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Summary 
 

6. Monadic second-order transductions  (extension of a classical  concept  

in language theory). 

7. Robustness  results : preservation of  classes  under  direct  and  

inverse  monadic second-order  transductions.     

      Short  proofs  in  graph theory.    
    

   8.     Logic  and  graph  structure theory :  Comparing   encoding  powers  

           of   graph  classes   via   monadic second-order   transductions 
 

   9.    Graph   classes   on   which   monadic   second-order  logic    

     is   decidable 
 

   10.  Some  open  questions 
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6.  Monadic   second-order  transductions 
  

Σ  =  finite set of relation symbols with fixed arities   (ρ(R) =  arity of R ). 

 

STR(Σ):  finite  Σ-relational  structures  S  =  < DS ,  (RS)R ∈Σ >,   
          RS  relation  on  DS   of  arity  ρ(R) 
 

An   MS-transduction   is   a   partial   function   

τ  : STR(Σ) X “data”   STR(Γ)       specified   by   MS  formulas. 

    
Basic case : τ  : STR(Σ)   STR(Γ) ;  T =  τ (S)   is  defined  “inside”  S  
by  MS  formulas.  
 
Examples :  The  edge -complement ; the  transitive  closure of  a  directed  graph. 
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Next  case :   T =  τ (S, “data”) ;  the  “data”  is  a  tuple  X1, …,Xp   of  
subsets  of the  domain  of  S ; these  sets  are  called  the  parameters. 
  Parameters   X1, …,Xp  are  constrained   to   satisfy  an  MS   property. 

 

Examples :  (G, {u})  ⎜               the  connected  component  containing  u. 
 
 

(G,X,Y,Z)  ⎜            the  minor  of  G  having   vertex  set  X,   
        resulting  from  the  contraction  of   the  edges   
        of  Y  and  the  deletion of  the  edges  and  vertices 
        of   Z. (This  transduction  is    MS2,2 ; see below.) 

 
     In   the   second  example, no  two  vertices  of  X  should   

     be   linked  by  a  path   of   edges  in  Y. 

    
τ (S) : =   the  set  of  all  T  =  τ (S, X1, …,Xp)    

          for  all  “good”  tuples  of  parameters. 
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General case :    T   is   defined   as   above     inside  
S ⊕ S ⊕ ... ⊕ S :   disjoint   copies  of   S   with  "marked"   

                 equalities   of  copied   elements  
 
      1,2      2,3 
   *   *   * 
 
   *   *   * 
 
   *   *   * 
 
 
   *   *   * 
 
     S ⊕ S ⊕ S 
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The   fundamental   property   of   MS   transductions  
 

  If                  S   ⎜             τ (S) 
 

  then   τ #(ψ)           ⎜  ψ 
 

Every  MS   formula  ψ  has  an  effectively  computable   
backwards   translation  τ #(ψ), an MS formula  such that : 

 

S   ⎜=  τ #(ψ)    if   and  only  if    τ (S)   ⎜=  ψ 
 

 The verification of  ψ  in  the object  structure τ(S)  reduces  to  the  
verification  of  τ #(ψ)   in  the  given  structure  S    (because  S  contain all the  
necessary  information  to  describe τ(S) ; the MS properties of τ(S) are ex-
pressible   in  S  by  MS  formulas).  
 

Theorem :  The  composition  of   two   MS-transductions  is  an   

     MS-transduction.  
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Example 1  (without parameters) : The  square  mapping  δ   on  words :  u  ⎜→   uu 
 
For    u  =    aac,   we  have     S =  •  →  • → •    

                  a      a      c      
     
  S ⊕ S    •  →  • → •              •  →  • → •      (marking edges omitted) 

     a       a     c             a        a     c  
     p1     p1    p1           p2      p2    p2 

 
  δ(S)   •  →  • → •  →  • → • →  •  

     a        a      c        a      a        c  
 
 In  δ(S),   we  redefine  Suc  (i.e.,   →  )   as   follows : 
 

Suc(x,y) :  ⇔   (p1 (x) ∧ p1 (y) ∧ Suc(x,y)  )  v   ( p2 (x) ∧ p2 (y) ∧ Suc(x,y) ) 

    V  ( p1 (x) ∧ p2 (y) ∧ "x  has   no  successor"  ∧   "y  has  no  predecessor") 

 
 We   also   remove   the   "marker"  predicates   p1, p2. 
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Example  2 :      From  a   term   to   a   cograph 

Terms  are  written  with  ⊕  (disjoint union),  ⊗  (complete join)  and  constants  

x,y,z, …  denoting 

vertices  x,y,z …. 
 

