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Abstract—Many large-scale distributed computing applica-
tions demand real-time responses by soft deadlines. To enable
such real-time task distribution and execution on the volunteer
resources, we previously proposed the design of the real-time
volunteer computing platform called RT-BOINC. The system
gives low O(1) worst-case execution time for task management
operations, such as task scheduling, state transitioning, and
validation. In this work, we present a full implementation RT-
BOINC, adding new features including deadline timer and
parameter-based admission control. We evaluate RT-BOINC
at large scale using two real-time applications, namely, the
games Go and Chess. The results of our case study show
that RT-BOINC provides much better performance than the
original BOINC in terms of average and worst-case response
time, scalability and efficiency.

I. INTRODUCTION

In the latest decade, several large-scale grid computing
platforms have been used for tens or hundreds of thousands
of parallel applications where they have relatively long
enough laxity time [1]. But recent demand for shorter
response time has been one of the most prevalent require-
ments in many-task parallel applications. Some important
applications include on-line vehicle routing, real-time digital
forensics [2], interactive visualization [3] (possibly with
precedence constraints), online audio/video coding [4], and
some online strategy games (such as Go [5] or Chess [6]).

Previously, we aimed at enabling the execution of mas-
sively parallel, real-time applications on large (on the order
of 10,000 nodes) distributed systems, such as volunteer
computing platforms. In that work, we addressed one main
challenge, namely, the server-side management of hundreds
of thousands of tasks for efficient and bounded execution
time. We worked on developing a prototype of the real-
time volunteer computing platform called RT-BOINC [7].
We focused on how to provide low worst-case execution
time for each operation and the server daemon process.

In this work, we present a full implementation of RT-
BOINC, adding essential features including parameter-based
admission control and deadline timers. We evaluate RT-
BOINC using two applications with tight time-constraints,
in particular, the games of Go and Chess. We conduct
large-scale experiments with those two applications and
evaluate RT-BOINC in terms of the average and the worst-
case response time, efficiency and scalability. From the case

studies, we show that RT-BOINC outperforms the original
BOINC in all aspects while meeting scalability and real-time
constraints given by the applications.

The remainder of this paper is organized as follows.
Section 2 describes related work in large-scale grid com-
puting. Section 3 presents the original BOINC, and Section
4 presents the design and internal structures of RT-BOINC in
brief, how to admit requests, how to implement, and some
remaining issues. Section 5 evaluates performance of RT-
BOINC and BOINC with two practical case studies. Section
6 finally presents conclusions of this work.

II. RELATED WORK

Large-scale computing systems using volunteers, such as
XtremWeb and Condor, are tailored for maximizing task
throughput, not minimizing latency on the order of seconds.
This has been one big limitation on utilizing volunteer
computing for a bunch of real-time, interactive parallel
applications. For instance, in [1], Silberstein et al. proposed
GridBot, which provides efficient execution of bags-of-tasks
on heterogeneous collections of computing platforms in-
cluding grid, volunteer, and cluster computing environments
virtualized as a single computing host. While the system uses
a hierarchical task management system, the system cannot
provide the task-level guarantees of execution time.

Scalability and performance can be extended by adapting
hierarchical systems, but they still often do not provide any
guarantee of performance in terms of worst-case execution
time. For instance, in [8], Kacsuk et al. proposed a SZTAKI
desktop grid, which is a hierarchical system developed on
top of BOINC server structures. They modified the original
BOINC server to have multiple levels of workunit distribu-
tion. By doing this, SZTAKI can reduce load on the primary
BOINC server by using the second and third-level BOINC
servers. But, each level of BOINC servers still has the same
characteristics of the original BOINC, which performance is
not guaranteed.

