *finite* set of formulas $\gamma(X_1, ..., X_p, w)$ of quantifier-height < h true in C_i with u_i as value of w.

Again: Whether $\beta(X_1, ..., X_p, u_i, u_j)$ is true depends only on $(\Theta_i, \Theta_j, \{\Theta_k \mid k \neq i, j\})$ where Θ_i is the "h-theory" of u_i in C_i . If $N \geq \text{some } f(h, p)$, there are u_i and u_j with same "h-theories" and thus $\beta(X_1, ..., X_p, u_i, u_i) \Rightarrow \beta(X_1, ..., X_p, u_i, u_i)$; u_i

and u_j are not ordered. (We use logic, not only automorphisms).

Generalized necessary "separation" condition SEP: If a class of graphs is MSO_2 orderable, there is a function g on integers such that for every graph G and every set X of g vertices the graph G-X has g(g) connected components. (Formally: $G \in Sep(g)$.)

This condition is necessary but not sufficient.

Counter example: the graphs K_{n, 22}ⁿ

Proof:

Not MSO₂ orderable by easy argument using automorphisms.

Fact: If f is a strictly increasing function, then the graphs $K_{n, f(n)}$ are in Sep(f).

Question: Which additional condition makes it sufficient?

Answer 1: Excluding $K_{p,p}$ as a minor.

Remark: By using a different logic (First-order logic with least fixed-points over sets of k-tuples), M. Grohe can order the graphs of every class that excludes a minor and he gets a logic that captures PTIME on these classes (LICS 2010).

Proof sketch: Let G connected without K_{p,p} as a minor satisfy

SEP for some function g.

Let T be a depth-first spanning tree (chosen by some parameter).

We must order the successors of every node x of T.

If C is a "successor component"

of x, let Anc(C) = $(y_1, ..., y_q)$.

We order lexicographically
 w.r.t. Anc(C) the successors of x.

We need to order two components with same ancestor list. Let Anc(C) = $(y_1, ..., y_q)$.

2) If $q \ge p$, there are less than p successor components of x with same ancestor list (otherwise $K_{p,p}$ is a minor of G); with p-1 parameters, one can order them (as for trees of bounded degree).

3) If q < p, there are < g(p+1) successor components of x with same list of ancestors (we use SEP by deleting $x, y_1, ..., y_q$) with g(p+1) parameters, one can order them.

Finally, we order lexicographically the access paths to the nodes of T (the vertices of G).

If G is not connected, it has < g(0) connected components.

Improvement:

If G has no minor $K_{p,p}$ and $Sep(G,p) \le d$, then $Sep(G,k) \le (p+d).k.2^k$ for every $k \ge p$.

Hence, a class without $K_{p,p}$ as a minor is an MSO_2 –orderable if and only if Sep(G,p) is bounded for G in this class.

(The combinatorial condition need not consider Sep(G,k) for all values of k, but only k = p.)

Question: Can one replace "excluding Kp,p" by "r-sparse"?

No: Consider the incidence graphs of $K_{n,f(n)}$ with f not "elementary".

Answer 2, about dense graphs.

A set of complete bipartite graphs $K_{m,n}$ with $m \ge n$ is

 MSO_2 –orderable \Leftrightarrow

it satisfies $m \le a^n$ for some $a \iff$

it satisfies SEP($\lambda k. a^k$) for some a.

Hence, for cographs, SEP does not imply MSO₂—orderability.

Question: Find necessary and sufficient conditions for a set of cographs to be MSO₂ –orderable.

Answer 3, about split graphs (particular chordal graphs). Similar fact:

A set of split graphs is MSO_2 —orderable \Leftrightarrow it satisfies $SEP(\lambda k. a^k)$ for some a.

Again: SEP does not imply MSO₂-orderability.

There exists an MSO₂—orderable set of *chordal graphs* that is not included in SEP(λk . a^k) for any a. (We build graphs G such that Sep(G,k) = k!).

Linear ordering by MSO formulas.

Observation: Cliques are MSO₂ –orderable but not MSO–orderable (for MSO, they are equivalent to edgeless graphs).

Hence, we need a stronger combinatorial condition than SEP.

SEP is based on vertex separators (cf. tree-decompositions).

We will introduce certain edge-separations by complete bipartite graphs (cf. the definition of clique-width). Definition 1: A family of associative and commutative "clique-width" operations.

