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ABSTRACT
In HPC platforms, concurrent applications are sharing the same
�le system. This can lead to con�icts, especially as applications
are more and more data intensive. I/O contention can represent a
performance bottleneck. The access to bandwidth can be split in
two complementary yet distinct problems. The mapping problem
and the scheduling problem. The mapping problem consists in
selecting the set of applications that are in competition for the I/O
resource. The scheduling problem consists then, given I/O requests
on the same resource, in determining the order to these accesses to
minimize the I/O time. In this work we propose to couple a novel
bandwidth-aware mapping algorithm to I/O list-scheduling policies
to develop a cross-layer optimization solution.

We study this solution experimentally using an I/O middleware:
CLARISSE. We show that naive policies such as FIFO perform rela-
tively well in order to schedule I/O movements, and that the impor-
tant part to reduce congestion lies mostly on the mapping part. We
evaluate the algorithm that we propose using a simulator that we
validated experimentally. This evaluation shows important gains
for the simple, bandwidth-aware mapping solution that we provide
compared to its non bandwidth-aware counterpart. The gains are
both in terms of machine e�ciency (makespan) and application
e�ciency (stretch). This stresses even more the importance of de-
signing e�cient, bandwidth-aware mapping strategies to alleviate
the cost of I/O congestion.
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1 INTRODUCTION
High-performance computing (HPC) is a key technology for simu-
lating and understanding complex phenomena in many scienti�c
domains including physics, chemistry, biology, life sciences, ma-
terials, climate, and geosciences. Along the years, large-scale sci-
enti�c infrastructures have been mostly designed to maximize the
parallel compute e�ciency of scienti�c simulations. The advent of
data-intensive computing applications, including high-performance
data analytics (HPDA) and deep learning (DL), as well as the huge
increase of data in scienti�c computing currently changes this
compute-centric view. This growing demand for data processing is
accompanied by disruptive technological progress of the underlying
storage technologies. As a result, upcoming exascale HPC systems

are transitioning from a simple HPC storage architecture, consist-
ing of a parallel back-end �le system and archives often based on
tapes, towards a multi-tier storage hierarchy that includes node-
local non-volatile main memory (NVMM) with a performance close
to DRAM, NVMe-based SSDs inside compute nodes with a band-
width of many GBytes/s, SSDs on I/O nodes, parallel �le systems,
campaign storage, and archival storage.

Despite this architectural shift, the usage of the I/O stack is not
optimal since end users lack the information about the state of the
HPC resources and the I/O accesses of the multiple applications
running in a supercomputer. As a result, opportunities for global
I/O optimization are missed mostly due to uncoordinated data man-
agement, which often leads to redundant data movement, large I/O
accesses contention and delayed end-to-end performance. In order
to optimize the I/O performance of multiple applications accessing
shared I/O resources, we have to address two main problems: First,
we need to allocate applications to platform partitions; Secondly,
we manage the I/O data in the system by scheduling the accesses
that are susceptible of creating I/O con�icts.

Trying to cope with this problem, in a preliminary study we
evaluated the inter-application I/O interference in PlaFRIM cluster
for three representative use cases. Each compute node of PlaFRIM
consists of two 12-core Intel Xeon E5-2680 processors and 128GB
RAM. The nodes are connected by In�niband QDR TrueScale at
40Gb/s, and the �lesytem is Lustre con�gured with one metadata
server, and four object storage servers. We evaluated the system
I/O performance by executing use-cases under two di�erent con-
�gurations: single application and multiple applications. In single
application one program was executed exclusively, having full ac-
cess to complete I/O bandwidth provided by the system. In contrast,
with multiple applications, several program instances are executed
simultaneously (accessing to di�erent �les) and competing for the
I/O resources.

Figure 1 shows the I/O bandwidths of each use-case and con�g-
urations. Use cases A and B corresponds to an MPI program that
writes a distributed matrix in a �le using non-collective calls. More
precisely, in use case A, each process writes the data consecutively,
whereas in use case B a striped write access is performed with a
stride size of 195MB. Use case C is the NAS BTIO simple benchmark,
which also uses non-collective MPI calls for accessing the �le. In
this use-case the I/O has a reduced data granularity. Because of this,
use case C has a smaller I/O bandwidth than the other counterparts.
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Figure 1: I/O bandwidth comparison for single and multiple
applications of the three use cases. In use cases A and B an
MPI program that writes a distributed matrix in a �le us-
ing non-collective calls. Each application uses 96 processes
forwriting a 47.7GB�le.Withmultiple applications, four in-
stances of the same application are executed simultaneously.
Use case C corresponds to the NAS BTIO simple benchmark
that operates with an 1.6GB �le using 64 processes. With
multiple applications, two instances of the same application
are executed simultaneously.