 

 

 

 

  

 Vertices  =  {x,y,z,u,v,w } =  occurrences  of  constants  in  the   term. 

 Two  vertices  are  adjacent  if  and  only  if   their  least  common  ancestor    is  

 labelled   by  ⊗     (like  y  and  z , or  u   and   w). 

 These  conditions  can  be  expressed  by  MS  formulas  on  the  labelled  tree. 
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Edge   quantification  and   edge  description 
  

 There  are  2  representations  for  an  input  graph and  2  for  the  

output:  type 1 :  G =  (VG, edgG)   and  type  2 :  Inc(G) = (VG U EG, inG). 

   Hence   4   types  of  graph  transductions,   denoted   by  : 

MS1,1   (or  MS  to simplify),  MS1,2,   MS2,1   and  MS2,2 
 

      MSi,o   means  i = type  of  input, o  = type  of  output. 

 
 
 

 For  sparse  graphs,  type  2  is  equivalent  to  type 1.  



 11

Example  3 :  From  a  tree    

to   its   incidence  graph 

(also   a   tree)  
 
 
 
 
 
 
           Tree   T             Inc(T)  
 

T = < N, edg> ;  we  use  parameter { r }  to   make  T  rooted  and  directed   
 

τ(T, { r }  )  =  < N  U  (N - { r }  ) x { 1 }  , inc(.,.)  > 
 

in(x,y)   is  defined  by  :  
x = (y,1)  ∨  ∃ z  [  x = (z,1) ∧ edg(y,z)   

∧    “y  is  on  the  path  from  r  to  z” ] 

From  trees  (or terms )  to  graphs  :  

 MS1,1  =  MS2,1     and     MS1,2  =  MS2,2 .  
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Main   Results       (will   be   made   more  precise) :  

 

(1)  MS-transductions  preserve   bounded   clique-width   and   the 

(corresponding)   class  of   VR-equational   sets. 

 

(2)  MS2,2-transductions   preserve   bounded   tree-width  and  the 

(corresponding)  class  of  HR-equational   sets. 

 

Meaning :   Robustness   of   the  two  graph  hierarchies  based  on  

clique-width  and  tree-width. 
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 MS - transductions  and  MS2,2 - transductions  are  incomparable    
  

 Why ?  For  expressing  graph  properties,  MS2  logic   is  more  powerful   

than   MS1  logic    (the  “ordinary”  MS  logic). 

   For  building  graphs   with   MS2,2 - transductions, we  have  more  

possibilities  of  using  the  input  graph, but  we   want  more   for  the output :  to  

specify  each   edge  as  a   copy  of  some  vertex  or  some  edge  of  the  input  

graph. 

 
 Transitive   closure   is   MS  =  MS1,1  but     not   MS2,2  
 
 Edge  subdivision   is   MS2,2    but      not   MS 
 
Proofs :  Easy  since,  if   S   is  transformed  into  T  by  an  MS-transduction   : 
 

        ⎜ DT ⎜   <   k.  ⎜ DS ⎜       for  fixed  k 
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Exercises  
 

1) Construct  an  MS-transduction  that  associates  with  a  simple  directed  
graph  G   the directed  acyclic  graph   D  of  its  strongly  connected  
components.  (The  vertices  of   D  are  chosen  among  those  of   G). 

 
2) Let   G   be   undirected.  For  each  k,  G(k)  is  the  simple  graph  with  

same  vertices  and  an  edge  x—y  iff  x  and  y  are  at  distance  at  most k.   
   Define   an   MS-transduction   that   transforms   G   into  G(k).   