G, H simple, undirected graphs with vertex labels in [k],

 $R \subseteq [k] \times [k]$, symmetric,

 $G \otimes_R H$ is $G \oplus H$ with edges between every vertex of G

labelled by a and every vertex of H labelled by b such that $(a,b) \in R$.

Example: $G \otimes_R H \otimes_R K$

$$R = \{(a,b),(b,a)\}$$

Definition 2: Let G simple and undirected.

Cut(G,k) is the maximum number n of graphs $H_1, ..., H_n$ with labels in [k], such that (just another way to split graphs):

 $G = H_1 \otimes_R ... \otimes_R H_n$ for some R symmetric \subseteq [k] X [k].

 $G \in CUT(g)$ if $Cut(G,k) \leq g(k)$ for every k.

A necessary condition

Proposition: Let G be simple, undirected, MSO-ordered by a formula with p parameters and quantifier-height h.

Then $Cut(G,k) \leq f(k, p, h)$.

Proposition: CUT(g)
$$\subseteq$$
 SEP(g') where g'(k) = g(k+2^k), i.e. CUT \Rightarrow SEP.

Conversely,

Proposition: If G is uniformly *q*-sparse:

$$G \in SEP(f) \Rightarrow G \in CUT(f')$$
 where $f'(k) = g(6.k^2.q^2)$.

For graphs that are uniformly *q*-sparse:

bounded tree-width ⇔ bounded clique-width,

MSO₂ is equivalent to MSO.

Proposition: A class C of cographs is MSO-orderable

 $\Leftrightarrow C \subseteq CUT(g)$ for some function g,

⇔ the modular decomposition trees of its cographs have bounded degree.

Cographs labelled by a are defined by terms over \oplus and \otimes (= $\otimes_{\{(a,a)\}}$), handled as associative and commutative operations of variable arity; the terms representing their modular decompositions have no two consecutive \oplus or \otimes on any branch.

Question: What about a class C of bounded clique-width?

What about chordal graphs?

MSO-orderability of chordal graphs ≥ MSO-orderability of incidence graphs ≡

MSO₂-orderability of all graphs.

CUT for incidence graphs \equiv SEP for basic graphs.

No hope for bipartite graphs:

Because arbitrary graphs can be encoded as bipartite graphs. The encoding preserves MSO-orderability and CUT.

Other MSO-definable constructions; open questions

- Monadic second-order transductions (MST). They are more general than those presented here: the output structure may have a domain *k* times larger than that of the input structure. They still use parameters.
- A class of graphs C has bounded tree-width ⇔

$$Inc(C) \subseteq MST(Trees)$$
 (using MSO_2)

- A class of graphs C has bounded clique-width ⇔

$$C \subseteq MST(Trees)$$
 (using MSO).

- The mapping from a *linearly ordered* graph to its (unique) modular decomposition (or to its "split" decomposition, by Cunnigham) is an MST (not using edge quantifications).
- The mappings between ordered circle graphs and their chord intersection

diagrams

It follows that a set of circle graphs has bounded clique-width if and only if their chord intersection diagrams have bounded treewidth. - Some planar embedding of a *linearly ordered* connected planar graph can be defined by an MST. (A linear order is MSO-definable for 3-connected planar graphs; a planar embedding of a star is a circular order of its vertices of degree 1.)

- Some tree-decomposition of width k for any graph of tree-width $\leq k \leq 3$ (B.C, Kaller) or of path-width $\leq k$ (Kabanets).

- Conjecture: For each k > 3, there is an MST constructing a tree-decomposition of width $\leq f(k)$ of any graph of tree-width $\leq k$, where f is a fixed function.

It would yield, for any class of graphs of bounded tree-width, an equivalence between *recognizability* and *CMSO-definability* (i.e. definability by MSO formulas that can use set predicates meaning that the cardinality of a set is a multiple of a fixed integer).

Recognizability means here recognizability by finite automata on labelled trees encoding tree-decompositions.

It would also give for such classes the equivalence between *CMSO-definability* and *order-invariant MSO-definability* (i.e., MSO-definability with the help of an arbitrary linear order. Modulo-counting set predicates are order-invariant MSO-definable.

Other open questions

1) MSO and MSO₂ orderability of particular classes of graphs: Which conditions in addition to CUT and SEP ?

2) Graphs omitting a fixed graph H as a minor have a particular tree-structure (defined by Robertson & Seymour).

Is this structure constructible by an MST?

(Of course, one first need to prove the conjecture for graphs of bounded tree-width).