Note that for all the use cases the I/O bandwidth degrades when
multiple applications are executed. We de�ne this degradation d
as the percentage of bandwidth that is lost when multiple applica-
tions are being executed. More formally, d = 1 �

P
BWmulti

BWsin�le
where

BWsin�le is the I/O bandwidth for single application con�guration
and
P
BWmulti is the aggregated bandwidth for multiple applica-

tion con�guration. In our experiments we ran 4 applications are
the same time and we saw a, degradations of 2%, 16% and 11%, for
use cases A, B and C, respectively. There are many reasons [31] for
this degradation (that does not always occur) that are related to the
complex interaction between the applications and all the levels of
the I/O subsystem. One of the main factors occurs when the storage
servers receive requests from multiple applications: One is that it
is necessary to access to more locations in the hard disk surfaces,
reducing the access locality and I/O performance; Another reason
is the contention at I/O node-level, given that the raid servers are
potentially connected with all the I/O nodes.

Based on these results we conclude that in some contexts, simul-
taneous inter-application I/O should be avoided. This is the idea
behind the CLARISSE I/O scheduling control protocol [16]. Using a
publish-subscribe protocol, when multiple applications access to
the disk, only one is granted to perform the I/O. The remaining ones
are delayed waiting for the I/O completion. In the �rst contribution
of this work, we address this problem by developing and comparing
di�erent I/O scheduling policies that include di�erent criteria for
selecting the application that performs the I/O �rst.

Based on these results we conclude that, in some contexts, simul-
taneous inter-application I/O should be avoided. In this paper we

propose a new solution aimed at reducing I/O interference via glob-
ally coordinated I/O access operation by studying two problems.
The mapping problem consists in selecting the set of applications
that are in competition for the I/O resource. The scheduling problem
consists then, given I/O requests on the same resource, in determin-
ing the order of these accesses to minimize the I/O time. The main
contributions of this work are a mathematical model and a packing
algorithm to optimize the mapping of applications compute nodes
to I/O nodes as well as a thorough experimental study of several
I/O scheduling policies to order sequences of I/O operations that
must be executed through each I/O node. Then we designed and
validated a simulator to perform the evaluation at a larger scale. We
then used this simulator to perform additional evaluations of the
impact of the mapping strategy. The evaluation results with a single
I/O node, show that our cross-layer approach greatly reduces the
stretch of the machine while slightly degrading the makespan com-
pared to the standard First-Fit algorithm. Meanwhile, with several
partitions (and I/O nodes), our bandwidth-aware strategy performs
better for both metrics.

The rest of the paper is organized as follows. Section 2 depict
the architecture of the proposed framework. Section 3 reviews the
works related to our system. Section 4 presents a mathematical
model of the problem considered. Section 5 discusses some strate-
gies for the I/O scheduling and the mapping problems. Section 6
presents experimental evaluations of both solutions. Finally, Sec-
tion 7 summaries the main conclusions from our work and provides
future directions.

2 ARCHITECTURE OVERVIEW
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Figure 2: Framework overview.

Figure 2 shows the architecture of the proposed framework. The
computational resources are divided into management nodes, that
execute the software management tools, and compute nodes, that
execute the applications. In this �gure, three running applications
with 4, 2 and 1 processes are illustrated. Using a similar scheme than
in large HPC infrastructures, the compute nodes are divided into
partitions (two in the �gure). Each partition is associated to one I/O
node that is responsible for managing the application I/O accesses
(1) and translating them into requests to the storage servers (2) that
are subsequently sent to the disks (3).
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On the management side, the administration tools include a re-
source manager for monitoring the system and allocating compute
nodes for new applications. The resource manager communicates
with the application scheduler (4), responsible for determining
what is the next application to be executed. The third component
is CLARISSE [16], a middleware for enhancing I/O �ow coordi-
nation and control in the HPC systems. CLARISSE decouples the
policy, control, and data layers of the I/O stack software in order to
simplify the task of globally coordinating the parallel I/O on large-
scale HPC platforms. In the current implementation of CLARISSE,
it incorporates a public-subscribe protocol in the control plane for
coordinating the I/O, and several I/O scheduling policies in the pol-
icy layer. Each running application includes a CLARISSE proxy that
wraps the application I/O calls and communicates with CLARISSE
via the control plane (arrow 5). By means of this channel, the I/O
scheduling policies can impose a multi-criteria I/O access order to
the running application based on di�erent performance metrics.

In addition, the control plane includes a communication line
with the scheduler (arrow 6). The policy layer includes mapping
techniques that guide the scheduler to allocate the new execut-
ing application in certain partitions, with the aim of reducing the
number of con�icts accessing the I/O node.

As an illustrative example, let’s assume that applications 1 and 2
are initially running in the system, and application 1 is more I/O
intensive than application 2. Then, application 3, that is also I/O
intensive, is ready to be executed. In order to balance the accesses
to both I/O nodes, the mapping policy determines that is better to
place application 3 in partition 2, avoiding risk of contention in the
I/O node related to application 1. In a second step, when all the
applications are being executed, application 2 and 3 compete for the
I/O resources in the same partition. Note that con�icts in the access
to the second I/O node may arise. Using the new CLARISSE’s I/O
scheduling policy introduced in this paper, the I/O accesses of both
applications are coordinated with the aim of reducing the number
of con�icts.

3 RELATEDWORK
As exempli�ed in the introduction, the e�ect of con�icting accesses
on the I/O subsystem is a well-known problem in HPC infrastruc-
tures [11, 23, 31]. Recently the load imbalance In this context, the
I/O performance is di�cult to model due to the complex interac-
tion between di�erent interfering applications. There are di�erent
alternatives at di�erent levels of the architecture that reduce the
e�ect of this problem.

