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Abstract

This paper deals with the complexity of task graph scheduling with transient and fail-stop failures.
While computing the reliability of a given schedule is easy in the absence of task replication, the problem
becomes much more difficult when task replication is used. Our main result is that this problem is #P’-
Complete (hence at least as hard as NP-Complete problems), with both transient and fails-stop processor
failures. We also study the complexity of a restricted class of schedules, where a task cannot be scheduled
before all replicas of all its predecessors have completed their execution.
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1 Introduction

Since the landmark papers of Bannister and Trivedi [1], Shatz et al. [12, 13], and Kartik and Ram Murthy [10],
numerous papers have dealt with reliability issues in task graph scheduling. With processors subject to
faults, the natural idea is to duplicate the execution of some tasks. This will increase the probability that
the execution is successful in presence of one or several failures during the execution. There are two major
failure types, transient and fail-stop. In a nutshell, transient failures invalidate only the execution of the
current task, and the processor subject to that failure will be able to recover and execute the subsequent
tasks assigned to it (if any). On the contrary, fail-stop failures are unrecoverable: once the fault occurs, the
corresponding processor is down until the end of the whole execution.

The problem of computing the reliability of a schedule, (i.e., the probability that its execution is suc-
cessful), has been partially addressed in the literature. Although a recent paper recognizes that computing
the reliability of a schedule is a difficult task and proposes exponential cost algorithms [6], to the best of our
knowledge, the complexity of the problem has never been established. We show that the problem is indeed
#P’-Complete1, hence as least as hard as NP-Complete problems. This important result holds true for both
transient and fail-stop failures, and constitutes the major contribution of the paper.

Another contribution of the paper is to provide a new approach to approximate the reliability of a partic-
ular class of schedules, which we call strict schedules. Strict schedules obey a simple rule, called replication
for reliability in [7]: if there is a dependence edge from task t to task t′ in the task graph, then all replicas
of t must complete their executions before any replica of t′ can start its execution. This rule restricts the
graph of replicas to a serial parallel graph, which greatly simplifies the analysis of the reliability in the case
of transient failures. However, we are not aware of polynomial cost techniques to compute the reliability of
strict schedules in the presence of fail-stop failures.

The paper is organized as follows. We first present the models in Section 2, together with a little example
to help understand the difficulty to compute the reliability of a schedule. The core contribution, namely the
#P’-Completeness of reliability evaluation, is presented in Section 3. Section 4 is devoted to our results for
strict schedules. We discuss related work in Section 5. Finally, we give some conclusions and perspectives
in Section 6.

2 Framework

This section first details the application, platform and failure models. Next we introduce schedules with
replication, and detail formulas to express their reliability. We conclude with an illustrative example showing
the combinatorial nature of reliability computations. Note that Table 1 summarizes all notations used in this
section.

2.1 Application and platform

The application and platform model is quite simple and borrowed from the scheduling literature [4]. The
application is represented by a directed acyclic graph (or DAG) G = (T,E), where T is the set of tasks
to be executed, and E is the set of dependence edges between the tasks. We let n = |T | be the number of
tasks, and we number the tasks ti ∈ T , 1 ≤ i ≤ n, according to some topological order (which means that
if (ti, tj) ∈ E then i < j). For convenience, we assume that there is a source task t1 and a sink task tn.

The target platform consists of a set P of m heterogeneous processors pj , 1 ≤ j ≤ m. The execution
of task ti on processor pj requires wji time-units. It is often assumed that wji = ci × τj , where ci is the
cost of task ti and τj is the cycle-time of processor pj (we then speak of uniform machines). We do not

1The complexity class #P’ is a natural extension of #P, the class of counting problems corresponding to NP decision problems [2].
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enforce this restriction and deal with arbitrary execution costs. But without loss of generality, we assume
that all execution times wji are integers, so that time-steps are natural numbers (we can always scale rational
values).

2.2 Failure models

Processors are subject to failures during the execution of the tasks that are assigned to them. There are two
main categories of failures which may occur during the execution of a task t on a processor p:

Transient A transient failure will cause the execution of t to fail, but processor pwill be available to execute
other tasks (the next tasks assigned to it by the scheduler, if any). In other words, p will be able to
contribute to the rest of the execution after the transient failure.

Fail-stop A fail-stop failure is an unrecoverable failure that causes the processor to die until the end of the
execution of the whole application: all subsequent tasks assigned to it will not be executed.

Each failure category applies to well-identified scenarios. Transient failures correspond to arithmetic/software
errors or recoverable hardware faults (power loss). Fail-stop failures correspond to hardware resource
crashes, or to the recovery of a loaned machine by his/her user during a cycle-stealing episode.

We consider various probability failure distributions. The most general distribution is that processor pj
fails at time t, (i.e., during time-interval [t, t+ 1[) with probability dj(t), where 0 ≤ dj(t) ≤ 1 are arbitrary
numbers. Note that we do not always enforce the condition

∑+∞
t=0 dj(t) = 1, although it often holds for

fail-stop failures, because it is assumed that every processor will fail eventually. For transient failures, it is
often assumed that the failure probability is related to, or even proportional to, the duration of the task to be
executed.

For instance, a widely used distribution for failed-stop failures is the Poisson process. The probability
that pj fails in the interval [0, u[ is

∑u−1
t=0 dj(t) = 1 − exp−λj×u. Here, λj is the (constant) failure rate of

pj , and we do have
∑+∞

t=0 dj(t) = 1. On the contrary, for transient failures, when executing a task ti on
pj , it is natural to let the failure probability depend on the task duration wji . If we further assume that the
failure probability does not depend upon the start-up time Sji of the task, but only upon its duration, we can

have a Poisson process again, with
∑Cj

i−1

t=Sj
i

dj(t) = 1 − exp−λjw
j
i . Most of our results apply for general

distributions, where the failure probabilities are arbitrary rational numbers.
Without loss of generality, we assume failures to happen only during task computations, and not during

processor idle times. This assumption has an impact only with fail-stop failures, and the probability of
failure during an idle time can always be added to the failure probability of the next scheduled task without
modifying the reliability of the schedules.