Possible, but an expensive solution is using the dedicated
supercomputers. They can run real-time tasks with guaran-
teed performance, but computing with volunteers could be an
low-cost alternative if it could support real-time guarantees.
In the domain of very complex games, especially Chess
games, Deep Blue [6] was the first machine defeat the human



world champion in 1996. IBM developed a dedicated server
system for Deep Blue, and the server achieved about 11.38
GFLOPS on the LINPACK benchmark. Since 2006, several
researchers in the world have been developed MoGo, which
is a software to find the next move in the game of Go.
They adapted monte-carlo-based algorithms, and now, they
are near the professional Go players in the 9 × 9 small
board (with certain parameter settings) based on the cluster
computing machines [5].

Recently, Wu et al. presented a volunteer computing-based
grid environment for Connect6 application [9], where the
game “Connect6” has very high complexity similar to Chess
and the game of Go. They suggested an on-demand com-
puting by using a “push” model on communication between
the main server and hosts, because a “pull” model-based
systems (such as BOINC) should wait for requests from the
hosts to distribute jobs. However, they did not describe how
to provide low-latency with guaranteed performance. There
was no comprehensive evaluation that showing the effect of
using a “push” model rather using a “pull” model according
to the request rate, the size of jobs, and several other possible
parameters.

Several related works also deal with reliability issues of
volunteer computing resources [10]. These works use predic-
tive mechanisms to indicate nodes’ reliability for scheduling
purposes. As such, they address important but orthogonal
issues compared to this work. Here we focus on real-time
server-side task management, and these mechanisms can
be combined with other mechanisms that ensure reliability
across volatile resources.

III. THE ORIGINAL BOINC

A. Internal Structure of BOINC

Figure 1 shows the internal structures of the original
BOINC server platform and flow of work distribution and
reporting. BOINC server consists of two parts, the main
database storage, and server daemon processes.

Figure 1. Internal structures of BOINC server
Current BOINC projects are now working with tens or

hundreds of thousands of volunteers in the world. To manage

such large amount of volunteers in a server, BOINC works in
a pipelined manner. When the project-manager sends work
to the BOINC server, the work-generator creates several
workunits on the main database. Then, transitioner makes
workunit-results pairs on the database. The pairs are fed
to the scheduler by the feeder, and they are distributed to
multiple BOINC hosts. When each host returns its result, the
scheduler reports it to the validator. When the validation is
completed, the data will be processed and finalized by the
assimilator. Finally, the project-manager gets the aggregated
results from the BOINC server.

B. Characteristics

BOINC is geared towards large-scale and long-term com-
putation. The execution time of each workunit is relatively
long enough, so that the BOINC server performs a relatively
small amount of work distribution and reporting at the
same time. Existing BOINC projects handle about 1 ∼ 50
workunits per second [11], [12].

However, when computing highly-interactive and short-
term tasks with deadlines, the BOINC server must perform
a relatively large number of transactions per period to
guarantee the worst-case performance. In Fig. 1, most of
the daemon processes read/write the main database. This
means that the execution time of each daemon process
depends on the number of records n in the database storing
application, host information, workunit, and result data, for
example. MySQL in particular has O(log n) ∼ O(n2)
time complexity [13]. We previously have found that the
daemon processes have at least linear, and up to polynomial
complexity, thus, this makes it hard to provide relatively
low worst-case execution time compared with the average
execution time for all data-related operations and processes.

C. Challenges to Support Low-Latency, Real-Time Perfor-
mance

If we assume that the number of volunteer hosts is about
10, 000, each move should be calculated within 20 seconds,
each worker program on host-side consumes 5 seconds,
and the communication delay is around 5 seconds, then
the expected number of transactions between hosts and the
server is at least 10, 000/(20− 5− 5) = 1, 000 per second.
This means that the server should finish each transaction
less than 1 ms. If the applications need guaranteed real-time
execution, the worst-case execution time on the server-side
should be less than that amount of time for each transaction.
To provide such a low bounded execution time, the internal
server structures should be designed to limit the performance
gap between the average and the worst-case execution time.