The �rst intuitive solution is to use architectural enhancements
such as Burst-Bu�ers [19]. These solutions have been widely stud-
ied to mitigate inter-application I/O interferences [2, 27, 28]. Sizing
strategies have been studied [2], as well as bu�er placement (shared
or distributed) [3, 18]. Tang et al. [27] have studied draining strate-
gies and have shown that the natural reactive strategy to empty the
bu�er as soon as possible can lead to severe degradation. Aupy et
al. [2] have shown theoretically that only emptying the bu�er when
it is at least 15% full do not lead to signi�cant delays compared to
the reactive strategy, however it may mitigate the issues raised by
the work of Tang et al. [27] Finally, as was shown in the recent

work by Aupy et al. [3], to be e�ciently used the bu�ers still need
to be coupled with I/O management strategies.

A second solution is to use the elasticity of applications or �le
system levels. Singh et al. [25] present a strategy that combines
I/O con�ict prediction and application malleability. By means of
prediction, the future I/O con�icts are forecast. Based on that, the
time of the next I/O phase is shifted in order to avoid the I/O
con�ict. This is carried on by dynamically changing the number of
processes of the con�icting application (by means of malleability).
AHPIOS [17] is a light-weight ad-hoc parallel I/O system with
elastic partitions that can scale up and down with the number of
storage resources. Other works such as those of Lim et al. [21] or
Cheng et al. [9] present elastic solutions using Hadoop Distributed
File System (HDFS). SpringFS [30] presents an elastic �lesystem for
Cloud computing platforms.

Finally, the solution closest to our work is to schedule the I/O of
applications in order to mitigate interference. Several works have
tackled this problem. Some approaches [13, 32] use priority func-
tion scheduling at the I/O node level: they consider applications
already mapped on a machine, sharing some I/O bandwidth. Sev-
eral priority functions have been proposed by Gainaru et al. [13]
to optimize either the equity between applications or the machine
throughput. Another recent approach developed by Aupy et al. [4]
is to look at structural properties of the applications (such as a pe-
riodic behavior in I/O communications) to develop more advanced
schedules. In TWINS [7] the access to the I/O nodes is coordinated
at the I/O forwarding layer, reducing the contention. Another simi-
lar approach is ASCAR [20], that uses tra�c controllers on storage
clients to detect I/O congestion and introduces tra�c rules to re-
duce it. AIS [22] is an I/O-aware scheduler that performs an o�ine
analysis of the I/O tra�c for identifying I/O characteristics of the
applications. Based on that, the applications are scheduled avoiding
I/O con�icts. Other works that use models to predict and avoid the
application I/O interference are [1, 10, 26].

Finally, there has been some recent work trying to incorpo-
rate several dimensions (such as I/O needs and compute nodes)
into batch schedulers. On the more theoretical side, several work
have started to incorporate multiple dimensions to a scheduling
problem [14, 29]. Bleuse et al. [8] have considered geometrical
constraints where, given some network topologies, they try to
schedule applications while respecting their request both on the
number of compute nodes and on the number of dedicated I/O
nodes. To the best of our knowledge, there is no speci�c work to
consider the scheduling of compute nodes while considering pos-
sible interference on I/O. On the practical side, Herbein et al. [15]
studied incorporating I/O awareness in batch scheduler strategies.
To develop a solution, they considered a simple model where all
jobs had an I/O need proportional to the number of nodes needed.
Their observation was that taking I/O into account reduced job
performance variability.

4 MODEL
In this section we present a mathematical model of the problem
considered. The machine model behavior has been veri�ed experi-
mentally to be consistent with the behavior of Intrepid and Mira,
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Figure 3: Schematic of the architecture. Jobs �1, �2, �3 and �4
compete for the bandwidth available on nio2 .

supercomputers at Argonne [13], as well as with a supercomputer
at Mellanox [4].

4.1 Machine Model
We consider a parallel platform structured as follows: R I/O nodes
(nio1 , . . . ,n

io
R ) are available to perform I/O operations from the com-

pute nodes to the parallel �le system. Given j 2 {1, . . . ,R}, each I/O
node nioj has a bandwidth bj for these operations, which is shared
among Pj compute nodes (for a total of

PR
j=1 Pj compute nodes).

In this work we assume that the I/O bandwidth is homogeneous,
that is,8j,bj = b, as well as the number of compute nodes associated
to each I/O node (8j, Pj = P ). We represent this architecture model
on Figure 3.

4.2 Applications
We consider a batch of scienti�c applications that need to run
simultaneously onto the parallel platform. Applications consists of
a series of consecutive non-overlapping phases: (i) a compute phase
(executed on the compute nodes); (ii) an I/O phase (a transfer of
a certain volume of I/O using the available I/O bandwidth) which
can be either reads or writes.

Formally, we have a set ofn jobs {�1, . . . , �n }. Each job �i requests
Qi compute nodes for its execution. �i consists of ni successive,
blocking and non-overlapping operations: (i)Wi, j (a compute oper-
ation that lasts for a timewi, j ); Vi, j (an I/O operation that consists
in transferring a volume �i, j of data). Therefore, if the bandwidth

available to �i to transfer its I/O to the PFS is equal to b, the time
Ti needed for the total execution of �i is:

Ti (b) =
X

jni
wi, j +

�i, j
b
. (1)

However, in general the I/O bandwidth is shared amongst several
applications and it may incur delays to the execution of �i .