Finally, processor failures, either transient or fail-stop, are always supposed to be independent, regardless
of the distribution laws that they follow.

2.3 Schedules with task replication

The objective is to execute the application onto the platform defined above. The schedule assigns tasks to
processors. Without replication, each task is assigned to a single processor, with the schedule defining the
start-up and completion times of each task onto its assigned processor. However, to remedy the effect of
failures, the scheduler may replicate the execution of the tasks onto different processors: if one task fails on
a given processor, it is hoped that it will execute successfully on another processor, thereby enabling the rest
of the application to proceed despite the failure.

A schedule is thus defined as a one-to-many function which maps each task onto a subset of processors,
each of them executing one replica of the task. For each replica, we record a triple of values: the processor
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Notation Definition
T = {ti : i ∈ [1..n]} set of tasks

n number of tasks
G = (T,E) directed acyclic graph with tasks and precedence constraints

Pred(ti) set of direct predecessors of task ti
P = {pj : j ∈ [1..m]} set of processors

m number of processors
π : T −→ 2P×N×[0..1] schedule defining the processors, start-up times and failure probabilities of each task

tji replica of task ti assigned to processor pj
Sji start-up time of tji (undefined if not scheduled)
wji execution time of tji
Cji completion time of tji (0 if not scheduled)

Cmax(π) = maxj C
j
n makespan of schedule π

rel(π) reliability of schedule π

Table 1: List of notations.

t1

t1

t2

t2

p1

p2

p3

p4

Figure 1: Possible execution with a general schedule.

number, the start-up time and the failure probability. Formally, π : T −→ 2P×N×[0..1] maps every task on a
set of such triples.

Let tji be the replica of task ti on processor pj (if it exists). The completion time of tji is Cji = Sji +wji .
By convention, if ti is not assigned to pj , we let Cji = 0 (and leave Sji undefined). Also, it is not authorized
to schedule twice the same task onto a given processor.

The schedule must enforce dependence constraints. Without replication, there is no choice: if there is a
dependence from task ti to task ti′ , i.e., if (ti, ti′) ∈ E, then the schedule must enforce that ti′ cannot start
before ti completes: Ci ≤ Si′ . When several copies of the same task are executed, there are two possible
rules:

Strict schedule A task cannot start before all copies of each predecessor have completed.

General schedule A task can start as soon as one replica of each predecessor has completed.

Obviously, strict schedules are a particular case of general schedules. Although they are less general, they
are simpler to analyze, at least for transient failures (see Section 4.1).

It is important to point out that the above definitions apply to a failure-free execution. The start-up and
completion times of all tasks are deterministic and known in advance from the schedule definition, before
the execution starts. Failures may happen randomly during the execution. See the example in Figure 1: with
a general schedule, t22, the replica of t2 on p2, can start as soon as t11, the replica of t1 on p1, has completed:
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there is no need to wait for the completion of the other replica t31 of t1 on p3. However, if t11 fails during
execution, then t22 becomes useless.

Now for each dependence edge (ti, ti′) ∈ E and for each processor pair (pj , pj′) ∈ P 2, there are two
cases:

• the completion time Cji of the replica tji of ti is not larger than the start-up time Sj
′

i′ of the replica tj
′

i′

of ti′ . In that case, we say that the replica pair (tji , t
j′

i′ ) is valid.

• the completion time Cji of the replica tji of ti is larger than the start-up time Sj
′

i′ of the replica tj
′

i′ of
ti′ . In that case, we say that the replica pair (tji , t

j′

i′ ) is not valid.

For a strict schedule, all replica pairs must be valid for every precedence edge in the task graph. For a
general schedule, this constraint is not enforced. However, at least one replica pair must be valid for every
precedence edge in the graph: if it is not the case, the schedule will never be able to complete its execution,
even without any failure. Intuitively, we expect strict schedules to be more reliable than general schedules:

• for a strict schedule, a task will be able to start execution if and only if at least one replica of each of
its predecessors has successfully executed.

• for a general schedule, the range of admissible predecessor copies is restricted to those whose com-
pletion time is not later than the task start-up time.

However, the total execution time, or makespan, is likely to be smaller for general schedules than for strict
schedules, because there are fewer dependence pairs that are accounted for, hence fewer predecessor copies
to wait for. Recall that the makespan Cmax(π) of a schedule π is formally defined as the completion time of
the last replica of the sink task tn, (i.e., Cmax(π) = maxj C

j
n.

2.4 Reliability

The reliability rel(π) of a schedule π is defined as the probability that the schedule is successful, i.e., suc-
ceeds to complete its execution. A strict schedule is easily checked to be successful if and only if at least
one replica of each task completes its execution. Determining whether a general schedule is successful is
more complicated: we traverse the DAG to check whether the execution of each replica is successful or not.
More precisely, a replica tj

′

i′ of a task ti′ is successful if and only if
- pj′ does not fail during the execution of tj

′

i′ , and
- for each predecessor ti ∈ Pred(ti′) (if any), there exists at least one valid replica pair (tji , t

j′

i′ ) such that tji
is successful. Finally, a general schedule is successful if at least one replica of the sink task tn is successful
(because it induces that each task has been successfully computed at least once). Formally, we have the
following definition:

Definition 1 (Reliability). Let π be a schedule:

• Eij denotes the event that processor pj does not fail during the execution of tji . With transient failures,
this simply means that pj does not fail between the start-up and completion times of tji , while with
fail-stop failures this means that pj does not fail from the beginning of the schedule until the end of
execution of tji . Note that this event is necessary but not sufficient for replica tji to be successful: a
valid replica of each predecessor of ti must have been successfully executed too. Let Pr[Eij ] = 0 if
task ti is not assigned to processor pj .