In addition, the server should be able to control admission
of each request to provide the guaranteed execution within
given laxity to deadline. To do this, the admission controller
also needs to know the execution time (or, time consump-
tion) on both server and client-sides including network



communication delay. Thus some practical case studies are
necessary to understand or expect the time consumption on
the volunteer computing networks which is hard to expect
with mathematical analysis.

IV. RT-BOINC INTERNALS

In the recent work, we proposed the real-time volun-
teer computing platform, namely RT-BOINC, for real-time
large-scale computing on top of grids, and volunteered
resources [7]. We presented the internal in-memory data
structures which is mainly for providing O(1) complexity
on retrieving data records including workunit, record, host,
and user entries. In this section, we focus on new features
and some implementation issues on RT-BOINC.

A. Assumptions

We have the two main assumptions in this work. First, we
assumed that the volunteer hosts are highly available with
the small fraction of time, because the RT-BOINC works
with very short-term, interactive applications which works
normally less than 30 seconds. In the recent work [14], we
have found that the availability of each host may hardly
be changed during very small time duration. Some ma-
chines can be in unavailable situations infrequently, then we
can circumvent their deadline-missing problems by using a
deadline clock timer on a server, and the server may not
utilize the unavailable machines in the next round of task
execution. Second, we assumed that the worst-case network
communication delay can be measured as a constant value.
Note that, in theory, the network communication delay varies
over the volunteered resources, and in practice, it is hard to
be bounded with a constant value. We will focus on relieving
the above assumptions in our future work (see Sec IV-G).

B. Overall Structure of RT-BOINC

Figure 2. Internal structures of RT-BOINC

The main goal of RT-BOINC is to provide massively par-
allel computation for highly interactive, short-term real-time
tasks with deadlines. RT-BOINC was designed to provide
guaranteed real-time performance for distributing work and

reporting their results in the BOINC server. To do this, we
modified several components of the original BOINC server
(see Fig. 2), and added new data structures and interfaces for
retrieving them. The major difference between the original
BOINC and RT-BOINC comes from the management of data
records. RT-BOINC does not use the central database, and
uses instead only in-memory data structures shared among
daemon processes. We also modified the internal processing
structures of the server daemon processes to reduce their
complexity.

Figure 3. Comparison of data management of BOINC and RT-BOINC

Figure 3 shows a comparison of data record management
between the original BOINC and RT-BOINC. The original
BOINC uses MySQL as the main DBMS, and this widens
the gap between the average and the worst-case execution
time for reasons discussed in Section III-B. In RT-BOINC,
we replaced the database with in-memory data structures,
which provide O(1) lookup, insertion, and deletion of data
records. The data structures are shared by several daemon
processes via shared memory IPC.

Exclusion of the main database leads to the faster perfor-
mance on the server-side daemon processes. For example,
the scheduler process works every coming sched request
messages from clients. When a request comes, the scheduler
performs matchmaking which is finding the best amount
of workunit for the requested client. At every request,
the scheduler needs to access the main data records (the
database in case of BOINC) and it may happen n-times per
second where n is the number of clients and when each
client requests the server per second. Thus, the performance
improvement of each data retrieving operation can lead to
significant improvement of each server daemon process.

C. Worst-Case Performance vs. Memory Space Overhead

The dedicated in-memory data structures have non-
negligible memory space overhead on the server platform.
For example, if the RT-BOINC server works with the three-
level lookup tables with the same setting described in [7],
and communicates with 10, 000 clients, the in-memory data
structures require 421MB, and the whole memory space
requirement of the server becomes roughly 1.09GB. In that
setting, the previous results showed that the RT-BOINC is



roughly 1, 000 times better than the original BOINC in terms
of the worst-cast execution time for each operation [7].

When we have 100, 000 clients, the whole memory re-
quirement becomes roughly 7 ∼ 8GB, but this is still
reasonable with the current common-off-the-shelf 64-bit ma-
chines. In addition, we can adjust the depth of the O(1) data
structures according to the given parameters of the target
applications. If the target application has relatively bigger
laxity time to deadline, the server manager can reduce the
depth of the multi-level lookup tables to have less memory
space usage with higher bounded execution time.

