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Introduction

Summary of last session

Cumulative Distribution Function vs Quantile
You need four functions:

Draw the density function (e.g. d* functions)
Compute a probability with the CDF (e.g. p* functions)
Compute a quantile from a probability (e.g. q* functions)
Draw numbers according to a given law (e.g. r* functions))

The CDF and the quantile are used to solve P(X ≤ C) = p :

If you know C and need to compute p, use the CDF function. Ex.
X ∼ N (0,1) and C = 2
then p =pnorm(2, mean = 0, sd = 1).
if you know p and need to compute C, use the quantile function.
Ex. X ∼ N (0,1) and p = 0.9
then C =qnorm(0.9, mean = 0, sd = 1).
Remark : the αth quantile of the standard normal –N (0,1)– is
called zα. E.g. if X ∼ N (0,1) then: P(X ≤ C) = p ⇔ C = zp.
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Introduction

Summary of last session

Important
The sample mean, x̄ estimates the population mean, µ.
The sample standard deviation, S estimates the population standard
deviation, σ.
S, the standard deviation, talks about how variable the population is.
When n is large enough (CLT) (Xn =

∑
n X ):

X̄n =
Xn

n
∼ N (µ, σ/

√
n) ≃ N (x̄ ,S/

√
n)

The standard deviation of the sample mean is σ/
√

n
Its logical estimate is S/

√
n.

The logical estimate of the standard error is S/
√

n.
S/

√
n, the standard error, talks about how variable averages of random

samples of size n from the population are.
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Introduction

Comparing systems using sample data

[Jain 91, Chap 13]
Determine the confidence interval of the mean
Comparing two alternatives
Confidence interval for proportion
Determining sample size
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Confidence Interval of the Mean

Determine the confidence interval of the mean

Problem
S = {x1, . . . , xn}: a set of results
Determine the mean µ of S, such that:
P(c1 ≤ µ ≤ c2) = 1 − α

α: significance level (e.g. 0.01)
1 − α: confidence level (e.g. 0.99)

Notations
n: number of experiments
x̄ = 1

n
∑

xi : sample mean

s =
√

1
n−1

∑
(x̄ − xi)2: unbiased estimation of the standard

deviation
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Confidence Interval of the Mean

When n is large (n ≥ 30)
Central-limit theorem: x̄ ∼ N (µ, σ/

√
n)

µ (resp. σ): population mean (resp. the population std. dev.) of the
distribution of the xi .

Z = x̄−µ
σ/

√
n . Z ∼ N ( x̄−µ

σ/
√

n ,1) ∼ N (0,1).
P(−c ≤ Z ≤ c) = 1 − α ⇔ c = z1−α/2

zi : value of the i th quantile of the standard normal.
α = 0.1 : z1−α/2 = z0.95 = 1.64

x

N
(0

,1
)

−4 −3 −1.64 0 1.64 3 4

0.
0

0.
2

0.
4

−c ≤ x̄−µ
σ/

√
n ≤ c ⇔ x̄ − cσ/

√
n ≤ µ ≤ x̄ + cσ/

√
n. However, s ≈ σ

With (1 − α)100% confidence

µ ∈ [x̄ − z1−α/2s/
√

n, x̄ + z1−α/2s/
√

n]
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Confidence Interval of the Mean

Exercise

x̄ = 10, n = 64, s = 2

Find the confidence interval with confidence level of 0.9 (90%) and
0.99 (99%).
CL of 0.9. α = 0.1 ⇒ z0.95 = 1.64 ⇒ µ ∈
[10 − 1.64 × 2/8,10 + 1.64 × 2/8] ⇒ µ ∈ [9.59,10.41]
CL of 0.99. α = 0.01 ⇒ z0.995 = 2.58 ⇒ µ ∈
[10 − 2.58 × 2/8,10 + 2.58 × 2/8] ⇒ µ ∈ [9.35,10.65]

Link between confidence interval and confidence level
When the confidence level increases, α decreases and the interval
increases.

E. Jeannot (INRIA) Introduction to Statistical Tests (part 2) January, 2024 9 / 82



Confidence Interval of the Mean

Exercise

x̄ = 10, n = 64, s = 2
Find the confidence interval with confidence level of 0.9 (90%) and
0.99 (99%).

CL of 0.9. α = 0.1 ⇒ z0.95 = 1.64 ⇒ µ ∈
[10 − 1.64 × 2/8,10 + 1.64 × 2/8] ⇒ µ ∈ [9.59,10.41]
CL of 0.99. α = 0.01 ⇒ z0.995 = 2.58 ⇒ µ ∈
[10 − 2.58 × 2/8,10 + 2.58 × 2/8] ⇒ µ ∈ [9.35,10.65]

Link between confidence interval and confidence level
When the confidence level increases, α decreases and the interval
increases.

E. Jeannot (INRIA) Introduction to Statistical Tests (part 2) January, 2024 9 / 82



Confidence Interval of the Mean

Exercise

x̄ = 10, n = 64, s = 2
Find the confidence interval with confidence level of 0.9 (90%) and
0.99 (99%).
CL of 0.9. α = 0.1 ⇒ z0.95 = 1.64 ⇒ µ ∈
[10 − 1.64 × 2/8,10 + 1.64 × 2/8] ⇒ µ ∈ [9.59,10.41]

CL of 0.99. α = 0.01 ⇒ z0.995 = 2.58 ⇒ µ ∈
[10 − 2.58 × 2/8,10 + 2.58 × 2/8] ⇒ µ ∈ [9.35,10.65]

Link between confidence interval and confidence level
When the confidence level increases, α decreases and the interval
increases.