 
3) If  G  has  clique-width  <  d,  then  G(k)  has  clique-width  <  f(k,d)  for some 

function  f.  Try  to   prove  this  (without  looking  at  the  next  section).  No   
such   function   does  exist   for  tree-width. 

 
4) Prove that  the  transformation  of  a  simple  graph  G  into  its  incidence 

graph  Inc(G)  is  a  MS-transduction  on  graphs  of  maximal degree  d, for  
each  fixed  d.
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7.   Robustness   results :  Preservation  of  widths 
 
For   every   class  of  graphs  C  : 
 

 1)   If  C  has  tree-width  <  k  and  τ  is  an   MS2,2 – transduction,  
     then  τ (C)  has  tree-width  <  fτ(k) 
   Follows from  : 

 C   has  bounded  tree-width   ⇔    C   ⊆  τ(Trees)  for  some     
MS2,2 – transduction   τ   (the  proof  is  constructive  in  both  directions) 
              

  2)  If  C  has  clique-width  <  k  and  τ  is  an   MS – transduction,  
     then  τ (C)  has  clique-width   <  gτ(k).    

Follows from  : 

 C  has  bounded  clique-width  ⇔   C   ⊆  τ(Trees)  for  some     
MS – transduction  τ     (the proof  is  constructive ) 
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Proof   sketch   for  the  logical  characterization  of  bounded  clique-width  
 

1)  A  k-clique-width  term  is  a   rooted  binary   tree   with  each node  labelled  

by  one  of  the   finitely  many  operations   symbols  using  labels  1,…,k. 

 

2)  For  each  k,  an  MS-transduction  can  construct   the  defined  graph  from  

this labelled tree.    (Extension   of   the  proof  for  cographs, cf.  page 9.) 

Hence : If  a  graph class  C   has  clique-width  <  k ,   then  C  ⊆ τk(Trees)  

for   some    MS– transduction  τk.      
 

 The   converse  uses  technical  tools  from  model  theory   (Feferman-Vaught) 
 

 
The   proofs   for   tree-width  are  similar.
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Gives  easy  proofs  (but  no  good  bounds)  of  facts  like : 
 
  1)  If   C  has  bounded tree-width,  its  line  graphs  have  bounded  clique-width. 
 
  2)  If  C  (directed graphs)  has  bounded tree-width  or  clique-width, the   

transitive  closures  of  its  graphs  have  bounded  clique-width. 
 

  3)  If  C  (directed graphs)  has  bounded  clique-width, the  transitive  reductions  

of  its  graphs  have  bounded  clique-width.  
  (Not  trivial  because  clique-width  is  not  monotone  for  subgraph  inclusion).  
 

  4)  The   set   of  chordal  graphs  has  unbounded  clique-width   
   (because   an  MS transduction  can  define  all  graphs  from  chordal 

    graphs,  and  graphs  have  unbounded clique-width). 

 

  5)  k-leaf powers   and  similar  “power”  graphs  of  trees have bounded  cwd.
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   6)  Circle  graphs 
 
  
 
 
 
 
 
 
   Chord  diagram   Δ     Circle  graph G(Δ)  
 
Theorem:   Graphs  Δ  have  bounded tree-width  ⇔  G(Δ)  have  bounded 

clique-width.  

 1)   MS - transduction   from   G(Δ)    to   Δ ; 

 2)   use  “split  decomposition” (Cunningham)  and  an   MS-transduction   from   

  prime   circle  graphs  to  their  unique  chord  diagrams. 
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Encoding   a  directed   graph  into  a  vertex-labelled  undirected  graph  
 

Each  vertex  of  G   is  split  into  3 vertices  labelled  by  1,2,3   in  B(G) : 
  

           3 

                    1 

                 1       2      3  

   G      
      3

                
1

 

             B(G) 

 The  clique-widths  of   G  and   B(G)   are  related  by  fixed  functions. 
 (Because  the  mapping  B  and  its  inverse  are  MS-transductions,  hence  they  preserve 

  bounded  clique-width.) 
 