• Fij denotes the event that replica tji of task ti is successful. Let Pr[Fij ] = 0 if task ti is not assigned
to processor pj

5



• The reliability rel(π) of a strict schedule π is defined as

rel(π) = Pr

⋂
i

⋃
j

Eij

 (1)

• The reliability rel(π) of a general schedule π is defined recursively as follows:

Fij = Eij if Pred(i) = ∅ (2)

Fij =

 ⋂
i′∈Pred(i)

⋃
j′,Cj′

i′ ≤S
j
i

Fi′j′

 ∩ Eij (3)

rel(π) = Pr

⋃
j

Fnj

 (4)

Note that Equation 2 only applies to i = 1, as t1 is a unique source task. Note also that in Equation 3
the set of predecessor copies has been restrained to valid replica pairs (i.e., to any predecessor copy tj

′

i′ such
that Cj

′

i′ ≤ Sji ). This illustrates the difference with strict schedules, for which the Fij , whose values are

Eij =
(⋂

i′∈Pred(i)
⋃
j′ Ei′j′

)
∩ Eij , are not needed to compute the reliability.

Finally, we point out that edge failures and communication costs can easily be taken into account when
evaluating the reliability of a schedule: replace each dependence edge tji −→ tj

′

i′ by two edges tji −→
commjj′

ii′ −→ tj
′

i′ , where commjj′

ii′ is a new task whose execution time is the communication cost between
two replicas and whose failure probability (either transient or fail-stop) can be freely chosen. In the case of
fail-stop failures, each task commjj′

ii′ must be scheduled on a processor of its own. This failure probability
is likely to depend upon the communication cost and/or the link failure rate. If j = j′ we model failures
during memory transfer, while if j 6= j′ we represent failures across interconnection links.

2.5 Example

In this section, we deal with a toy example showing the difficulty of computing the reliability with fail-stop
failures, even with independent tasks. Note that all schedules are both strict and general in the case of in-
dependent tasks, since there are no dependence constraints. Figure 2 illustrates a schedule with two tasks
and four processors, which all execute both tasks (but in different orders). Each task is thus replicated four
times. For each processor pj , let:
- P1j denote the probability that it fails during the execution of its first replica,
- P2j denote the probability that its fails during the execution of its second replica, and
- P3j denote the probability that pj does not fail before the completion of both replicas. The direct ap-
proach to evaluate the schedule reliability consists in forming all the products Pa1Pb2Pc3Pd4 with a, b, c, d ∈
{1, 2, 3}4. Each product is the probability that a specific execution scenario occurs, and all these scenar-
ios are distinct. Therefore, we can add the terms corresponding to successful scenarios for computing the
reliability of the schedule. For instance, P11P22P23P14 is the probability that p1 and p2 fail while comput-
ing their replicas of t1 and p3 and p4 fail while computing their replicas of t2. This scenario is actually
successful as t2 is computed by p2 and t1 by p3.
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The table in Figure 2 shows the formulas obtained with this approach. Each formula defines the relia-
bility when only the subset of processors defined in the first column is used. We remark that the number of
terms grows exponentially with the number of processors.

t1p1

p2

p3

p4

t2

t2 t1

t1 t2

t2 t1

time

Reliability (rel(π))
p1 P31

p1, p2 P11P32 + P21(P22 + P32) + P31

p1, p2, p3
P11(P12P33 + P22(P23 + P33) + P32) +

P21(P12P33 + P22 + P32) + P31

p1, p2, p3, p4

P11(P12(P13P34 + P23(P24 + P34) +
P33) + P22(P13P34 + P23 + P33) +
P32) + P21(P12((P13 + P23)(P24 +
P34) + P33) + P22 + P32) + P31

Figure 2: Schedule with 2 independent tasks on 4 processors.

3 Complexity of general schedules

In this section, we show that computing the reliability of a general schedule is a #P’-Complete problem. This
holds both for transient and failure-stop failures, and for arbitrary rational failure probabilities (we cannot
deal with real numbers when assessing problem complexity).

Informally, Valiant [14] introduced the notions of #P and #P-Completeness to express the hardness of
problems that “count the number of solutions”. Because counting a number of solutions to a problem is
at least as hard as determining if there is at least a solution, #P problems are at least as difficult as their
corresponding NP problems. Just as for NP-Completeness, a proof of #P-Completeness consists of two
parts: proof of membership in #P, and reduction from a known #P-Hard problem. There is a technical
complication with schedule reliability problems, just as with network reliability problems [11, 2]: we are
dealing with probability values, which are rational numbers in [0, 1], instead of dealing with integers as
in [14]. Thus, we follow [2] and establish the #P’-Completeness of the problem. The #P’ class is a natural
extension of the class #P to deal with rational numbers: it allows us to apply a polynomial function on the
#P integer output, producing in our case a rational value. We refer the reader to [2] for further details on the
#P’ complexity class. We are ready to state the main result:

Theorem 1. Computing the reliability of a general schedule is #P’-Complete.

The proof of Theorem 1 follows from Propositions 1 and 2 below. First, we precisely define the evalu-
ation problem in Definition 2. Proposition 1 states the membership of the problem in the class #P’. Propo-
sition 2 establishes the completeness; its proof shows that Theorem 1 holds for both transient and fail-stop
failures.

Definition 2. SCHEDULE-RELIABILITY is the problem of computing the reliability rel(π) of a general
schedule π as defined by Equations 2 to 4, for arbitrary rational values of Pr[Eij ].

Proposition 1. SCHEDULE-RELIABILITY is in #P’.