E. Jeannot (INRIA) Introduction to Statistical Tests (part 2) January, 2024 9 / 82



Confidence Interval of the Mean

Exercise

x̄ = 10, n = 64, s = 2
Find the confidence interval with confidence level of 0.9 (90%) and
0.99 (99%).
CL of 0.9. α = 0.1 ⇒ z0.95 = 1.64 ⇒ µ ∈
[10 − 1.64 × 2/8,10 + 1.64 × 2/8] ⇒ µ ∈ [9.59,10.41]
CL of 0.99. α = 0.01 ⇒ z0.995 = 2.58 ⇒ µ ∈
[10 − 2.58 × 2/8,10 + 2.58 × 2/8] ⇒ µ ∈ [9.35,10.65]

Link between confidence interval and confidence level
When the confidence level increases, α decreases and the interval
increases.

E. Jeannot (INRIA) Introduction to Statistical Tests (part 2) January, 2024 9 / 82



Confidence Interval of the Mean

Exercise

x̄ = 10, n = 64, s = 2
Find the confidence interval with confidence level of 0.9 (90%) and
0.99 (99%).
CL of 0.9. α = 0.1 ⇒ z0.95 = 1.64 ⇒ µ ∈
[10 − 1.64 × 2/8,10 + 1.64 × 2/8] ⇒ µ ∈ [9.59,10.41]
CL of 0.99. α = 0.01 ⇒ z0.995 = 2.58 ⇒ µ ∈
[10 − 2.58 × 2/8,10 + 2.58 × 2/8] ⇒ µ ∈ [9.35,10.65]

Link between confidence interval and confidence level
When the confidence level increases, α decreases and the interval
increases.

E. Jeannot (INRIA) Introduction to Statistical Tests (part 2) January, 2024 9 / 82



Confidence Interval of the Mean

Code for one vector

R code
interval <-function(x,conf_level=0.9){
n<-length(x)
m<-mean(x)
se<-sd(x)/sqrt(n) # standard error
alpha<-1-conf_level
q<-qnorm(1-alpha/2)
return m+c(-1,1)*q*se

}
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Comparing Paired Observations

Paired or unpaired?

In the following situations, are the samples paired or unpaired?

You want to compare the performances of two restaurants. You measure the
weekly profits of both restaurants for 10 consecutive weeks.

Solution: Paired.

You want to compare expected starting salaries between males and females
using the class survey data.

Solution: Unpaired.

Your company can use one of two possible advertisements. You show one ad to
one group of people, and ask them to rate the likelihood of buying your product
after seeing the ad. You show the second ad to a second group of people, and
ask them the same question.

Solution: Unpaired.

Your company can use one of two possible advertisements. You show both ads
to a group of people, and ask them to rate their opinions of both ads.

Solution: Paired.
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Comparing Paired Observations

Paired or unpaired?

In the following situations, are the samples paired or unpaired?

You want to compare the performances of two restaurants. You measure the
weekly profits of both restaurants for 10 consecutive weeks.
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Comparing Paired Observations

Comparing two paired observations

Example with two algorithms
1 You want to test two algorithms with different input data
2 x vector of results of the first algorithms
3 y vector of results of the second algorithms (experiments made in

the same order)
4 z = x − y
5 Compute the confidence interval of the mean of z
6 If the interval contains 0 you cannot conclude on the superiority of

one algorithm compared to the other.

Exercise
Compute the 90% confidence interval for x and y drawn in a
continuous uniform distribution (resp in [0,10] and in [1,11] with 40
samples).
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Comparing Paired Observations

Answer

R code
y<-runif(40,0,10)
x<-runif(40,1,11)
z <-x-y
shapiro.test(z)
mean(z)+c(-1,1)*qnorm(0.95)*sd(z)/sqrt(length(z))
[1] 0.1886824 1.6171149
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Comparing Paired Observations

Dealing with small number of samples

The Student distribution
The normal approximation of the CLT works for n large.
When n is small we have to use the Student distribution (t distribution)
with n − 1 degree of freedom
The t distribution tends to the normal one when n is large.
When n is small it has a thicker tails that the normal
This tails enable to account for the greater uncertainty when n is small
Nevertheless, it accounts for iid and normal distribution of the data.
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Comparing Paired Observations

n ≤ 30 and xi follow a normal distribution
t(n): Student distribution with n degree of freedom.
Z = x̄−µ

σ/
√

n . Z ∼ t(n − 1).
P(−c ≤ Z ≤ c) = 1 − α ⇔ c = tn−1,1−α/2

tk,i : value of the i th quantile of a Student variate with k degree of freedom.
α = 0.1,n = 5 : t4,0.95 = 2.13

With (1 − α)100% confidence

µ ∈ [x̄ − tn−1,1−α/2s/
√

n, x̄ + tn−1,1−α/2s/
√

n]

R code
student_interval <-function(x,conf_level=0.9){

n<-length(x); X<-mean(x);s<-sd(x);alpha<-1-conf_level
q<-qt(1-alpha/2,n-1)
return(c(X-q*s/sqrt(n),X+q*s/sqrt(n)))

}
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Comparing Paired Observations

Comparing two alternatives (paired observations)
6 benchmarks were used to compare two systems.
The observations are:
{(5.4,19.1),(16.6,3.5),(0.6,3.4),(7.3,1.7),(1.4,2.5),(0.6,3.6)}.

Is one system better than the other?

Differences: 6 observations: {-13.7,13.1,-2.8,-1.1,-3.0,5.6}
Sample means x̄ = −0.32
Sample standard deviation s = 9.03
These observation are likely to follow a normal distribution (P value of
Shapiro/Wilk test = 0.82>0.1): we can use the student distribution.

