R Introductory Course

Louis-Claude CANON

FEMTO-ST Université de Franche-Comté

SMAsHpc

February, 2016

Outline

Outline

Statistical Functions

Data analysis tools

- linear and nonlinear modeling (regression)
- classical statistical tests (e.g., normality test)
- time-series analysis
- classification
- clustering
- principal component analysis

Statistical Functions

Data analysis tools

- linear and nonlinear modeling (regression)
- classical statistical tests (e.g., normality test)
- time-series analysis
- classification
- clustering
- principal component analysis

Large collection of user-submitted packages

Comprehensive R Archive Network (CRAN) Review website: *http://crantastic.org/*

Quick Overview

Graphics (1)

Quick Overview

Graphics (2)

Vector (Operations)

Example

```
> X <- c(3, 4, 5)
> X^2
[1] 9 16 25
> X > 4 & X^2 > 4
[1] FALSE FALSE TRUE
> sqrt(X^2)
[1] 3 4 5
```

Vector (Operations)

Example

```
> X <- c(3, 4, 5)
> X^2
[1] 9 16 25
> X > 4 & X^2 > 4
[1] FALSE FALSE TRUE
> sqrt(X^2)
[1] 3 4 5
```

Indexes

```
> X[c(2,3)]
[1] 4 5
> X[-c(2,3)]
[1] 3
> X[X > 4]
[1] 5
```

Vector (Speed)

Comparable to Numerical Analysis Software

Most internals are coded in C and Fortran. Benchmarks put it on par with Matlab.

Integrated Help

Manual

> ?length

Outline

- Implementation of the S programming language (started in 1996).
- Lexical scoping semantics inspired by Scheme.
- Part of the GNU project (GPL).
- Objectives: statistical and graphical techniques.
- Command line interface & several graphical user interfaces

RStudio

F

		-	
	-		T -
r -1	~		-

Syntax

Assignment	
> R <- 4	
> R	
[1] 4	

Syntax

Assignment	
> R <- 4	
> R	
[1] 4	

Functions

```
> test <- function(X) {
    return(X + 1)
}
> test(R)
[1] 5
```

Syntax

Assignment	
> R <- 4	
> R	
[1] 4	

Functions

```
> test <- function(X) {
    return(X + 1)
}
> test(R)
[1] 5
```

Special values

NA, Inf, NaN Related functions: is.na, is.infinite, is.nan

CANON

Vector

Common structure for storing several basic values

> R <- c(4, 3)

Vector

Common structure for storing several basic values

> R <- c(4, 3)

Related functions

sum, max/min, range, mean/var, length, sort/order summary, fivenum (give summary of the repartition of the values)

Vector

Common structure for storing several basic values

> R <- c(4, 3)

Related functions

sum, max/min, range, mean/var, length, sort/order summary, fivenum (give summary of the repartition of the values)

Generating functions

```
> seq(from = 2, to = 3, by = 0.1)
[1] 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0
> 1:6
[1] 1 2 3 4 5 6
> rep(5, 3)
[1] 5 5 5
```

Vector Operations

Vector arithmetic

3 * X^2 + sqrt(Y / Z) + 1

Vector Operations

Vector arithmetic

3 * X^2 + sqrt(Y / Z) + 1

Logical vector

Boolean: TRUE or FALSE

- & vectorized and
- vectorized or
- any test if any element of an array is TRUE
 - all test if all elements of an array are TRUE

Vector Operations

Vector arithmetic

3 * X^2 + sqrt(Y / Z) + 1

Logical vector

Boolean: TRUE or FALSE

- & vectorized and
- | vectorized or
- any test if any element of an array is TRUE
 - all test if all elements of an array are TRUE

Vector indexes

String

Manipulation functions

```
> paste("X", "Y", sep = "")
[1] "XY"
> substr("abcde", start = 2, stop = 4)
[1] "bcd"
```

String

Manipulation functions

```
> paste("X", "Y", sep = "")
[1] "XY"
> substr("abcde", start = 2, stop = 4)
[1] "bcd"
```

Vector names

The function names returns the labels of the values of a vector.

Data types

Primitive

- Numeric (integer and double) and complex
- Character

Logical

• Factor (nominal value or level)

Data types

Primitive

- Numeric (integer and double) and complex
- Character
- Logical
- Factor (nominal value or level)

Collections

- Vector
- Array (multi-dimensional, same type)
- List (several elements of any type)
- Data frame (several collections having the same size and any type)

Data types

Primitive

- Numeric (integer and double) and complex
- Character
- Logical
- Factor (nominal value or level)

Collections

- Vector
- Array (multi-dimensional, same type)
- List (several elements of any type)
- Data frame (several collections having the same size and any type)

The functions *attributes*, *class* and *mode* gives information on the data.

Arrays

Basic operations

dim returns the dimensions as a vector (or *nrow* and *ncol*)
cbind combines two elements by columns
rbind combines two elements by rows
t transpose of a matrix

Arrays

Basic operations

dim returns the dimensions as a vector (or nrow and ncol)

- cbind combines two elements by columns
- rbind combines two elements by rows
 - t transpose of a matrix

Array indexes (on T, a matrix or data frame)

- T[2,1] is the element in the second row and first column
- T[,1] is the first column (also T[,-(2:ncol(T))])
- T[,-1] is T without the first column
- T[-(2:3),] is T without the second and third rows

Arrays

Basic operations

dim returns the dimensions as a vector (or nrow and ncol)

- cbind combines two elements by columns
- rbind combines two elements by rows
 - t transpose of a matrix

Array indexes (on T, a matrix or data frame)

- T[2,1] is the element in the second row and first column
- T[,1] is the first column (also T[,-(2:ncol(T))])
- T[,-1] is T without the first column
- T[-(2:3),] is T without the second and third rows

Matrix multiplication

A %*% B

Inputs

read.table function

Read data (numeric and character) put by column in a file. Many parameters: separator between fields (*sep*), number of lines to skip (*skip*), number of lines to read (*nrows*), character comment (*comment.char*), ...

Inputs

read.table function

Read data (numeric and character) put by column in a file. Many parameters: separator between fields (*sep*), number of lines to skip (*skip*), number of lines to read (*nrows*), character comment (*comment.char*), ...

Example

>	<pre>read.table("data.txt")</pre>		
	V1	V2	
1	r	1	
2	а	2	

Plotting

Example

- > X <- 1:100
- > Y <- sqrt(X)
- > plot(X, Y)

😣 🗇 🗇 R Graphics: Device 2 (ACTIVE)

Flow Control

Condition

Flow Control

Condition

Loop

```
for (i in 1:10) {
    # Code
}
```

Better to use vectorized operations and pre-compiled routines, otherwise everything is interpreted and slow.

Outline

Familiarity with a Programming Language

Documentation within the environment

Manual pages: "?" before any function. Search within manual pages: "??" before any string. Start the name of a function and enter tab.

Familiarity with a Programming Language

Documentation within the environment

Manual pages: "?" before any function. Search within manual pages: "??" before any string. Start the name of a function and enter tab.

Practical session

Many great exercises!

Learning R

No Familiarity with a Programming Language

swirl package

Long tutorial explaining everything.

Familiarity with R

ggplot2 and dplyr

Take a look to modern features of R. https://www.rstudio.com/wp-content/uploads/2015/05/ggplot2cheatsheet.pdf https://www.rstudio.com/wp-content/uploads/2015/02/data-wranglingcheatsheet.pdf