Proof. In order to prove that the problem belongs to #P’, we need to characterize the NP decision problem
and the transformation for generating the output probability, which is a rational number.
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The success probabilities of each processor pj while computing each task ti are all assumed to be
encoded as nij

dij
. A vector xi = (xij)1≤j≤m specifies the success of each processor pj when computing task

ti. If 1 ≤ xij ≤ nij , then pj does not fail while computing ti. If nij < xij ≤ dij , then pj fails while
computing ti. Otherwise, ti is not assigned to pj and xij = 0 (dij = 1 and nij is left undefined in this case).

The NP decision problem is the following: given a schedule, does there exist a vector xi such that
the schedule terminates successfully? This problem belongs to NP because vector x = (xi)1≤i≤n of size
O(nm) constitutes the certificate. We check whether a vector x encodes a successful schedule execution
by building a schedule containing only tasks without failures. If such a schedule is valid, namely, if all
precedence constraints are respected and if all tasks are correctly computed (see Section 2.4 for more details
on this schedule verification procedure), then x encodes a successful schedule execution.

The corresponding #P problem consists in computing how many distinct vectors x give successful sched-
ules. In other words, there are

∏n
i=1

∏m
j=1 dij distinct vectors and each of them defines a possible scenario

for the schedule execution. Because all scenarios are equiprobable, we obtain the reliability of a schedule
by dividing the number of successful scenarios by the total number of scenarios.

In the proof of Proposition 1, the NP problem from which is derived the #P’ problem has polynomial
complexity: a solution exists if and only if the schedule execution is successful when no replica fails, i.e.,
when letting xij = 1 for 1 ≤ j ≤ m and for each task ti assigned to pj . Yet, as shown below, the reliability
problem is #P’-Complete, which is a rare occurrence in the literature. Indeed, the first counting problem
corresponding to an easy P problem is the perfect matching counting problem studied in [14].

To prove #P’-Completeness, we use a reduction from CONNECTED.

Definition 3 (CONNECTED). Given a DAG G = (A,B) with edges subject to failures with rational inde-
pendent probabilities, compute the probability that the source and the sink nodes are joined by a path of
non-failing edges.

Computing the probability that two arbitrary nodes from A, s and t, are joined is #P’-Complete [11,
Problem 10 and Section 3]. We reduce this problem to CONNECTED by inserting two vertexes: in the DAG.
The first is connected to all the vertexes in A such that it is the source. Each inserted edge never succeeds
except the edge from the source to s, which always succeeds. Analogously, the second inserted vertex is the
sink and only the edge from t to the sink succeeds. Moreover, rather than considering the same probability
of failure for each edge, we allow arbitrary probabilities. Hence, the probability that s and t are joined is the
output of the obtained CONNECTED instance. We prove therefore that CONNECTED is #P’-Complete.

In order to ease the reduction, we slightly transform this problem and provide some formal notations.
Without loss of generality, assume that there is a source node and a sink node in the DAG. First, we move
from an edge-failing problem to a vertex-failing problem. These vertices will correspond to scheduled tasks
in the reduction. Each edge (i, j) from vertex i to vertex j is replaced by a new vertex k, and by two edges,
(i, k) from i to k, and (k, j) from k to j. The failure probability of (i, j) is transferred to the new vertex k.
All original vertices never fail, hence, the probability that the source and the sink are joined is identical to
that in the original DAG.

There are n = |A|+ |B| vertices in the new DAG, which we number according to a topological ordering
(hence, 1 is the source node and n is the sink node). Moreover, any generated graph with this procedure
has a special structure, e.g., any vertex has either one successor or its successors have only one predecessor.
Let Hi be the event that the vertex i is valid (does not fail). As already mentioned, the success probability
of each |A| vertex already present in the original DAG is equal to 1. Let Ii be the event that there is a
path between the source node and node i. Evaluating the reliability in the CONNECTED problem requires to
compute Pr[In], where I1 = H1 and Ii is defined recursively for i > 1 as
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Ii =
⋃

i′∈Pred(i)

Ii′ ∩Hi′ (5)

The relation between this formulation of Ii and the definition of Fij (Equation 3) is obtained using
Morgan’s law X ∪ Y = X ∩ Y . Algorithm 1 describes how to reduce any instance of CONNECTED into
an instance of SCHEDULE-RELIABILITY. A task is created for each vertex of CONNECTED. The execution
time of each task replica on each processor is equal to 1. Each task is scheduled on a processor with success
probability equal to the probability that the corresponding vertex in the CONNECTED instance fails. The
success probability of the CONNECTED instance will be shown to be equal to the failure probability of the
schedule created by Algorithm 1. In fact, the schedule succeeds (no successful path in CONNECTED) if
some subset of tasks succeed on their specific processors (some subset of edges fail in CONNECTED). If the
schedule is globally successful, then no path is successful in the CONNECTED instance.

Algorithm 1: Reduction of a CONNECTED instance into a SCHEDULE-RELIABILITY instance

partition the vertices into levels with a breadth-first search L = (L0, L1, L2, . . .)1

time = 02

forall l ∈ L do3

forall i ∈ l do4

if Pred(i) 6= ∅ then5

π(i) = {(pprop, time, 0)}6

time = time + 17

forall i ∈ l do8

forall i′ ∈ Pred(i) do9

if i′ is not scheduled on psat then10

π(i′) = π(i′) ∪ {(psat, time, 0)}11

time = time + 112

forall i ∈ l do13

π(i) = π(i) ∪ {(pi, time, 1− Pr[Hi])}14

time = time + 115

Simplify_schedule();16

Algorithm 1 starts by grouping vertices into several levels through a breadth-first search.All the vertices
at depth i are put in the i-th level. We remind that the structure of the graph is particular because it results
from a transformation (from an edge-failing problem in a vertex-failing problem). Hence, all successors
of the predecessors of the vertices in a level l are in l. This property is used in Lemma 1. Then, a task is
created for each vertex of CONNECTED and is scheduled three times, except for the sink and source vertices
which have only two replicas. After building the schedule, we proceed to an optional simplification of the
schedule, where replica with zero probability are removed as well as replica where at least one predecessor
is not schedule before this task (see Fig. 3b for an example of such simplification).