α = 0.1, t5,0.95 = 2.015. 90% confidence interval:
µ ∈ [−0.32−2.015×9.03/

√
6,−0.32+2.015×9.03/

√
6] = [−7.76,7.12]

The interval contains 0: hence the two systems are not different (with a
confidence of 90%)
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Comparing Unpaired Observations

Outline

1 Introduction

2 Confidence Interval of the Mean

3 Comparing Paired Observations

4 Comparing Unpaired Observations

5 Confidence Interval for Proportions

6 Confidence Interval for two Proportions

7 Confidence Interval for Linear Regression

8 Hypothesis Testing

9 χ2 test

10 Computing Number of Experiments

11 Conclusion
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Comparing Unpaired Observations

Population variance vs. sample variance

Be careful
Distinguish between

the population variance σ2

the sample variance S2

Two sample variance S2
x and S2

y taken from the same population can
be different.

For unpaired observation we need to distinguish between the cases
where the population variance is the same or different.
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Comparing Unpaired Observations

With same population variance in the two groups

Cookbook
Sometime elements in the groups are not comparable pairwise
and not of the same size
Ex: comparing people that received treatment vs placebo.
X̄ average for first group and Ȳ average for second groups.
The (1 − α)× 100% confidence interval of the difference of the

mean is : X̄ − Ȳ ± tnx+ny−2,1−α/2Sp

(
1
nx

+ 1
ny

)1/2

Where nx (resp. ny ) is the size of the first (resp. second) group.
tnx+ny−2,1−α/2 is the 1 − α/2 Student quantile with nx + ny − 2
degrees of freedom.
Where S2

p =
(
(nx − 1)S2

x + (ny − 1)S2
y
)
/(nx + ny − 2) is the

pooled variance estimator. Assumes a constant variance
across the groups (but sample variance can be different, if they
are the same then ∀nx ,ny , < Sp = Sx = Sy ).
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Comparing Unpaired Observations

Exercise

Draw two vectors with resp 100 and 200 samples using
respectively N (0,1) and N (1,1).
Compute the confidence interval 90% of the mean of these two
vectors.

Solution
nx<-100 ; ny<-200
x<-rnorm(nx,0,1)
y<-rnorm(ny,1,1)
sx2<-var(x) ; sy2<-var(y)
mx<-mean(x) ; my<-mean(y)
sp=sqrt(((nx-1)*sx2+(ny-1)*sy2)/(nx+ny-2))
alpha<-1-0.9
z<-qt(1-alpha/2,nx+ny-2)
mx-my+c(-1,1)*z*sp*sqrt(1/nx+1/ny)
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Comparing Unpaired Observations

Unequal population variance

Cookbook
Under unequal variance the test becomes:

Ȳ − X̄ ± tdf ×
(

s2
x

nx
+

s2
y

ny

)1/2

Where tdf is the student quantile calculated with degrees of

freedom: df = (S2
x/nx+S2

y/ny)
2(

S2
x

nx

)2
/(nx−1)+

(
S2

y
ny

)2

/(ny−1)

If you do not know if the population variance is equal or unequal use
the unequal case.
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Comparing Unpaired Observations

Exercise

Suppose that simple random samples of college freshman are
selected from two universities - 15 students from school A and 20
students from school B. On a standardized test, the sample from
school A has an average score of 1000 with a standard deviation of
100. The sample from school B has an average score of 950 with a
standard deviation of 90.
What is the 90% confidence interval for the difference in test scores at
the two schools, assuming that test scores came from normal
distributions in both schools?

Use the recipe:

df = 1148469/40378.93 = 28.44
t0.95,28.44 = 1.7

SE =
√

1002/15 + 902/20 = 32.74
90% confidence interval : = 50 ± 55.66
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Confidence Interval for Proportions

Outline

1 Introduction

2 Confidence Interval of the Mean

3 Comparing Paired Observations

4 Comparing Unpaired Observations

5 Confidence Interval for Proportions

6 Confidence Interval for two Proportions

7 Confidence Interval for Linear Regression

8 Hypothesis Testing

9 χ2 test

10 Computing Number of Experiments

11 Conclusion

E. Jeannot (INRIA) Introduction to Statistical Tests (part 2) January, 2024 24 / 82



Confidence Interval for Proportions

Confidence interval for proportions

System A is better than system B for y1 among n experiments.
Sample proportion: p̂1 = y1

n p̂2 = 1 − p̂1 = n−y1
n

y1 ∼ B(n,p1) (p1 the true probability that A outperforms B).

if np1 ≥ 10 and n(1 − p1) ≥ 10
y1 ∼ B(n,p1) ∼ N (np1,

√
np1(1 − p1))

⇔ p̂1 = y1
n ∼ N

(
p1,

√
p1(1−p1)

n

)
∼ N

(
p̂1,

√
p̂1p̂2

n

)
With (1 − α)100% confidence

p1 ∈

[
p̂1 − z1−α/2

√
p̂1p̂2

n
, p̂1 + z1−α/2

√
p̂1p̂2

n

]

If the interval contains 0.5, we cannot conclude that A outperforms B.
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Sample proportion: p̂1 = y1

n p̂2 = 1 − p̂1 = n−y1
n

y1 ∼ B(n,p1) (p1 the true probability that A outperforms B).

if np1 ≥ 10 and n(1 − p1) ≥ 10
y1 ∼ B(n,p1) ∼ N (np1,

√
np1(1 − p1))