 Algorithms  for  checking rank-width  of  undirected  graphs  can  be  transformed  into 

approximation  algorithms  for  clique-width  of  directed  graphs  because  rank-width  and  

clique-width   are   related   by   fixed  functions.   (Oum, Hlineny, Seymour, Kanté) 
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   Logical   characterizations  of  equational  sets 

 
 C   is  HR-equational   ⇔    C   =  τ(Trees)  for  some     

 MS2,2 -transduction   τ       (for  bounded  tree-width  we have  ⊆ ). 

           
   

 C  is  VR-equational  ⇔   C  =  τ(Trees)  for  some     

 MS  - transduction  τ         (for  bounded  clique-width  we have  ⊆ ). 

 

Consequences  :  Closure   of   equational  sets  under  the  

 corresponding  transductions.    
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Robustness   results  for  HR- and  VR-equational  sets  
 

Words : rational  transductions    (= inverse  rational  transductions) 
 

 
REC   

 

 
Dyck lang.     Context-free     

              (trees)  
Inverse  MS  transductions 

 
Direct  MS  transductions  

 
 

MS-def. ⊂ VR-recog. 
                               (1) 

 
Trees         VR-equational 

               ∪    (2)     
                 Cwd( < k) 

 
  VR-equational    ⇒  bounded   clique-width. 
 

   
  (1) : A. Blumensath - B.C.                    (2) : J. Engelfriet. 
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Robustness   results :  Preservation   and   generation   (2)  
 

Inverse  MS  transductions 
 

Direct   MS   transductions  
 

 
MS-def. ⊂ VR-recog. 
                               (1) 

 
Trees         VR-equational 

               ∪    (2)     
                 Cwd( < k) 

Inverse  MS2,2  transductions 
 

Direct   MS2,2   transductions  
 

 
MS2-def. ⊂ HR-recog. 
                               (1) 

 

 
Trees         HR-equational 

               ∪    (3)     
                 Twd( < k)    

    VR-equational    ⇒  bounded   clique-width. 
    HR-equational    ⇒  bounded   tree-width. 
 

   (1) : A. Blumensath - B.C.        (2) : J. Engelfriet.         (3) : B.C.- J. Engelfriet 
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Recognizability   is  preserved  under  inverse  monadic  second-order  

transductions.   (A.Blumensath - B.C., 2004)  
 

 Recognizability  of  sets  of  relational  structures  is  relative  to  graph 

operations   consisting  of : 

   disjoint  union   and   

   unary  operations  expressed  by  quantifier-free   formulas   (QF)  
 
 

 Examples   of   QF  operations :  Edge-complement,  relabellings,  

       Adda,b   (cf.  the  definition   of   clique-width). 
 
 

Proof  sketch :  Every  MS  transduction  is  the composition  of  MS   transductions  

of   3  particular   types :     - Copyk 

          - Parameterless  and  noncopying   transduction 

         - Guessing   unary  relations 

 Recognizability  is  preserved  by  inverse  transductions  of  each  type. 
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Copyk  :  
 

S     ⎜    S ⊕ S ⊕  …   S   ( k  times ) 
 

 
Disjoint  union  with   binary   relations  Yi,j   for  1 ≤ i < j ≤ k    defined  as   

 

{(x,y)  /  x  is  the  i-copy, y  is  the j-copy  of  some  u  in  DS} 
 
 

 

Facts :   a) Copyk(S ⊕ T) = Copyk(S) ⊕ Copyk(T) 
 

 

  b) For  f  quantifier-free, there  is  a  quantifier-free  operation  g  such  that : 
 
     Copyk(f(S)) = g(Copyk(S)) 
 
 
 

  Copyk  is  “almost”  a  homomorphism, and   recognizability   is  preserved   

    under   inverse  homomorphisms. 
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8.   Encoding   powers  of   graph  classes  via  MS  transductions 
 
 An   MS-transduction  τ   defines  a  graph  H  inside  a  graph G   

with  help  of  parameters  (sets  of  vertices  or  edges  of   G):   

 say  that  H  is  encoded  in  G :  the encoding  is  represented  by  the 

parameters  and  τ  is   the  decoding   function.  
 