The propagate processor, pprop, and the satisfy processor, psat, play a special role and execute all tasks
except the source and sink. These processors never fail. Each task is also scheduled on a specific processor
whose index is the same as the task index (i.e task ti is mapped on processor pi).

Intuitively, the role of processor pprop, is to “propagate” the success of one task to its successors. This
notion of “propagation” is best understood in the CONNECTED instance: one edge might be successful, yet
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unreachable, in which case the failure of its ancestors must be “propagated” to it. Keeping track of failures
(successes in the schedule) is mandatory for the reduction to be effective. Initially in Algorithm 1, the prece-
dence constraints for the replicas on pprop cannot be satisfied by the replicas scheduled on the processors
pprop or psat. But anytime a task t succeeds on its specific processor, the precedence constraints between t
and its successors scheduled on pprop are satisfied. If all the precedence constraint of these successors are
satisfied, then they are successfully executed on pprop. The success of a task is therefore “propagated” to
its successors, which may succeed even if their replicas scheduled on their specific processors fail. Here,
the key idea lies in the fact that each task scheduled on its specific processor finishes before that any of its
successors scheduled on pprop starts.

Moreover, with processor psat, the precedence constraints of each task scheduled on its specific processor
are satisfied. Indeed, we want tasks scheduled on their specific processors to succeed independently of their
precedence constraints. Therefore, all the ancestors of a task ti must succeed before time Sii . Processor
psat plays this role by successfully computing each task in a topological order. Remark that two distinct
fully reliable processors are used because the model forbids to schedule the same task twice on the same
processor.

Figure 3 depicts a schedule obtained with Algorithm 1. The initial DAG of the CONNECTED instance,
and its transformation from an edge-failing problem into a vertex-failing problem, are shown in Figure 3(a).
The generated schedule is represented in Figure 3(b). In this example, the breadth-first search generates five
levels: {va}, {v1, v2}, {vb, vc}, {v3, v4} and {vd}. All the successors of the predecessors of one level are in
the same level. For the level L3, the three steps of the main loop consist in:
- scheduling the tasks of the level, v3 and v4, on pprop;
- scheduling the predecessors of these tasks, vb and vc, on psat;
- scheduling the tasks in L3 to their specific processors, p3 and p4.
If v1 is successful on p1, then v3 is successful on pprop, which shows the “propagation” of task successes
(corresponding to edge failures in the CONNECTED instance). Otherwise, v3 can still be successfully com-
puted on p3. In the CONNECTED instance, it is equivalent to state that there is no path from the source to vd
if there is no path neither to v3 nor to v4. Finally, we observe that original vertices va, vb, vc and vd are not
represented in the SCHEDULE-RELIABILITY instance on their specific processor as their success probability
is equal to 0.

The proof of completeness relies on the following two lemmas. Lemma 1 proposes a simplification of
Equation 3, while Lemma 2 introduces the correspondence between the failure events of the CONNECTED

and SCHEDULE-RELIABILITY instances. Informally, Lemma 1 shows that the success of a task on pprop
depends on the successes of all its predecessors, either because they succeed on their specific processor or
because their replica on pprop is successful. This means that the success of a task (the failure of a path) is
“propagated” to its successors. Lemma 2 shows that any task scheduled on its specific processor has all its
precedence constraints satisfied due to the replicas scheduled on psat. The notation concerning the events
that will be manipulated is summarized in Table 2.

Symbol Definition
Eij event that processor pj does not fail before the end time of replica tji
Fij event that replica tji is successfully processed
Hi event that the node i is valid (for CONNECTED)
Ii event that a path exists between the source and node i (for CONNECTED)

Table 2: List of notations for Lemmas 1 and 2.

Lemma 1. Consider a schedule resulting from the reduction from a CONNECTED instance using Algo-
rithm 1. Then, the success of any task ti ∈ T on processor pprop is given by
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(a) An instance of CONNECTED and its transformation.

L0 L1 L2 L3 L4

pprop v1 v2 vb vc v3 v4 vd
psat va v1 v2 vb vc v3 v4
pa va
p1 v1
p2 v2
pb vb
pc vc
p3 v3
p4 v4
pd vd

-

time

L1 L2 L3 L4

pprop vb vc v3 v4 vd
psat va v1 v2 vb vc
p1 v1
p2 v2
p3 v3
p4 v4

-

time

(b) Schedule built by Algorithm 1 for the instance (left) and after simplification (right).

Figure 3: Example of the reduction defined by Algorithm 1. There are 4 nodes in the original CONNECTED

instance, and n = 8 tasks in the schedule.

Fiprop =
⋂

i′∈Pred(i)

Fi′prop ∪ Fi′i′

Proof. Using Equation 3, we obtain

Fiprop =

 ⋂
i′∈Pred(i)

⋃
j′,Cj′

i′ ≤S
prop
i

Fi′j′

 ∩ Eiprop.

By construction, tasks never fail on pprop or psat processors. Thus, Eiprop occurs almost surely (with
probability 1) and this term can be discarded. We further simplify by expanding the internal union. Each
predecessor ti′ of a task ti is scheduled three times: on processor pprop, except for the source; on proces-
sor psat, except for the sink; and on its specific processor. We now characterize which replicas tji′ of the
predecessor ti′ are completed before ti starts on pprop, i.e., Cji′ ≤ S

prop
i .

Any task t ∈ T (except the source) in the k-th level is scheduled on pprop and on its specific processors
at the k-th iteration. Thus, when any successor of t in the k′-th level with k′ > k is scheduled on pprop at
the k′-th iteration, t has already been finished on pprop and on its specific processor. Formally, if ti′ is a
predecessor of ti, then Cprop

i′ ≤ Sprop
i and Ci

′
i′ ≤ S

prop
i .