⇔ p̂1 = y1
n ∼ N

(
p1,

√
p1(1−p1)

n

)
∼ N

(
p̂1,

√
p̂1p̂2

n

)
With (1 − α)100% confidence

p1 ∈

[
p̂1 − z1−α/2

√
p̂1p̂2

n
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√
p̂1p̂2

n

]
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Confidence Interval for Proportions

Example

An experiment is repeated 40 times. System A is found superior to
system B 30 times, can we state with 99% confidence that system A is
superior?

n = 40, y1 = 30
p̂1 = 30/40 = 0.75 (np̂1 = 30, n(1 − p̂1) = 10)√

p̂1p̂2
n =

√
0.75×0.25

40 = 0.068

α = 0.01, z0.995 = 2.58

p1 ∈ [0.75 − 2.58 × 0.068,0.75 + 2.58 × 0.068] = [0.57,0.92]
The confidence interval does not include 0.5. Hence, we can conclude
with 99% confidence that system A is superior than system B.
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Confidence Interval for Proportions

Code

R code
proportion_test <-function(x,conf_level=0.9){
n<-length(x)
X<-mean(x)
n1<-sum(findInterval(x,1))
n2<-n-n1
p1<-n1/n
p2<-n2/n
if(p1*n<10 || p2*n<10){

stop("Cannot apply normal approximation!")
}
alpha<-1-conf_level
q<-qnorm(1-alpha/2)
s<-sqrt(p1*p2/n)
return(c(p1-q*s,p1+q*s))

}
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Confidence Interval for two Proportions

Outline

1 Introduction

2 Confidence Interval of the Mean

3 Comparing Paired Observations

4 Comparing Unpaired Observations

5 Confidence Interval for Proportions

6 Confidence Interval for two Proportions

7 Confidence Interval for Linear Regression

8 Hypothesis Testing

9 χ2 test

10 Computing Number of Experiments

11 Conclusion
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Confidence Interval for two Proportions

Confidence interval for two proportions

we want to compare p̂1 = y1
n1

with p̂2 = y2
n2

.

if n1p̂1 ≥ 10 and n1(1 − p̂1) ≥ 10 and n2p̂2 ≥ 10 and n2(1 − p̂2) ≥ 10
Compute

S =

√
p̂1(1 − p̂1)

n1
+

p̂2(1 − p̂2)

n2

With (1 − α)100% confidence

(p1 − p2) ∈
[
(p̂1 − p̂2)− z1−α/2S, (p̂1 − p̂2) + z1−α/2S

]

If the interval contains 0, we cannot conclude that p̂1 is larger than p̂2.
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Confidence Interval for two Proportions

Example
What is the prevalence of anemia in developing countries?

African Women Women from Americas
Sample size 2100 1900
Number with anemia 840 323
Sample proportion 840/2100 = 0.40 323/1900 = 0.17

Confidence interval = 95%

2100 × 0.4 > 10 and ... 1900 × (1 − 0.17) > 10

S =
√

0.4(1−0.4)
2100 + 0.17(1−0.17)

1900 = 0.01373131
α = 0.05, z0.975 = 1.96

(p1 − p2) ∈ [(0.4 − 0.17)− 1.96 × 0.01373131, (0.4 − 0.17) + 1.96 ×
0.01373131] = [0.203,0.257]
With confidence 95% we can conclude that there are between 20.3%
and 25.7% more African women with anemia than women from the
Americas with anemia.
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Confidence Interval for Linear Regression

Outline

1 Introduction
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6 Confidence Interval for two Proportions

7 Confidence Interval for Linear Regression
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Confidence Interval for Linear Regression

Example
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Problem
Two models that are very close but the right one has data that are
more spread.
Can we set a confidence interval for the model?
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Confidence Interval for Linear Regression

Confidence Interval for linear Regression Slope
model: ŷ = âx + b̂
â: slope
b̂: intercept
n: number of points
ŷi : predicted values from the model (i.e the y values for each value of
xi according to the model)

MSE : mean squared error. MSE = 1
n−2

∑
(yi − ŷi)

2

x̄ : mean of the samples x values.
Standard Error of the linear regression slope:

S =

√
MSE√∑
(x − x̄)2

With (1 − α)100% confidence

a ∈
[
â − t1−α/2,n−2 × S, â + t1−α/2,n−2 × S

]
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Confidence Interval for Linear Regression

Back to the example
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Slope=0.9901, Intercept=0.0106 

α = 0.05, n = 100, t0.975,98 = 1.9845

For the left case: S1 = 0.0048
a1 ∈ [0.9885 − 1.9845 × 0.0048,0.9885 + 1.9845 × 0.0048]
a1 ∈ [0.9889,1.0079]
For the right case: S2 = 0.0204
a2 ∈ [0.9901 − 1.9845 × 0.0204,0.9901 + 1.9845 × 0.0204]
a2 ∈ [0.9496,1.0306]
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α = 0.05, n = 100, t0.975,98 = 1.9845
For the left case: S1 = 0.0048
a1 ∈ [0.9885 − 1.9845 × 0.0048,0.9885 + 1.9845 × 0.0048]
a1 ∈ [0.9889,1.0079]
For the right case: S2 = 0.0204
a2 ∈ [0.9901 − 1.9845 × 0.0204,0.9901 + 1.9845 × 0.0204]
a2 ∈ [0.9496,1.0306]
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Confidence Interval for Linear Regression

R code

lin.model <- lm(y1 ~ x1)
sry <- summary(lin.model)
sry
Call:
lm(formula = y1 ~ x1)

Residuals:
Min 1Q Median 3Q Max

-0.024334 -0.010242 -0.002057 0.011115 0.025981

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.0001843 0.0027465 -0.067 0.947
x1 0.9984523 0.0048120 207.493 <2e-16 ***