4.3 Optimization problem
In this work, we consider that each job must be scheduled on the
compute nodes associated to a single I/O node (contiguity), but that
the I/O nodes can be shared amongst several applications. In addi-
tion, following the motivational example on I/O interference, we do
not allow simultaneous bandwidth sharing amongst applications
(i.e. on a given I/O node, only one application is performing I/O at
the same time), and we do not allow preemption of I/O (once an
application has started to perform I/O, it has to �nish its transfer).

A schedule is the solution of two allocation problems:
• The mapping problem, which consists in choosing for each
application the allocation of compute nodes (as depicted in
Figure 3);
• The scheduling problem, which, for a given I/O node, consists
in scheduling the sequences of I/O operations that must
be executed through this node (hence of the applications
mapped on the compute nodes associated to this I/O node).

We de�ne several objectives. Given a schedule, each job �i is
released at time ri and �nishes its execution at time Ci .

The stretch �i of �i is the ratio between the minimal execution
time and the actual execution time:

�i =

P
jni wi, j +

�i, j
b

Ci � ri
(2)

(where b is the maximum available I/O bandwidth). A stretch of
1 means that the application is not impacted by the other appli-
cations running on the system. A stretch of 2 means that due to
I/O contention, the application takes twice as long to execute as
it would normally. Typically the stretch is an objective more user
oriented.

The makespan Cmax of a schedule is given as the end of the last
execution:

Cmax = max
i

Ci (3)

Typically, the makespan is an objective more platform oriented:
with a �xed amount of work, the work over the makespan is the
platform utilization.

Finally, our general optimization problem is the following. Given
a set of jobs �1, . . . , �n and a platform with R I/O nodes, each with
a bandwidth b to the PFS, and connected to P compute nodes.
Find a schedule that minimizes either the total makespan, or that
minimizes the maximum stretch (maxi �i ). We call the general
setup of these problems H���IO, and, depending on the function to
optimize: MS-H���IO or �-H���IO.

When the number of I/O nodes is equal to 1, this reduces to
�nding the right allocation of I/O for the di�erent applications. We
call this subproblem IO�S����. Given an allocation to a solution of
H���IO, one can compute then independently the I/O scheduling
solution using an algorithm to IO�S����.
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Note that both the H���IO problem and the IO�S���� problems
are NP-hard: H���IO easily reduces to the multi-processor schedul-
ing problem; IO�S���� has been shown to be NP-hard by Gainaru
et al. [13].

5 PACK SCHEDULING TO SOLVE HPC�IO
In this work, we focus on a special type of solutions to H���IO,
speci�cally Pack scheduling algorithms. In Pack scheduling [6], the
jobs are partitioned into series of packs, which are then executed
consecutively. Tasks within each pack are scheduled concurrently
and a pack cannot start until all tasks in the previous pack have
completed (see Figure 4).

Pack scheduling has been advocated [12, 24] as it provides an
easier and �exible mean of designing and implementing novel al-
gorithms while providing signi�cant savings.

�1

�2

�3
Pack 1

�4

�5

�6
Pack 2

�7

�8

Pack 3

�9

�10

Pack 4

�11

Pack 5

nio
1

nio
2

time

Compute
Nodes

(a) The mapping of 11 applications into packs

�4 w4,1 w4,2 w4,3

�5 w5,1 w5,2 w5,3

�6 w6,1 w6,2 w6,3

Time0
0

b
�5,1 �6,1�4,1 �5,2 �4,2�6,2 �5,3 �6,3 �4,2

(b) The scheduling of I/O operations (bottom) within Pack 2. Computations
are allocated on dedicated compute nodes and can start as soon as the I/O is
transfered, but I/O operation share the available bandwidth b and can delay
applications.

Figure 4: A solution to H���IO of eleven applications on a
machine with two I/O nodes.

In this section we discuss some strategies for IO�S���� and
H���IO.

5.1 Policies for IO�S���� with a single pack.
Several works have considered the problem IO�S����. In general
there are two approaches list-scheduling heuristics [5, 13], or more
involved pattern-based algorithms taking into account structural
knowledge of the applications (such as their periodicity) [4].

In this work, we focus on list-scheduling based solutions. List
scheduling policies consists in scheduling available I/O operations
following a priority order as soon as a resource is available. They

are an interesting way to solve IO�S���� given the recent results
presented by Aupy et al [5]:

Theorem 1 ([5, Theorem 6]). Any list-scheduling algorithm is a
2-approximation for MS-IO�S���� and this ratio is tight.

Speci�cally, we consider the following natural priority orders
that gives 8 di�erent list-scheduling I/O policies:

(1) Lowest ID: the scheduler picks the application with lowest
system ID amongst those which requested I/O.

(2) Longest I/O: the scheduler picks the application which per-
forms the longest I/O phases (resource occupation).

(3) Shortest I/O: the scheduler picks the application which per-
forms the shortest I/O phases (avoid long wait).