We now show by contradiction that each predecessor of any task t finishes its execution on psat after that
t starts on pprop, i.e., Csat

i′ > S
prop
i . This allows the expansion of the internal union without considering the

success of predecessors scheduled on psat.
In Algorithm 1, consider a task t ∈ T whose depth is k. If t is not the source, t is scheduled on pprop (on

Line 5) at the k-th iteration because the breadth-first search puts t in the k-th level. Moreover, t is scheduled
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on psat (on Line 10) after the k-th iteration because all the successors of t are in the following levels. Now,
suppose that t finishes on psat before that one of its successors t′ in the k′-th level, with k′ > k, start on pprop.
Then, t is scheduled on psat before that t′ is scheduled on pprop because task costs and time increments are all
unitary. At the k′-th iteration, t′ is scheduled on pprop before any task is scheduled on psat. Therefore, t must
have another successor whose depth is lower than k′, otherwise t would not be scheduled on psat before the
k′-th iteration. It implies that k′ > k + 1, i.e., there is one level that contains this other successor between
the k-th and the k′-th levels. Thus, t′ has a predecessor in the k′ − 1-th level because the depth of t′ is k′.
This predecessor cannot be t because t is in the k-th level and k < k′ − 1. We see that t has two successors,
among which t′, which has also two predecessors. There are two cases: either t corresponds to a vertex in
the original DAG of the CONNECTED instance, or it corresponds to an edge transformed into a vertex. In
the first case, it means that t′ corresponds to an edge. However, the vertices resulting from the edges have
only one predecessor, which contradicts the fact that t′ has at least two ones. In the second case, t comes
from an edge. But then it should have a single successor, instead of two ones. Therefore, there is no task
that finishes on psat before that one of its successor starts on pprop.

Lemma 2. Consider a schedule resulting from the reduction of a CONNECTED instance using Algorithm 1.
For any task ti ∈ T , assume that its specific processor succeeds during its execution (Eii) whenever its
corresponding vertex in the CONNECTED instance fails (Hi), and reciprocally. Then, each task ti succeeds
on its specific processor if and only if its corresponding vertex in the CONNECTED instance fails, i.e.,
Fii = Hi.

Proof. We first prove that all the ancestors of task ti are scheduled on processor psat in a topological order.
More precisely, we show by induction on the levels, that each task of the first k levels starts on its specific
processor after that all its ancestors have been scheduled in a topological order on psat. The basis for the
induction is easily verified for k = 1. Indeed, the source task does not have any ancestor, therefore it is true.
Now, assume the induction hypothesis to be true for a given k. Let t be a task in the (k + 1)-th level. At the
(k+ 1)-th iteration, t is scheduled on its specific processor (on Line 13) after its predecessors are scheduled
on psat (on Line 10). These predecessors belong to the first k levels. Thus, their ancestors are scheduled
in a topological order on psat during the first k iterations (by induction hypothesis). As task costs and time
increments are unitary, tasks scheduled at the (k + 1)-th iteration start after that all earlier scheduled tasks
have finished. Therefore, the ancestors of the predecessors of t are scheduled in a topological order on psat
and the predecessors of t are scheduled afterwards in an arbitrary order on psat. As the predecessors of t
belongs to the same level, they have the same depth and do not require to be scheduled in any specific order
for their precedence constraints to be satisfied. Hence, t starts on its specific processor after all its ancestors
have finished on psat.

As a consequence, all the ancestors of task ti are scheduled on psat and finish before that ti starts on its
specific processor, pi. Additionally, the ancestors of ti succeed with probability 1 because tasks scheduled
on psat never fail (Line 10). Thus, when ti starts its execution on pi, all its precedence constraints are almost
surely satisfied. Moreover, there is no other task scheduled on pi. Therefore, the success of ti depends only
on its execution, i.e., Fii = Eii = Hi.

Proposition 2. SCHEDULE-RELIABILITY is #P’-Complete.

Proof. The goal is to show that the success probability of an arbitrary CONNECTED instance is equal to the
failure probability of the SCHEDULE-RELIABILITY instance obtained with the reduction of Algorithm 1.
More precisely, we want to prove that In =

⋃
j Fnj = Fnprop (recall that task n fails almost surely on its

specific processor, and that it is not scheduled on processor psat). Using Lemma 1, we have directly

Fiprop =
⋂

i′∈Pred(i)

Fi′prop ∪ Fi′i′
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The assumption of Lemma 2 holds by construction: all events Hi are independent, all events Eij are
indeed independent, and the probabilities are identical, i.e., Pr[Eii] = 1 − Pr[Hi] for all i. When applying
Lemma 2, the relation between Equations 3 and 5 becomes clearer: indeed, we obtain

Fiprop =
⋃

i′∈Pred(i)

Fi′prop ∩Hi′

We proceed by induction and show that for each task ti, the success of vertex i is equivalent to the
failure of ti on processor pprop, i.e. ∀i, Ii = Fiprop. For i = 1, the source node is not scheduled on processor
pprop because it does not have any predecessor. Hence, Fiprop never occurs. On the other hand, the source
vertex is present in the original CONNECTED instance and always succeeds, implying that Ii always occurs.
Therefore, the basis of the induction is verified.

Without loss of generality, assume that tasks are sorted in a topological order. For a task ti, we suppose
that Ii′ = Fi′prop is true for 1 ≤ i′ ≤ i. Let us show that it is also true for k = i + 1. We have Ik =⋃
k′∈Pred(k) Ik′ ∩Hk′ and Fkprop =

⋃
k′∈Pred(k) Fk′prop∩Hk′ . Since tasks are traversed in a topological order,

k′ < k ≤ i, and by induction hypothesis, Ik′ = Fk′prop. We derive that Ik = Fkprop, as desired.
We have shown that the reduction algorithm is correct. Assessing its space polynomiality is done by

counting the number of processors used, the number of replicas scheduled and the space required to store
the probabilities. The algorithm schedules each of the n = |A| + |B| tasks at most three times on n + 2
processors. Probabilities are computed and stored through a basic arithmetic operation (y ← 1 − x). For
the time complexity, the number of calls to Lines 5 and 13 are linear in n. Finally, using an adequate data
structure, the condition on Line 9 can be checked in constant time, and Line 10 is called a number of times
linear in n. This concludes the whole proof.