S<- sry$coefficients[2,2] ; b <-sry$coefficients[2,1]
q<-qt(0.975,length(x1)-2)
b+c(-1,1)*q*S

E. Jeannot (INRIA) Introduction to Statistical Tests (part 2) January, 2024 35 / 82



Confidence Interval for Linear Regression

Exercise

Cars consumption
You have two cars. You drive them on different itineraries and you measure
the number of kilometers and the gas consumption in litters. Assuming that
only the distance impact the consumption. Discuss the consumption model of
the two cars with 95% confidence.

car 1: distance= {10,30,80,15,120}, consumption =
{0.5,1.6,3.8,0.8,6.2}

car 2: distance= {5,20,50,45,90,110}, consumption =
{0.2,0.7,2.1,1.9,3.5,4.7}

Hints
You have to assume that when distance = 0, consumption = 0.
To built a linear model that passes through the origin do it this way: fit <-
lm(y ~ 0+x)
Beware that the coefficients section of summary(fit) have now only one
line
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Confidence Interval for Linear Regression

Solution

d1 <- c(10,30,80,15,120); c1 <- c(0.5,1.6,3.8,0.8,6.2)
d2 <- c(5,20,50,45,90,110);c2 <- c(0.2,0.7,2.1,1.9,3.5,4.7)
alpha <- 0.05 ; q <- qt(1 - alpha/2, length(d1)-2)

m1 <- lm(c1~0+d1); s1<- summary(m1)
S1 <- s1$coefficients[1,2]
a1 <- s1$coefficients[1,1]
0.05053348

a1+c(-1,1)*q*S1
0.04738497 0.05368200

m2 <- lm(c2~0+d2); s2<-summary(m2)
S2 <- s2$coefficients[1,2]
a2 <- s2$coefficients[1,1]
a2
0.04125249
a2+c(-1,1)*q*S2
0.03855199 0.04395298
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Confidence Interval for Linear Regression

Solution (ctn.)
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Interpretation (95% interval)

a1 ∈ [0.04738497,0.05368200]
a2 ∈ [0.03855199,0.04395298]
the unit is l/km. We can conclude with 95% confidence that car 2
has lower consumption than car 1.
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Confidence Interval for Linear Regression

Confidence Interval around a Linear Regression Line
n: number of points
ŷi : predicted values from the model.
MSE : mean squared error. MSE = 1

n−2
∑

(yi − ŷi)
2

The standard error S is, for any value x and its predicted value ŷ :

S =
√

MSE

√
1
n
+

(x − x̄)2∑
(xi − x̄)2

With (1 − α)100% confidence

y ∈
[
ŷ − t1−α/2,n−2 × S, ŷ + t1−α/2,n−2 × S

]
Remark
S increases when x is away from x̄ . This accounts from the fact that
the uncertainty is larger at both ends of the range as we have less
values close to x .
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ŷ − t1−α/2,n−2 × S, ŷ + t1−α/2,n−2 × S
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Confidence Interval for Linear Regression

Draw Conf. int around the Reg. Line with R

R Code
library(ggplot2)
x<-runif(100)
y<-x+(runif(100)-0.5)
df <- data.frame(x,y)

reg<- ggplot(df, aes(x=x, y=y)) +
geom_point(color=’#2980B9’, size = 2) +
geom_smooth(method=lm, se=TRUE, level=0.95, fullrange=TRUE, color=’#2C3E50’)

reg
ggsave("./linear_reg_conf_int.pdf",plot=reg, width=12, height=4)
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Confidence Interval for Linear Regression

Takeaway message

The confidence interval
Mean ± Quantile×Standard Error
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Confidence Interval for Linear Regression

R is nice!

R provides all the above function
Confidence interval of the mean :

r<-t.test(x,conf.level=0.9)

Comparing paired experiment :
r<-t.test(x,y,paired=TRUE,conf.level=0.9)

Comparing unpaired experiment :
r<-t.test(x,y,conf.level=0.9)

Comparing unpaired experiment with equal variance :
r<-t.test(x,y,conf.level=0.9,var.equal=TRUE)

CI for proportion : r=binom.test(n1,n,conf.level=0.9)
CI for two proportions : r=prop.test(Y,N,conf.level=0.9)
inf<-r$conf.int[1]
sup<-r$conf.int[2]
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Hypothesis Testing

Outline

1 Introduction

2 Confidence Interval of the Mean

3 Comparing Paired Observations

4 Comparing Unpaired Observations

5 Confidence Interval for Proportions

6 Confidence Interval for two Proportions

7 Confidence Interval for Linear Regression

8 Hypothesis Testing

9 χ2 test

10 Computing Number of Experiments

11 Conclusion
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Hypothesis Testing

The Null Hypothesis

We need to make decision between two hypothesis
The status-quo, or default hypothesis, H0 is called the null
hypothesis
The alternative hypothesis is call Ha

Example
We compare two algorithms (A1 vs A2) with 100 paired
experiments.
Performance metric P: the higher the better.
Sample mean: µ̃ = P1 − P2 = 2 and s = 10.
We want to test the hypothesis H0 : µ = 0 (A1 is not better than
A2). µ population mean.
Versus Ha : µ > 0 (A1 is better than A2).
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Hypothesis Testing

4 cases
Truth Decision Result
H0 H0 Correctly accepting the null
H0 Ha Type I error (wrongly rejecting the null)
Ha Ha Correctly rejecting the null
Ha H0 Type II error (wrongly accepting the null)

Example, court case
The null hypothesis H0 is that the defendant is innocent
Ha is that the defendant is guilty
Setting low standard ⇒ more innocent people are convicted (Type
I error)
Setting higher standard ⇒ more guilty people are left free (type II
error)
The way set standard impact the type of error we make. The more
we make one type of error the less we make the other type.
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Hypothesis Testing

Setting the correct standard

let’s go back to our example H0 : µ = 0 and Ha : µ > 0.