 The encoding  powers  of  graph  classes  C   and   D   can be 

compared  as  follows : 
 

  C  <  D    if   C   ⊆  τ( D)    for some   MS   transduction  τ  
 
 We   get  a  quasi-order  on   graph  classes. 
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 We   consider   MS2,2 - transductions :  (formulas  use  edge  set  

quantifications  and  must  construct  incidence  graphs  as  outputs.) 
 

 

 For  graph  classes  C   and   D   we   let : 
 
 C  <  D   if   C   ⊆   τ( D)  for  some  MS2,2 -transduction  τ  
 
 C  ≡ D    if  C  <  D  and  D  <  C  
 
 C  <  D   if   C  <  D   and    C  ≡ D   

 C  <c  D if  C  <  D  and  there  is  no  E   with   C  <  E  <  D 

 
 What   is   the structure  of   <c   (the  covering  relation  of  < )  ? 
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With  help  of  Robertson & Seymour :  Graph  Minors  I  and  V : 
   { • }  <  Paths  <c  Trees <c  Grids   
 
These  classes  encode  respectively : 

 finite sets,   
 sets of graphs  of  bounded path-width,  
 sets of graphs  of  bounded tree-width,   
 all  sets  of   graphs . 
 

Proof   :  Trees   <c   Grids.   
 
If  a  graph  class  C  has  bounded  tree-width, it  is  <  Trees. 
 
If C   has  unbounded  tree-width, it contains  all  grids  as  minors, 

hence :  Grids  <  C  and  Grids ≡  C,  because  Graphs  <  Grids 
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Proof   :  All  graphs   <   Grids  
 
 
 
 
 
 
 
 
 
 
 
 

 

 

A  monadic  second-order  transduction  using  parameters  X,Y, Z  

can  transform  all  grids  into  all  incidence  graphs  Inc(G).
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More  difficult :   What   is   below    Paths ? 
       
 
Answer :   (A. Blumensath-B. C.,  LMCS  2010) 
 
 

{ • }  <c T2   <c  … Tn  <c  Tn+1<c … < Paths  <c Trees <c Square  grids   
 
 
where   Tn  is  the  class  of  rooted  trees  of  height  at   most  n  (and 

unbounded  degree). 

 
 
Idea : Tn   encodes   the  classes  of  graphs  having  tree-decompositions  

of  height  at  most  n  and  width  at   most   k   (for all   k). 
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Definition :   n-depth tree-width  of  G  =  twdn(G) =  minimal width  of a 

tree-decomposition  of  G   of   height  at   most   n. 
 

Related  notion :  tree-depth                   (Nesetril , Ossona  de  Mendez). 

td(G)  =   minimal   k  such  that  each  connected  component  of  G  has  

a   depth-first  (normal)   spanning  tree   of   height  at   most   k. 
 

Some  properties  of   these  variants   of    tree-width : 

 1) pwd(G)  <  n.(twdn(G) +1)  

 2) If  G  is  a  minor  of  H :   twdn(G)  <  twdn(H) ,  td(G)  <  td(H)   

 3) td(G)  <  n   implies   twdn(G)   <  n, 

 4) twdn(G)   <  k  implies   td(G)  <  n.k    
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  Excluded Path Theorem   
(cf.  the   Excluded  Tree  and   Grid  Theorems  of  GM1  and  GM5) 

   

 A   class   of   graphs  C  excludes   some   path  as  a  minor   
  (equivalently, as  a  subgraph) 

  ⇔   for some n,  C   has   bounded   n-depth  tree-width 

   ⇔   C   has   bounded   tree depth. 

  

 We  use  n-depth  tree-width  rather  than  tree-depth   to   characterize   

the  graph  classes  encoded  by  trees  of  each  height  n 
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Logical   properties  of   n-depth  tree-width. 
 

Proposition  :   For each  n  and   k, there exists  an   MS2,2 -transduction 

that  maps  every  graph  of  n-depth  tree-width  at  most k   to  all   its   

strict  tree-decompositions  of  height  at  most  n  and  width  at  most k   
 

(strict =  with  certain  connectivity properties ; every  tree-decomposition  can  be  made  

strict  without  increasing  height   and  width). 
 