Proof. The goal is to show that the success probability of an arbitrary CONNECTED instance is equal to the
failure probability of the SCHEDULE-RELIABILITY instance obtained with the reduction of Algorithm 1.
More precisely, we want to prove that In =

⋃
j Fnj = Fnprop (recall that task tn fails almost surely on its

specific processor, and that it is not scheduled on processor psat).
Without loss of generality, assume that tasks are sorted in a topological order. We proceed by induction

and show that for each task tk, the success of vertex k is equivalent to the failure of tk on processor pprop,
i.e., ∀k, Ik = Fkprop.

For k = 1, the source node is not scheduled on processor pprop because it does not have any predecessor.
Hence, Fkprop never occurs. On the other hand, the source vertex is present in the original CONNECTED

instance and always succeeds, implying that Ik always occurs. Hence, I1 = F1prop.
For an arbitrary 1 < k ≤ n, let us assume that it is true for all 1 ≤ i < k. We have:

Ik =
⋃
k′∈Pred(k) Ik′ ∩Hk′ by Equation 5

=
⋃
k′∈Pred(k) Fk′prop ∩Hk′ by induction hypothesis

=
⋃
k′∈Pred(k) Fk′prop ∩ Fk′k′ by Lemma 2

=
⋂
k′∈Pred(k) Fk′prop ∪ Fk′k′ by Morgan’s Law

= Fkprop by Lemma 1

We have shown that the reduction algorithm is correct. Assessing its space polynomiality is done by
counting the number of processors used, the number of replicas scheduled and the space required to store
the probabilities. The algorithm schedules each of the n = |A| + |B| tasks at most three times on n + 2
processors. Probabilities are computed and stored through a basic arithmetic operation (y ← 1 − x). For
the time complexity, the number of calls to Lines 5 and 13 are linear in n. Finally, using an adequate data
structure, the condition on Line 9 can be checked in constant time, and Line 10 is called a number of times
linear in n. This concludes the whole proof.

13



The proof does not depend upon whether failures are transient or fail-stop, hence Theorem 1 is valid for
any general schedule. Also, failure probabilities can be arbitrary rational numbers. Altogether, the previous
complexity result is relevant to quite a wide classe of DAG scheduling problems with replication.

Finally, the reduction proof shows that evaluating the reliability of any CONNECTED instance exactly
amounts to evaluating the unreliability of the schedule generated by the reduction. We deduce from [11,
Problem 10 and Section 3] that approximating the reliability of a general schedule up to an arbitrary quantity
ε or to an arbitrary ratio α also is a #P’-Complete problem.

4 Complexity of strict schedules

In this section, we recall that computing the reliability of a strict schedule has polynomial complexity with
transient failures. The complexity remains open with fail-stop failures, but we propose an exponential
evaluation scheme whose complexity can be lowered as much as necessary if only an estimation of the
reliability is required.

4.1 Transient failures

Recall from Section 2.4 that Eij denotes the event that processor pj does not fail during the execution of its
replica tji of task ti. Equation 1 states that a strict schedule π is successful if and only at least one replica of

each task is executed without failure: rel(π) = Pr
[⋂

i

⋃
j Eij

]
To evaluate rel(π), we apply Morgan’s law X ∪ Y = X ∩ Y and write rel(π) = Pr

[⋂
i

⋂
j Eij

]
The

eventsEij are independent: they correspond to failures of replicas of the same task on distinct processors. In
addition, because the failures are transient, the existence of a successful replica for each task also constitute
independent events. We derive that

rel(π) = Pr

⋂
i

⋂
j

Eij

 =
∏
i

1−
∏
j

(1− Pr[Eij ])

 (6)

Equation 6 is well known [7]. With Poisson processes, it simplifies further into

rel(π) =
∏
i

1−
∏
j

exp−λjw
j
i

 =
∏
i

(
1− exp−

∑
j λjw

j
i

)
(7)

We retrieve the polynomial complexity of reliability evaluation in the case without replication. For
each task ti, the product

∏
j (1− Pr[Eij ]) in Equation 6 reduces to a single term, that corresponding to the

processor assigned to the task.

4.2 Fail-stop failures

In this section, we focus on fail-stop failures. While the case without replication still has polynomial com-
plexity, the case with replication is open (to the best of our knowledge). We conjecture that evaluating the
reliability of strict schedules has the same complexity as that of general schedules, but we have been unable
to prove it.

Equation 1 cannot be directly expanded for evaluating the reliability of a strict schedule with fail-stop
failures, because events Eij are no longer independent. This is why we propose an alternative formulation
of rel(π) in Equation 8. This latter formulation allows us to obtain a recursive expression for evaluating
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rel(π). Because the complexity of the evaluation scheme is exponential in the number m of processors, we
propose to control this complexity by limiting the scope of the recursive evaluations. The price ot pay is that
we have only an estimation of the reliability instead of the exact value.

Let Gi be the event that all tasks with an index lower than i have at least one correct replica. Then, G0

always occurs and Gi is defined recursively for i ≥ 1 as

Gi =
⋂
j

Eij ∩Gi−1 (8)

Event Gi occurs if and only if at least one processor pj ∈ P does not fail during the execution of its
replica tji , and if each of the first i − 1 tasks has been successfully processed. Because tasks are numbered
according to some topological order, all the precedence constraints of ti are satisfied if Gi−1 occurs.