A reasonable strategy is to reject the null if µ̃ is larger than C.
C chosen such that the probability of Type I error is low (e.g
α = 0.05)
P(µ̃ > C;H0) = α

Using the CLT, under H0 we have:
µ̃ ∼ N (0, s/

√
n) = N (0,10/

√
100) = N (0,1).

So, P(µ̃ > C;H0) = α ⇔ P(µ̃ ≤ C;H0) = 1 − α ⇔ C = z1−α

“Reject H0 when µ̃ > z1−α” has the property that probability of
rejection is α when H0 is true.
In this case either :

null hypothesis is false
we have seen a rare event in support of Ha while H0 is true
our modeling is false (non iid variables, etc.)
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Hypothesis Testing

Go back to the example

Example
α = 0.05
C = z1−α = z0.95 = 1.645.
So, as µ̃ = 2 > C we can reject the null hypothesis or we have
faced an unlikely event that support the alternative hypothesis (A1
is better than A2) while this is not true.
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Hypothesis Testing

Test statistic

An other way of seeing the problem

Let TS= µ̃−µo
s/

√
n (TS is the number of standard deviation that µ is

away from µ0).
Under our assumptions, TS ∼ N (0,1); Hence,
If TS > z1−α we would reject the null hypothesis.
In our example TS= 2 while Z0.95 = 1.645, so we reject the null.
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Hypothesis Testing

n is small

Use the student distribution
Use the t quantile with n − 1 degrees of freedom. R:
qt(1-alpha,df)

Example
α = 0.05, n = 16
t15,0.95 = 1.7531
TS = 2−0

10/
√

16
= 0.8 < t15,0.95. So, we fail to reject the null

hypothesis.
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Hypothesis Testing

Two-sided tests

Sometime we want to test Ha : µ ̸= 0 instead of Ha : µ > 0.
We reject if TS greater z1−α/2 or smaller than zα/2

So we reject if the absolute value of TS is greater than z1−α/2.

Example
α = 0.05, n = 100, z0.975 = 1.96 < 2 =TS. So, we reject.
α = 0.05, n = 16, t15,0.975 = 2.13 > 0.8 =TS. So, we fail to reject.

Remark
If we fail to reject a one-sided test we will fail to reject the two sided
test as well (The quantile is an increasing function)
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Hypothesis Testing

Connection with confidence interval

Null Hypothesis and CI
Testing H0 : µ = µ0 versus Ha : µ ̸= µ0.
The set where we fail to reject H0 is the (1 − α)100% confidence
interval of µ
It works the other way: if a (1 − α)100% interval contains µ0, then
we fail to reject H0 .
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Hypothesis Testing

Exercice

Questions
A factory has a machine that dispenses 80 mL in bottles. An
employee believes that average is lower. Using 40 samples, she
measures that that the average amount dispensed is 78 mL with a
standard deviation of 2.5. (a) state the null and alternative
hypothesis. (b) with 95% confidence is there enough evidence to
support the idea that the machine is not working properly?
Same questions but when the employee believes that the average
is different and the amount dispensed 80.8 mL with 99%
confidence.
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Hypothesis Testing

P-Value: Coin flip example

Example

H0: the coin is fair, Ha the coin is biased toward heads.

4 tails out 10?

40 tails out 100??

400 tails out 1000???

P-value
Assuming the coin is fair, what is the chance (i.e. the probability) to

see n or less tails out of s trials (n < s/2)
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Hypothesis Testing

Coin flip example
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Binomial distribution (size = 10, p=0.5)
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Value
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Binomial distribution (size = 100, p=0.5)

Result

Use pbinom, to compute the red area

4 tails out 10: 0.3769531

40 tails out 100: 0.02844397

400 tails out 1000: 1.364232 10−10
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Hypothesis Testing

P-value

Assume the null hypothesis is true.
What is the probability to see data in favor of the alternative
hypothesis?
Decide :

1 The statistic to evaluate the support of the null hypothesis
2 The distribution of that statistic under the null hypothesis (null

distribution)
3 Compute the probability of obtaining the statistic as or more

extreme in favor of the alternative hypothesis under the distribution
given in 2 while H0 is true
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Hypothesis Testing

P-value with our example

Example

16 experiences, TS = 2.5.

The null distribution is a student distribution with 15 degrees of freedom

What is the probability to get a statistic as large as 2.5

1-pt(2.5,df=15) = pt(2.5,df=15,lower.tail=False) =
0.01225.

t15,1−0.01225 = t15,0.98775 = 2.5.

p-value
In this case, the probability that we have seen an event as or more

extreme in favor of the alternative hypothesis while the null hypothesis
is true is: 0.01225.

So, (assuming our model is correct) either we observed data that was
pretty unlikely under the null, or the null hypothesis is false.
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Hypothesis Testing

p-value

Definitions
The p-value or probability value is the probability of obtaining test

results at least as extreme as the results actually observed during the
test, assuming that the null hypothesis is correct.

How unusual is the result we got if the null hypothesis is true.
The p-value tells you how unusual your data are assuming the

null-hypothesis.