(4) Shortest remaining: the scheduler picks the applicationwhich
is expected to have the least remaining work to do (free the
machine ASAP).

(5) Longest remaining: the scheduler picks the applicationwhich
is expected to have the most remaining work to do (platform
occupation).

(6) FIFO: Applications are sorted by increasing I/O request time.
(7) Bandwidth oriented: applications with the lowest ratio be-

tween I/O time and execution are advantaged (fairness).
(8) Stretch oriented: applications with the worse stretch are

scheduled �rst (fairness).

5.2 Algorithms for the mapping problem
In this section we provide an algorithm for the mapping problem
that takes into account both the need for bandwidth and processor
sharing between applications allocated to an I/O node.

The algorithm works in two steps: a �rst step partition the jobs
into packs, while the second step schedules the pack on the di�er-
ent I/O nodes. The intuition of the partitioning algorithm is the
following: we sort them by decreasing no contention execution
time (as given by Equation 1). Then we create packs following a
Best-Fit procedure, that is a procedure that schedules greedily the
next application in the �rst pack where it would �t with respect to
an I/O constraint and a processor constraint, and otherwise that
creates a new pack.

Precisely, to account this constraints, given a pack of jobs Pack,
we de�ne:

• PPack =
P
i 2PackQi , the number of processors used by the

pack;
• T Pack = maxi 2Pack

P
jni wi, j +

�i, j
b , the minimal length of

the pack;
• LPack = 1

b ·T Pack

P
i 2Pack

P
jni �i, j , the average I/O occupa-

tion of the pack.
• S the I/O sensibility for pack creation. It is a parameter of the
algorithm, by default S = 1.

The processor constraint to be respected is: PPack  P . The I/O
constraint is LPack  S . Intuitively, this constraint tries to ensure
that there is enough I/O bandwidth to perform all I/O operations
with minimal delay.

We formalize this in Algorithm 1.
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Algorithm 1: Pack-partitioning algorithm.
procedure Make-Pack(�1, . . . , �n ,S)
begin

Assume the jobs are sorted in decreasing order of
Ti (b) =

P
jni wi, j +

�i, j
b ;

Let SP be a set of packs sorted by decreasing value of
PPack (empty initially);
for i = 1 to n do

Find the �rst Pack in SP such that
X

jni
�i, j  (S � LPack) · bT Pack (4)

Qi  P � PPack (5)
Fit �i in this pack;
If there is no such pack, create an empty pack;

end
return SP

end

6 EXPERIMENTAL RESULTS
In this Section we present experimental evaluations of both I/O
scheduling and node mapping algorithms.

For the experiments, we have used Tucan cluster consisting of
compute nodes with Intel(R) Xeon(R) E7 with 12 cores and 128GB
of RAM, interconnected with a 10 Gbps Ethernet. We used the
workload depicted in Table 1.

The evaluation is performed in several steps: in Section 6.1 we
study the impact of various I/O scheduling policies on IO�S����
when the applications are already mapped on the machine. Then
we study the impact of the mapping algorithm in Section 6.2 on
H���IO.

6.1 Impact of list-scheduling policies on
IO�S����

6.1.1 Experimental setup. The workload is composed of �ve syn-
thetic applications based on Jacobi decomposition and having dif-
ferent I/O, computational needs and number of iterations. Each
application is con�gured to perform the CPU and I/O phases with a
particular intensity level, that produces a di�erent duration of the
phases. The total execution load1 is the same for all the applications.
This means that if each of them would be executed exclusively their
duration would be similar. All these applications have been exe-
cuted in the proposed framework depicted in Figure 2. This means
that the application I/O phases are intercepted and coordinated by
CLARISSE according to the I/O scheduling policy.

6.1.2 Result analysis and discussion. To see if we attain a steady
state in terms of stretch and makespan we have run the work-
load described in table 1 while increasing its number of iterations
batches2. In Figure 7, we plot the stretch of the di�erent strategies
when varying the number of iteration batches. We see that after

1Number of iterations ⇥ (computational Intensity + I/O Duration)
2An iteration batch is a multiplicative factor that increases of reduces the application
iteration number. For instance, a value of 2, makes the application run the double
number of iterations (for instance, 500 for application 1).

Application id Matrix size CPU duration (s) I/O duration (s) Iterations
1 5000 32 10 250
2 5000 16 5 500
3 5000 8 2.5 1000
4 5000 8 2.5 1000
5 5000 16 5 500

Table 1: Workload description for the experiment on the Tu-
can machine (for Figure 7 to 9).

some iterations the performance converges towards a steady state.
In general, applications 3 and 4 are the ones who have the largest
stretch. This is explained by the fact that these applications have
the lowest computational intensity and hence are more sensible
to I/O delay. We can also notice that some policies have a large
discrepancy in terms of stretch (for instance "longest I/O" or the
"shortest remaining"). They exhibit applications with a stretch close
to one (i.e. not delayed) and others with a very high stretch (up to
1.8). This is typical of a starvation situation where some applica-
tions are highly favored while others are able to perform I/O only
when no other one is requesting access.
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Figure 5: Max Stretch of the di�erent policies when varying
the number of iteration batches.

.