We now state that the reliability of the schedule is given by rel(π) = Pr[Gn]. In order to obtain useful
derivations, we introduce an event E which is an arbitrary intersection of events Eij :

Pr [Gi | E ] = Pr

⋂
j

Eij ∩Gi−1 | E


= Pr

⋂
j

Eij | Gi−1 ∩ E

× Pr [Gi−1 | E ]

=

1− Pr

⋂
j

Eij | Gi−1 ∩ E

× Pr [Gi−1 | E ]

=

1−
Pr
[⋂

j Eij ∩Gi−1 | E
]

Pr [Gi−1 | E ]

× Pr [Gi−1 | E ]

=

1−
Pr
[
Gi−1 |

⋂
j Eij ∩ E

]
Pr [Gi−1 | E ]

Pr

⋂
j

Eij | E

× Pr [Gi−1 | E ]

=

1−
Pr
[
Gi−1 |

⋂
j Eij ∩ E

]
Pr [Gi−1 | E ]

∏
j

Pr
[
Eij | E

]× Pr [Gi−1 | E ] (9)

The last line is obtained by observing that all the events of the intersection
⋂
j Eij concern distinct

processors and are independent. Let E ′ =
⋂
j Eij ∩ E . Then, the calculation of Pr [Gi | E ] depends on

Pr [Gi−1 | E ], Pr [Gi−1 | E ′] and on some elementary probabilities, i.e., Pr
[
Eij | E

]
. Note that Pr[G0 |

E ] = 1 for all E because G0 always occurs. Therefore, Pr[Gn] can be computed recursively.
Before analyzing the complexity of this evaluation method, a mechanism for simplifying intersections

of events Eij must be introduced. Indeed, any event

E = Eij ∩ Ei′j ∩ . . .

which is the intersection of at least two events E·j concerning the same processor pj , can be reduced to
a more concise definition. Only one event per processor is needed: with fail-stop failures, as soon as a
processor has failed, it remains down until the end of the schedule. Hence, the event E·j which concerns
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the first task scheduled on pj is the only one to be considered for each processor pj ∈ P . Consequently, we
never compute any probability Pr [Gi | E ] where E is an intersection of more than m events.

The complexity of recursive evaluation is O(nm+1). Indeed, there are n events Gi and for each of them,
there are (n+ 1)m distinct intersections E (at most m elements, and each may concern any of the n tasks).
We propose to control the exponent of the complexity cost by making some estimations. We limit the size of
any intersection E to k events. This is done by removing some of the events Eij from E when the size of the
intersection grows too large. Formally, we estimate that any new intersection E ′ is equals to the intersection
of at most k events among

⋂
j Eij ∩E . Several choices are possible. We either select the remaining k events

arbitrarily, or we apply some heuristic procedure. As an example, we may be interested by selecting the
subset of size k that gives the lowest probability for Pr [Gi | E ′]. This heuristic is supported by the bound
Pr
[
Gi | E ∩ Eij

]
≤ Pr [Gi | E ] and would minimize the error done in the estimation locally. The resulting

complexity drops down to O(nk+1) with k ∈ [0..m].
It is worth noting that with k = 0, the estimation is a lower bound of rel(π) and is equivalent to

Equation 6. It would be misleading to conclude that fail-stop failures lead to more reliable schedules than
transient failures, because the definitions of Eij are slightly different for each failure type. Actually, we
know that the reliability of a strict schedule with fail-stop failures is upper bounded by the reliability of its
equivalent schedule with transient failures. For larger values of k, however, we do not have bounds.

This reformulation of the reliability, and the derivations that follow, still end up with an exponential time
estimation scheme. Another approach, still exponential, consists in considering all the possible choices (see
the proof of Proposition 1 for further details on this approach). To the best of our knowledge, we are not
aware of any polynomial procedure for evaluating the reliability of strict schedules with fail-stop failures
(even when restricting the workload to independent tasks or to chain of tasks). We conjecture that this
problem is #P’-Complete just as it is the case for general schedules.

5 Related work

In [14], Valiant proves that computing the number of acceptable solutions for the two terminal problem is
#P-Complete. In [11] Provan and Ball extend the above result for the case of DAGs, and show that evaluating
the probability of success in the two terminal case is #P-Complete (more precisely, #P’-Complete using the
terminology of this paper).

Evaluating the reliability of a system is often performed through Reliability Block Diagrams (RBD) [3].
It is assumed in many papers such as [8] that RBD evaluation has exponential cost. However, to the best of
our knowledge there is no formal complexity result to support this claim. Since it is clear that CONNECTED

can be reduced in polynomial time to RBD evaluation (see Definition 3), we proved in this paper that RBD
evaluation is also #P’-Complete. However, in some cases, RDBs may have a special structure that allows
for an polynomial evaluation (e.g. strict schedules and transient failures).

Scheduling task graphs with the goal of minimizing the makespan and maximizing the reliability, with-
out replication, has been studied in [5, 9]. The case with replication is studied in [8]. However, as the authors
focus on strict schedules with transient failures, they are able to use a polynomial algorithm to evaluate the
reliability.

6 Conclusion

Figure 4 summarizes known results on the complexity of reliability evaluation. The major contribution of
the paper is the #P’-Completeness of the problem for general schedules, for both failure types. While the
strict/fail-stop combination remains open, we have provided bounds, as well as a method to approximate the
reliability while limiting evaluation costs.
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General/transient General/fail-stop

Strict/transient Strict/fail-stop

No replication

Figure 4: Summary of problem complexities (green for polynomial, white for open, and red for #P’-
Complete).

Future work will be devoted to close the complexity gap. We conjecture that the strict/fail-stop combina-
tion is #P’-Complete too, but we have been unable to prove it. An important research direction is to provide
guaranteed approximations for the general case, with either failure type: can we derive a procedure to ap-
proximate the reliability within a prescribed bound while limiting the evaluation cost to some polynomial
function of the application/platform parameters?
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