Note that, the bounded execution time can vary on the
different machines, and different settings on RT-BOINC data
structures. Previously, we have provided detailed experimen-
tal results in [7] which represent the average and the bounded
execution time of each operation and each process with the
given target system environment as a reference.

D. Server Processes for RT-BOINC

As we mentioned, each daemon process in BOINC has
at-least linear time complexity for handling data records
such as workunits and their results. To reduce complexity by
orders of magnitude, we modified the internal structures of
the server processes. We replaced all the BOINC database-
related code with O(1) lookup, insertion, replace, and dele-
tion code. We removed unnecessary loops and redundant
code from the remaining parts of the server processes.

E. Parameter-based Admission Control for Real-time Re-
sponse

RT-BOINC server works with several daemon processes,
and they share processing cores and the data records in main
memory during the run-time. Thus, to guarantee the worst-
case performance, we need to control admissions for every
work distribution request. To do this, we need to use the
measured bounded execution time for each process, and need
to know the flow of work distribution process.

Figure 4. A work distribution process on the RT-BOINC (the game of Go
example)

Figure 4 shows an example, the game of Go applica-
tion’s work distribution process when using RT-BOINC.
Each daemon works with just one CPU core except for
the scheduler. In both the original BOINC and the RT-
BOINC, the scheduler is not actually a daemon process, but
a program instance initiated by clients’ request messages.
Therefore, the server may have multiple scheduler instances
at the same time, and they may consume multiple CPU cores
to handle a lot of requests from clients. In the server, one
simple program code controls admissions of work requests
based on the measured worst-case execution time for each
process and the given parameters from the request itself (e.g.
the parameters include the degree of parallelism, the time
requirement of a work, and the amount of time to deadline).
The following Eq. (1) presents how to calculate the expected
worst-case response time for the given request r and the
number of cores in the server-side platform.

T (r, nc) = wc(r, nc)+
∑
k∈Sd

wk(r)+wtr(r)+
2 · np · wsc(r)

nc
(1)

Here, r denotes a request for task distribution and pro-
cessing over volunteered resources. The request r has several
parameters, such as the work requirement time of a task for
each volunteer host, and the deadline time of the entire task
distribution and processing. The number of host clients to be
used, which is the degree of parallelism for the computation,
is also a parameter given by the request r. The sizes of
the input and the output data are the possible constraints
because they affect the network communication delay. In
this equation, the nc is the number of available cores on a
server. Using the basic parameters we defined the wk(r),
which is the worst-case execution time of a kth server
process with given request, and wc(r, nc) is the worst-case
network communication delay between a server and host
clients with given request and the server-side parameter. The
Sd is the set of all server processes including the daemon
processes, and the master process which works with the
target application. Finally, the T (r, nc) is the expected worst-
case task completion time.

In this equation, the worst-case execution time for the
transitioner, wtr(r) is added twice because it works twice in
the distribution process (see Fig. 4). Also, the execution time
for the scheduler wsc(r) is multiplied by the two times of the
number of hosts and divided by the number of available CPU
cores, because it is executed by job requests and responses
from the hosts, and multiple instances can be run in parallel.
Using the equation, the server system expects the worst-case
response time of a given task request, and then the value
T (r, nc) is compared with the deadline to decide whether
to admit the request or not. In this way, the server system
controls the admission of the task requests.



F. Implementation

We implemented RT-BOINC on top of the BOINC server
source code1. The full source code and sample test appli-
cations of RT-BOINC (including Chess and the game of
Go) are available at the following website: http://rt-boinc.
sourceforge.net/. The current RT-BOINC used in this paper
is the version released in Nov. 2010.