In Figure 5, we plot, for all policies, the maximum stretch of
all applications. The maximum stretch measures the worst case
for all the applications. We see that the "longest I/O" or "shortest
remaining" policies behave the worst as they tend to exhibit star-
vation behavior. On the other side, several heuristics have a better
behavior than the FIFO policy, which is the basic policy for this
problem. In particular heuristics favoring applications that have
a high stretch or the lowest ratio I/O vs. execution time behave
much better than FIFO. Indeed, these two policies tend to greedily
improve the fairness among the di�erent applications.

In Figure 8, we plot the makespan of all the policies compared
to the default policy (FIFO). Surprisingly, we see that heuristics
favoring the maximum stretch are also the ones that exhibit good
performance in terms of makespan. Indeed, optimizing the maxi-
mum stretch requires to optimize resource utilization in order to
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Figure 6: RelativeMakespan to FIFO of the di�erent policies
when varying the number of iteration batches.

avoid applications to be stalled. In addition, optimizing resource
usage of each of them also optimize the time they spent in the
system.

At the end, we see that the two policies that tend to sacri�ce a
resource in the short term behave poorly. Indeed, the "longest I/O"
policy favors I/O and "Shortest remaining" favors computation: for
all these cases such unbalanced policies lead to very bad fairness
among applications. On the other hand, balanced policies that take
into account the I/O and the fairness o�er very good results com-
pared to the FIFO policy. This is especially the case for the "Stretch
oriented", the "Shortest I/O" and the "longest remaining” strategies.

6.2 Analysis of solutions for H���IO
In the previous section, we analyzed several I/O scheduling policies
for the IO�S���� problem. We now try to solve the more general
H���IO problem by comparing the di�erent mapping algorithms
presented in Section 5.2.

First we present the experimental setup (machine simulator and
synthetic application generation). Then, the analysis takes place in
two steps: �rst we study deeply the model with a single I/O node,
then we extend it on a machine with multiple I/O nodes. Finally,
in this section, we consider a machine with P = 2048 compute
nodes per I/O nodes and one to �ve I/O nodes. We normalize the
I/O bandwidth by setting b = 1.

6.2.1 Machine Simulation. To perform the analysis of this section
at a larger scale (both in terms of number of applications and size
of the target machine) we have designed a simulator able to test
larger settings than those presented in Section 6.1.

The simulator tool is integrated in the execution framework,
which means that it is connected with the application scheduler as
well as CLARISSE. Using the workload provided by the scheduler,
the simulator is able to compute the di�erent CPU and I/O phases
of each application by means of a �xed-increment time progression.
In case of simultaneous I/O accesses, the CLARISSE’s scheduling
policies are used to determine the I/O access order. By means of this
scheme, it is possible to simulate a given workload in the execution

framework reusing the same software logic as the one used in the
actual workload execution.

In order to validate the simulator, we have rerun the experiments
presented in Figure 7. We have compared the results on both cases
(simulator vs. real machine: Tucan). We have observed that for all
heuristics the order between applications, for the stretch and the
makespan, is kept. Moreover quantitatively the values are extremely
similar: the largest di�erence between the simulation and the real
execution, for 64 batches is 15%, with a geometric mean less than
5%. Due to lack of space, we do not present all the comparisons,
but we give the case for the Longest I/O policy in Figure 9 as it is a
heuristic that displays high discrepancy in terms of Stretch.

6.2.2 Synthetic workload generation. To perform the evaluation
at a large scale, we propose a protocol to generate di�erent and
numerous workloads. We based the design on our protocol on two
elements:

• The generated workload needed to be representative of I/O
behaviors (hence including applications with high I/O load
as well as applications with low I/O load).
• Then, we intuited that the impact of the di�erent algorithm
was correlated to a general property of the concurrent ap-
plications, namely the average I/O occupation. As seen in
Section 5.2 (LPack), this property is linked to the schedule as
it takes into account the makespan. For the workload gener-
ation, we use a theoretical upper-bound for the average I/O
occupation that assumes that there is no gap creating by the
schedule. Mathematically, this writes as:

� =
P .
Pn
i=1
P
jni �i, j/bPn

i=1 (Qi ·Ti (b))
(6)

Based on these two preliminary elements, for each value �gen 2
{0.5, 0.75, 1 . . . 10}, we generate 10 workloads in the following way:

• We pick the proportion � of applications with low I/O load
at random on [0, 1] (0 meaning all applications have high
I/O load, 1 meaning they all have low I/O load).
• We generate the number of applications of each workload
uniformly at random in [25, 100].

Then for each application, for simplicity we assume that they are
periodic (i.e. for all j  ni , �i, j = �i andwi, j = wi ), and:

• Their number of iterations ni is chosen uniformly at random
between 250 and 1000.
• wi is chosen uniformly at random in [10, 100].
• Applications I/O load (�i/wi , and ultimately �i ) is chosen:
(1) Following a normal distribution ofmean µ1 = 0.1, variance

�1 = 0.1 truncated on the interval [x ,�] for applications
of low I/O load;

(2) Following a normal distribution ofmean µ2 = 0.9, variance
�2 = 0.1 truncated on the interval [x ,�] for applications
of high I/O load.