Be careful
The p-value is not the probability of making a type-1 error: α is this

probability.
The p-value is not the probability that null hypothesis is true given the

data. P(D|H0) ̸= P(H0|D).
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Hypothesis Testing

Interpretation

Small p-value
Either:

H0 is true and we have observed a rare event
H0 is false
or possibly the null model is incorrect (non iid samples, non
normality distribution).
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Hypothesis Testing

Interpretation

Cutoff
One sided test: if the p-value is smaller than α, reject the null
hypothesis
Two-sided test: if the smallest p-value of the two one-sided
hypothesis test, is smaller than α/2, reject the null hypothesis

Rule of thumbs
p-value < 0.01 : very strong evidence against H0

0.01 < p-value < 0.05 : strong evidence against H0

0.05 < p-value < 0.1 : some weak evidence against H0

p-value > 0.1 : little or no evidence against H0
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Hypothesis Testing

Attained significance level

Example
100 experiences, µ̃ = 2, s = 10, H0 : µ = 0. TS = 2.

the null distribution is N (0,1)
We have seen that with α = 0.05 we reject the null hypothesis
(z0.95 = 1.645).
What is the smallest α that still reject the null hypothesis?
1-pnorm(2)=pnorm(2,lower.tail=False)=0.02275.
z1−0.02275 = z0.97725 = 2.

Attained significance level

The smallest value of α for which we still reject the null hypothesis is
called the attained significance level.

Here, it is: 0.02275
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Hypothesis Testing

Exercice

Compute the P-value and the attained significance in this case

A factory has a machine that dispenses 80 mL in bottles. An
employee believes that average is lower. Using 40 samples, she
measures that that the average amount dispensed is 78 mL with a
standard deviation of 2.5. (a) state the null and alternative
hypothesis. (b) What is the P-Value associated with these data
(using distribution and test statistic) (c) Do you accept or reject the
null hypothesis with 99.9% confidence? d() What is the attained
significance level?

Answer
p = 2.1 10 − 7
no
2.1 10 − 7
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Hypothesis Testing

p-value examples

Some tests
T test (t.test). H0 : mean of data is zero. P-value is small we
can reject the null hypothesis and assume that the data has not a
zero mean or the two vector have different means.
Shapiro-Wilk normality test (shapiro.test). H0 : the data is
normally distributed. Hence, large p-value: it is likely that the data
are from a normally distributed population.
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Hypothesis Testing

Exercise (from Statistical inference for
data science by B. Caffo.)

Question
Suppose that in an AB test, one advertising scheme led to an average of 10
purchases per day for a sample of 100 days, while the other led to 11
purchases per day, also for a sample of 100 days. Assuming a common
standard deviation of 4 purchases per day. Assuming that the groups are
independent and that they days are iid. Compute the 95% confidence
interval. Perform a Z test of equivalence. Give a p-value for the test.

Hints
Paired or unpaired experience? Standard Error?

Compute the confidence interval of X̄ − Ȳ .

Compute TS

H0 ? Ha?

One sided or two sided?

Compute the probability to get a a value as large as | TS | and as small as (− | TS |)?
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Hypothesis Testing

Answer

R code
n1<-100 ; n2<-100
m1<-10 ; m2<-11 ; alpha <- 1-0.95
mu0<-0 # Null hypothesis: m1-m2 = 0
s<-4 # Pooled variance
se <- s*sqrt(1/n1+1/n2) #Stand. err. for unpaired XP
ts <- ((m1-m2)-mu0)/se ; ts
q <- qnorm(1-alpha/2)
m1-m2+c(-1,1)*q*se #95% confidence inteval
p_value<-pnorm(abs(ts),lower.tail = FALSE) +

pnorm(-abs(ts)) #Two-sided test
p_value # .07709987
2*pnorm(-abs(ts)) # Same thing

p-value > α = 0.05. Hence, we do not reject the null hypothesis and
we do not conclude that one scheme is better than the other.
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Hypothesis Testing

Discussion about the value

Be carefull
A p-value is only a probability.
If you reject the null hypothesis based on p-value you might end
up to make a mistake
Ex: you rejected the null n=20 times with the same p-value
p = α = 0.05. The probability that you make at least one type I
error is 1 − (1 − p)n = 1 − 0.9520 = 64.1%
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Hypothesis Testing

p-value pro

simply statistics
http://simplystatistics.org/2012/01/06/
p-values-and-hypothesis-testing-get-a-bad-rap-but-we/

normal deviate]
http://normaldeviate.wordpress.com/2013/03/14/
double-misunderstandings-about-p-values/

Error statistics
http://errorstatistics.com/2013/06/14/
p-values-cant-be-trusted-except-when-used-to-argue-that-p-values-cant-be-trusted/
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Hypothesis Testing

p-value cons

Statistical Evidence: A Likelihood Paradigm* by Richard Royall
http:
//www.crcpress.com/product/isbn/9780412044113

Toward Evidence-Based Medical Statistics. 1: The P Value
Fallacy* by Steve Goodman
https://scholar.google.com/scholar?q=towards+
evidence+based+medical+statistics+the+p-value+
fallacy&hl=en&as_sdt=0&as_vis=1&oi=scholart&sa=
X&ei=uOTjVNHdG4anggSMlYOwBQ&ved=0CBsQgQMwAA

The Earth is Round (p < .05)* by Cohen
http://www.iro.umontreal.ca/~dift3913/cours/
papers/cohen1994_The_earth_is_round.pdf
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χ2 test

χ2 distribution

Problem
Testing if a sample follows a given distribution
Testing if two random variables are independent

Use the χ2 distribution.
χ2 distribution: Let X1, . . . ,Xk k random variables following the
standard normal distribution N (0,1).
Then X =

∑
n X 2

i follows the χ2 distribution with k degrees of
freedom.
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χ2 test

Testing if a sample follows a given distribution

Problem
y1, . . . , yN N samples from a random variable Y
Y can take J different distinct values v1, . . . , vJ