 

Remark  :   The  obstruction  sets  of  graphs    for  n-depth  tree-width   <  k  are  

computable  from  each  pair   n,  k    because  we  have  monadic  second-order 

characterizations  of  these  classes  and   bounds  on   the   tree-widths  of  the 

obstruction  sets.          The same  holds  for   the  property  “ tree-depth   <  k” . 
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In  the  hierarchy : 

{ • }  <c T2   <c  … <c Tn  <c … < Paths  <c Trees <c Grids 
 

each  level  Tn  encodes  the  sets  of  graphs  of  bounded  n-depth   tree-width. 

 

Proofs to be done  : 

1) Tn   <   Paths 

 Trees  of  height  n  can be encoded  as  sequences over [n]  and  

decoded  by  MS-transductions. 

1 2 333 2 33 2 2 33   encodes   the   tree : 

1 

2        2       2       2 

3 3 3  3  3            3   3 
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2) Tn   <  Tn+1   
One  cannot  define  by  an MS-transduction  all  trees  of  height  n+1  from  all  trees  of 

height  n. 

The (technical) proof  uses  an  analysis of  MS  definable  relations  on  trees  and  some 

counting arguments. 
Case  n = 2.  

 Trees  of  height  2  correspond  (via  MS  transductions)  to  sets  (without relations).  

If  a  k-copying  MS-transduction  with  p   parameters  transforms  sets  into  trees,  these trees have 

less  than  k.2p  internal nodes.  

 We  cannot  get  all trees of height 3  from sets  by  a single  MS-transduction. 

 

3) Hence, we   cannot   have    Tn  ≡  Paths 
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“Dichotomy arguments” : 

1) Let  C   be  a  set  of  bounded  pathwidth  (i.e.,  C  <  Paths ): 

 Either : it contains all  paths as minors,  then  C  ≡  Paths 

 Or : (Excluded Path Thm)  twdn (C) is bounded  and  C  <  Tn   for some n  
 

 

2) Let  C   be a  set  of  n-depth  tree-width  <   k  (C  <  Tn ): 

 Either : for all m, there is  G  in  C  s.t., for each  n-depth  tree-dec.   U 

   of width  k  of  G , the tree  U contains  T(n,m)   (T(n,m) = the m-ary   

   complete tree  of  height  n)  and then  Tn  <  C      (because  n-depth  

   tree-decompositions  of   width  k  are  definable  by   MS transductions) 

      Or :  for  some m, every G  in  C   has an n-depth  tree-dec.  U  of width 

k, s.t. U does not contain T(n,m).  By  contracting  some  edges of U, one  

gets  an  (n-1)-depth  tree-dec. of G  of  width  m.(k+1), hence  C  <  Tn-1. 
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Open  question :  What  about   the  hierarchy  based  for  

            MS  – transduction ? 

Theorem   (B.C.  &  Oum, 2007)  : 

There  exists  an MS - transduction (using even cardinality set predicates)  

that  transforms  every  set  of  undirected  graphs  of  unbounded  rank-

width  into  the  set  of  all  square  grids. 

       (Uses  vertex-minors  instead of minors) 

 We  need  a  result  corresponding  to  Graph Minors 1  about “linear  

rank-width”  and  excluding  a  forest  as  a  vertex-minor. 

 We need  also  something  like “n-depth rank-width” and  constructions   

by   MS  tranductions   of  appropriate  rank-decompositions. 
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9.  Graph  classes  with  decidable  MS theories  (or  MS  

satisfiability  problems) 
 

Theorem (Seese 1991): If a set of graphs has a decidable  MS2-satisfiability 

problem, it  has  bounded  tree-width. 
 

Theorem (B.C.-Oum 2007): If a set of graphs has a decidable C2MS 

satisfiability  problem,  it  has  bounded  clique-width. 
 

Answering a question by Seese: If a set of graphs has a decidable MS 

satisfiability  problem, is  it  the  image of  a set of trees under an MS  trans-

duction,  equivalently, has  it  bounded  clique-width ? 
 