• Finally, to compute the number of processors Qi of each ap-
plication, we use a distribution in the discrete set {2j }j=0...11
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of mean3

Q̄ =
P (�µ1 + (1 � � )µ2)

�gen (1 + �µ1 + (1 � � )µ2)
.

This protocol ensures that we have a various set of workloads,
covering di�erent I/O load (� ). Note that in the rest of the evalu-
ation, for each workload, we use their actual I/O load as de�ned
by Equation (6), and not the value of �gen used for the generation.
The precise code for the generation and execution of the work-
load is available at https://gitlab.arcos.inf.uc3m.es:8380/desingh/
IOscheduling.git.

6.2.3 Evaluation with a single I/O node. In this section we study
the overall problem H���IO and its solutions consisting in (i) the
3Q̄ is obtained by replacing in Equation (6) all values by their average value, which is
not mathematically correct but that we use as a �rst approximation to generate the
workload.
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Make-Pack procedure (Sec. 5.2) including its sensitivity parameter
S ; (ii) once the packs are done, the di�erent I/O policies.

The experiments are done with comparison to a baseline algo-
rithm: First-Fit [6] for pack creation and FIFO for I/O policy (shown
to be the most e�ective policy in Section 6.1). These two strategies
are globally referred to as First-Fit in the following. As the baseline
algorithm, the pack creation does not take into account the I/O
operations of jobs but only their execution time when performed
by themselves on the machine. One can observe that essentially
this is the Make-Pack procedure when the sensibility S = 1.

In this Section, we study two di�erent pack creation algorithms:

• Make-Pack when the sensibility is set to S = 1 (referred to as
Sensibility=1 in the following): intuitively, this strategy tries
to minimize the likelihood that there are delays due to I/O.
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• Make-Pack when the sensibility is set to S = � (referred to
as Sensibility=I/O load in the following). This is intended as
a middle-case behavior that one would obtain if S varied.

Finally, we emulate the execution of the packs using the simu-
lator described in Section 6.2.1 using a de�ned scheduling policy.
As default scheduling policy, we use FIFO for both pack creation
algorithms. In addition, we have also performed experiments with
I/O Sensibility=1 and with the "Longest remaining" policy which
was proven to be very e�ective in Section 6.1.
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Figure 10: Comparison of makespan for di�erent strategies
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Figure 11: Comparison of stretch for di�erent strategies

Overall performance. To study the performance, we study both
makespan (Figure 10) and the stretch4 (Figure 11) of the di�erent
solutions. The results are presented normalized to the respective
performance of First-Fit, and we study them as a function of the
I/O load � (Equation (6)).

In the standard con�guration, with a FIFO scheduling policy
and a Pack partitioning sensibility equal to 1, Figure 10 shows
an average 10% overhead of our algorithm in terms of makespan
4In this section, we use the average of the maximum stretch of each pack.

while Fig: 11 show signi�cant stretch improvement. The signi�cant
stretch improvement could be expected: with the sensibility set to
1 we reduce contention a lot, and intuitively our stretch stays close
to 1. On the contrary, First-Fit has an average I/O occupation factor
that increases potentially with � , hence increasing the contention
and the stretch. Changing I/O scheduling policy does not seem to
have an impact on these measures. Hence in the next evaluations
we only consider FIFO policy.
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Figure 12: Normalized number of packs produced by the
Pack Partitioning algorithm (relative to the First-Fit algo-
rithm) for di�erent sensibility

It was to be expected as bandwidth-aware heuristics produce
more packs. Indeed, since we add more constraints on the packs
(an I/O constraint, Eq (4)), when this constraint is saturated and
if it occurs before the processor constraint (Eq (5)), new packs
are created. Fig. 12 shows how many more packs are produced
by our algorithm compared to the First-Fit case when varying
the I/O load. We see that, for a sensibility of one, the number of
packs is increasing with the I/O load. This is due to the fact that
when the I/O load is large the Pack Partitioning algorithm creates
more pack to avoid I/O contention. When the sensibility is � , the
ratio is much smaller and roughly constant because the sensibility
determines how contention is avoided. Producing more packs has
the advantage, however, of decreasing contention, which explains
the improvement in stretch. The downside is increasing the number
of packs and unused processors within packs.

As the stretch improvement is noticeable, we may consider that
a sensibility of 1 for Pack Partitioning Algorithm is too pessimistic
and leads to an unbalanced trade-o�. Increasing the bandwidth limit
as a function of � provides an alternative compromised, mitigating
the makespan loss while maintaining stretch improvement most of
the time.

In depth performance. For an in-depth performance evaluation,
we focus on the FIFO policies.

We present in Figure 13 the ratio of the execution time as mea-
sured to an ideal one that one could predict with no contention
would occur (essentially if the global I/O bandwidth was unbounded
but keeping the individual I/O bandwidth bounded).
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Figure 13: Processor time and robustness: pack algorithm vs.
First-Fit

The interesting observation is that the execution of Pack Part
(S = 1) is a lot closer to the ideal one (within 20%, while First-Fit can
be as bad as 1000%). This provides more control on the execution.
This is coherent with the results observed by Herbein et al. [15].
The version of Pack Part with S = � is close in behavior to that
of First-Fit as one would expect since the congestion constraint is
relaxed.