H0: Y takes value vj with probability pj and
∑

pj = 1

χ2 test for adequation
α: significance level
nj number of sample with value j . p̂j = nj/N

T =
∑J

j=1
(nj−Npj )

2

Npj
follow a χ2 distribution with J − 1 degrees of

freedom (Pearson 1900).
Hence, if T < Qχ2(J−1)(1 − α) we fail to reject H0.

where Qχ2(J−1)(1 − α) is the quantile of the χ2 law with (J − 1)
degrees of freedom with p = 1 − α (R: use qchisq(p, df)).
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χ2 test

Example: testing the balance of a 6-faces dice

Problem
α = 0.05
600 draws: 88, 109, 107, 94, 105, 97
Can we reject H0: “the dice is balance” with confidence 1 − α?
Same thing for 600 draws: 89, 131,93, 92, 104, 91

Answer
Compute T
Compare to Qχ2(5)(0.95)

R code
Q<-qchisq(0.95,5)
T1 <- ((88-100)^2+(109-100)^2+(107-100)^2+(94-100)^2+(105-100)^2+(97-100)^2)/100
T1<Q
T2 <- ((89-100)^2+(131-100)^2+(93-100)^2+(92-100)^2+(104-100)^2+(91-100)^2)/100
T2<Q
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χ2 test

Testing if two random variables are independent

Problem
two random variables X and Y .
I different possible values for X and J for Y .
H0: X and Y are independent.
Oi,j number of samples for which X = i and Y = j .

Ei,j =
Oi+×O+j

N : empirical expected value of having X = i and
Y = j , where:

Oi+ =
∑J

j=1 Oi,j

O+j =
∑I

i=1 Oi,j

T =
∑ (Oi,j−Ei,j )

2

N follows a χ2 distribution of (I-1)(J-1) degrees of
freedom.
If T < Qχ2((I−1)(J−1))(1 − α) we fail to reject H0 with confidence
1 − α.
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χ2 test

Example

Problem
two random variables X and Y .
X can takes two values (’A’ and ’B’) and Y four values (1, 2, 3 , 4).
H0: X and Y are independent.
α = 0.05

1 2 3 4 Total
A 50 70 110 60 290
B 60 75 100 50 285
Total 110 145 210 110 575

Question
We see that number of B’s are greater than number of A’s for small
values of Y and the opposite for large values of Y . Is this statistically
significant?
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χ2 test

Example

Solution

1 2 3 4 Total
A 50 70 110 60 290
B 60 75 100 50 285
Total 110 145 210 110 575

Degrees of freedom?
Quantile: Q=7.814728
T=2.423491
T < Q Failed to reject H0
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χ2 test

Remarks

Validity of the test

T converge towards a χ2 law
Hence, test valid only if sample in each category is large enough
How large? No consensus, but at least 5 (or 10 or 20, depending
on the authors).

R code
chisq.test(x,p)

x: sample size (vector or matrix)
p: probability vector (omit if equi-probability)
chisq.test(c(88,109,107,94,105,97)) for 6-faces dice
problem
chisq.test(x=matrix(data=c(50, 70, 110, 60, 60,
75,100, 50),nrow=2,ncol=4, byrow=TRUE))

E. Jeannot (INRIA) Introduction to Statistical Tests (part 2) January, 2024 75 / 82



Computing Number of Experiments

Outline

1 Introduction

2 Confidence Interval of the Mean

3 Comparing Paired Observations

4 Comparing Unpaired Observations

5 Confidence Interval for Proportions

6 Confidence Interval for two Proportions

7 Confidence Interval for Linear Regression

8 Hypothesis Testing

9 χ2 test

10 Computing Number of Experiments

11 Conclusion

E. Jeannot (INRIA) Introduction to Statistical Tests (part 2) January, 2024 76 / 82



Computing Number of Experiments

Computing the number of experiments

Problem
You have a confidence interval, how many more experiments (n) you
need to reduce your confidence interval to a given level (ϵ)?

CI of the mean: µ ∈ [x̄ − z1−α/2s/
√

n, x̄ + z1−α/2s/
√

n]
If you want: µ ∈ [x̄(1 − ϵ), x̄(1 + ϵ)]

n ≥
(

z1−α/2s
x̄ϵ

)2

CI of a proportion: p1 ∈
[
p̂1 − z1−α/2

√
p̂1p̂2

n , p̂1 + z1−α/2

√
p̂1p̂2

n

]
If you want p1 ∈ [p̂1 − ϵ, p̂1 + ϵ]

n ≥
z2

1−α/2p̂1p̂2

ϵ2
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Computing Number of Experiments

Example

For the mean
x̄ = 10, s = 2

α = 0.1 ⇒ z0.95 = 1.64
ϵ = 0.05 ⇒ n ≥

( 1.64×2
10∗0.05

)2
= 43

For proportion

n = 40, n1 = 30 ⇒ p̂1 = 30/40 = 0.75, p̂2 = 0.25

α = 0.01 ⇒ z0.995 = 2.58

ϵ = 0.005 ⇒ n ≥ 2.582×0.75×0.25
0.005 = 250
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Conclusion

Conclusion

Many sciences involve experiments (computer-science is among
them).
There are a lot of tools and methods to perform insightful
experiments:

General methodology
Performance analysis
Statistics and probability
Data analysis and representation

This course is an attempt to tackle this issue.
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Conclusion

Acknowledgments and further reading

Bad Stats: Not what it Seems
http://www.aviz.fr/badstats

MOOC Statistical Inference on Coursera.
https://leanpub.com/LittleInferenceBook that comes
with the above course
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