MS2 = MS logic with edge quantifications ; C2MS = MS logic with the even cardinality set 
predicate.  A set C  has  a  decidable  L-satisfiability  problem  if one  can  decide whe-
ther any  given  formula  in   L   is  satisfied  by  some  graph  in  C 
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Proof   of   the  result on   MS2-satisfiability and tree-width :  
 

A) If  a  set  of  graphs  C  has  unbounded  tree-width, the  set  of  its  minors  includes  

all  k x k -grids  (Robertson & Seymour) 
 

B) If  a  set  of  graphs   contains  all  k x k -grids,  its MS2 satisfiability  problem is 

undecidable  
 

C) If  C  has  decidable MS2-satisfiability  problem, so has Minors(C), 

                because   C            Minors(C)  is  an  MS2,2 transduction. 
  

Hence, if   C  has  unbounded  tree-width and  a  decidable  MS2 -satisfiability  

problem, we  have  a  contradiction  for  the  decidability  of  the  MS2-satisfiability  

problem  of  Minors(C). 
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       Proof   of  the  result  on  C2MS-satisfiability  and  clique-width  : 
 

D) Equivalence  between  the cases  of  all  (directed and undirected)  graphs  and 

bipartite  undirected  graphs  (with  an  encoding  of  directed graphs  as labelled 

bipartite  undirected  ones; cf. page 15). 
 

A’)  If a  set  of  bipartite graphs  C  has  unbounded  clique-width, the set  of  its  

vertex-minors  contains  all   “Sk“  graphs.  
 

C’)  If  C  has  a  decidable C2MS-satisfiability  problem, so  has  Vertex-Minors(C), 

because  C                  Vertex-Minors(C)  is  a   C2MS-transduction. 
 

E)  An   MS-transduction   transforms   Sk   into  the   kxk-grid.  
 

Hence   A' + B + C' + E   gives   the result   for  bipartite  undirected  graphs.  

The  general  result  follows  with  the  encoding  D. 
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Definitions   and  facts   
 

Local  complementation   of  G  at  vertex  v  

G * v   =  G  with  edge-complementation  of   G[nG(v)], 

         the  subgraph  induced  by  the  neighbours of  v 
 

Local equivalence  ( ≈ loc )  = transitive closure  of  local  complementation  

(at  all  vertices) 
 

Vertex-minor  relation : 

H  <VM  G  : ⇔  H  is an induced  subgraph  of  some G’ ≈ loc G. 
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Proposition  (B.C.-Oum, 2004) :  The  mapping  that  associates   with   G  

its  locally  equivalent  graphs  is  a   C2MS-transduction.  

 

The  even cardinality  set predicate  is  necessary :  
 

    u                               Consider  G * X  for  X  ⊆  Y : 

                    

                                    u  is  linked  to  v  in  G * X 

    v                                     ⇔    Card(X)  is even 

       G      Y    

(G * X =  composition  of  local  complementations  at  all  vertices from X) 
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Definition  of   Sk , bipartite : A = {1,…,(k+1)(k-1)} , B =  {1,…,k(k-1)}  
From  Sk  to  Gridk x k   by  an  MS  transduction  

                            S3                    (folded)  Grid3x4 

The orderings  of  A   and   B : x, y  are  consecutive   ⇔   Card(nG(x) Δ nG(y)) = 2. 

One  recognizes  the  edges  from i  ∈ B  to  i   ∈ A, and  from i ∈ B  to i+k-1  ∈ A  (thick 
edges on  the  left  drawing). 

One  creates  edges  (e.g.  from  1 ∈ A  to 2 ∈ A, from  2 ∈ A  to 3 ∈ A etc…and 
similarly  for B, and  from  1 ∈ B  to 4 ∈ A, etc…)  one deletes others (from 4 ∈ B to 6 ∈ A   
etc…), and vertices like 7,8 in A, to get  a grid containing Gridkxk           
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10.  A   few   open  questions 
 

 

Question 1 : What should be the clique-width or rank-width of hypergraphs  

(or  relational  structures) ?  
 

Question 2 : Is  it  true  that  the decidability  of  the  MS- (and  not  of  the 

C2MS-)  satisfiability  problem  for  a  set  of  graphs  implies  bounded 

clique-width, as  conjectured  by  Seese ?    
 

More  important  : 

Question 3 :   What  about  Question 3  for  sets of hypergraphs or  

relational structures ?  
 

 