This results is even more interesting when we study for each
compute node the average time that they spend: (i) doing useful
execution (either they are doing some compute, or the application
mapped on them is performing I/O), (ii) being delayed (the appli-
cation mapped on them is waiting to perform I/O), or (iii) being
idle (there is no application mapped on them, or the application
mapped on them has �nished working and the pack is waiting for
some �nal applications). We plot these average time in Figure 14,
normalized with respect to the average time of First-Fit, so that,
if the input to all algorithms were identical the Exec time (useful
execution time) would be identical. Here, the di�erence in Exec
time for the three algorithms is an attribute of the randomness in
the generation of workloads.

This �gure is interesting because again, we observe that for a
trade-o� of 10% in makespan there is a transfer of 25% of the time
from delay to idle. In addition, the additional 10% of time wasted
is also moved to idle time. This gives other opportunities (such as
turning-o� nodes for energy consumption, using available nodes
for back�lling operations with applications that do not need I/O
etc), while the idle time due to contention is lost. This is another
strong argument for bandwidth-aware scheduling policies, even
if locally it reduces machine utilization, globally it provides an
opportunity to improve it by a lot more than what is wasted.

6.2.4 Multiple I/O nodes. Previous experiments were done using
only one partition the compute nodes with one I/O node: packs
were executed sequentially. However, in many platforms, several
I/O nodes belonging to di�erent partitions/racks are available (see
Fig. 3). In order to see the impact of this feature, we then studied
the parallel execution of the computed packs.
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Figure 14: Average execution, idle and delay time (normal-
ized) for di�erent strategies

To do so, given the assumption that I/O nodes do not interact
with each other and that they have the same characteristics, we can
simply allocate the packs computed by Algorithm 1. In this section
we only consider the case where the sensibility S = 1, and we use
FIFO as the default I/O policy. The pack allocation is done using
the Largest Processing Time5 (LPT) heuristic, where pack duration
is the contention less execution time of its longest application.
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Figure 15: Comparison of the relativemakespan of Pack Par-
titioningAlgorithm (with sensibility =1) to the First-Fit algo-
rithm with multiples I/O nodes.

Here, we use the FIFO I/O scheduling policy and the standard
con�guration of the Pack Partitioning algorithm (sensibility=1).
Hence, the one I/O node case is the same as the sensibility = 1 case
of Figure 10.

We see that, when we increase the number of I/O nodes the
relative makespan is decreasing. The geometric mean6 of the 1
(resp. 3 and 5) I/O node(s) case is 1.09 (resp. 0.71 and 0.53). This
5We map the longest remaining pack on the I/O node on which it will �nish the earliest
6We use the geometric mean instead of the arithmetic mean as we are dealing with
ratios
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means that in the �ve I/O nodes case our bandwidth-aware solution
is, on average, twice as fast as the First-Fit algorithm!

The interpretation of this result is the following. With our Pack
Partitioning, we have more but smaller packs than for the First-Fit
case (see Fig. 12). Hence, providing a balanced allocation is easier in
this case than for the First-Fit case where packs are less numerous
but longer. Moreover, we are computing the pack allocation based
on the estimated pack duration ignoring the contention. These dura-
tions, as shown in Fig. 13, are more precise in the Pack Partitioning
case than in the First-Fit case. Hence, the load balancing computed
is more accurate with our Pack Partitioning solution: allocation
decisions are more robust and hence lead to better solutions.

Last, the I/O nodes are homogeneous and the stretch is a local
metric of each individual pack. Therefore, the stretch performance
of all algorithms does not depend on the number of I/O nodes and
is exactly the same as the one depicted in Figure 11 for a single I/O
node.

In conclusion, in a realistic setting where there are multiple I/O
nodes, our Pack Partitioning algorithm outperforms the First-Fit
algorithm both for the stretch and the makespan.

7 CONCLUSION
This paper addressed the issue of executing concurrent applications
in a system with bounded I/O bandwidth. We presented a model,
optimization framework as well as simple heuristics for the issue of
allocating the applications depending on the I/O resources available
on the machine. Through rigorous experiments, our �rst observa-
tion was that simple and fair list-scheduling policies seemed to
perform better in the long run when it comes to scheduling I/O
access. In addition, we presented a simple strategy to allocate ap-
plications together based on an approximation of their resource
usage. Our evaluation of this strategy gave interesting results: with
a single I/O node, they improved importantly the stretch of the
machine while degrading slightly the makespan (or throughput).
But a more in-depth study showed that this degradation was a
consequence of a much better control of the waste (mostly by hav-
ing more unoccupied resources instead of resources waiting). We
have also studied the case where compute nodes are decomposed
in several partitions/racks by increasing the number of I/O nodes.
In this case our bandwidth-aware strategy performs better for both
metrics.

In the future, several directions open up, both for the mapping of
applications and the scheduling of I/O. With respect to the mapping,
our natural �rst step will be to remove the pack constraint and see
if we can design an e�cient bandwidth-aware strategy. Another
direction would be at simply enriching this Pack Partitioning policy
with small job back�lling. Then in parallel, moving from exclusive-
access I/O policies to policies where the bandwidth can be shared
is a direction we intend to take. The di�culty here is to make
the middleware ready to evaluate these strategies, maybe through
containers.
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