1) Data Structures and Interfaces: We implemented the
data structures using shared memory IPC among several dae-
mon processes. The current implementation of RT-BOINC
supports up to 64K active hosts, which is reasonable based
on the size of most BOINC projects [15]. To provide
O(1) lookup, insertion, and deletion operations on the data
structures, we used three-level lookup tables and fixed-size
list structures as we have presented in [7]. We used a 4-
bit lookup table for each level, thus each lookup table has
24 = 16 fields. The current implementation allows the
number of data records for each table up to 50K, and the
total memory usage is 3.76GB for 50K available records.

2) Application-specific Code Development: When we
need to create a project, we should modify a few parts of
the RT-BOINC to support the target BOINC application. For
instance, if we perform a Game of Go AI parallelization
project, we need to know the input and output format of
the client-side application. Then we need to modify the
work-generator, validator, and the assimilator because they
are dependent to the client-side application. In the previous
example in Fig. 4, we also need to develop a master daemon
process, which reads the aggregated result and decides the
best move. The rest parts of RT-BOINC such as feeder,
transitioner, file-deleter, and scheduler are still independent
to the project settings and the target applications.

3) Deadline Timer: To circumvent possible unavailabil-
ity, deadline missing, or non-responding clients, we added a
new deadline timer on the RT-BOINC. The deadline timer
is initiated by the work-generator when creating a workunit,
and the timer triggers the validator when it has expired. Then
the validator performs validation with subset of the avail-
able (successful) results, and the in-progress (non-received)
results are requested to be ignored and discarded.

G. Remaining Issues

We have some remaining issues and possible work in the
future to improve the current RT-BOINC in terms of both
theoretical and practical point of views.

1) Dynamic In-memory Data Structures: The current RT-
BOINC works with shared-memory-segment over several
server daemon processes. When the RT-BOINC requires
more available data entries, the shared-memory-segment
should be re-allocated with bigger size, and copied from
the previous to the newly allocated memory. If this happens

1We used the server stable version of BOINC released in Nov. 2009.

at run-time, the server will not work during certain amount
of time to enlarge the shared-memory-segment.

2) Scalability / Extensibility: The major challenge on ex-
isting BOINC-based projects comes from the single server-
based architecture. The server is a single point of failure, and
it has limited capacity and network bandwidth. SZTAKI’s
method [8] is an easy way to distribute the server-side load
to several hierarchical servers. By forming multilevel RT-
BOINC servers with tree structure, we can extend both the
scalability and extensibility. However it has some trade-off
relationship between scalability and latency, because servers
on each level may have additional latency to distribute,
manage, and aggregate multiple results.

3) Communication between the Server and Hosts: Cur-
rently working distributed computing platforms including
BOINC and XtremWeb work with pull model between the
server and hosts. This means the worker clients on volunteers
pull tasks from the server. But for the short-term tasks,
especially for deadlined tasks, the pull model may incur a
little bit higher overhead on the server. Here is an example.
When a chess player submits a task to RT-BOINC server
to get the best move, the server will create workunit and
prepare scheduling. The clients should pull the tasks as soon
as possible to maximize the laxity time. Then, there is a
trade-off. If clients request for tasks more frequently, the
server needs to consume more time on handling requests.
Otherwise, we may have more delay on delivering tasks from
the server to clients.

Table I
COMPARISON OF PUSH AND PULL MODEL

Comparison Pull Push
Number of active connections low high

Memory space overhead low high
Number of communication packets high low
Number of scheduler invocations high low

Push model is an alternative way to communicate between
the server and clients. This allows the server to push tasks to
clients, and thus there is less delivering delay between them.
It seems to be an ideal solution for short-term, interactive
tasks, but it still has problems such as higher number
active connections on server-side, and higher memory usage
to manage connections. Many existing projects have more
volunteers than the maximum available number of TCP/IP
connections on a physical server. Therefore, we need to have
a yet-another way of communication between the server and
clients which is neither pull nor push model.

4) Latency-aware, Availability-aware Scheduling: In RT-
BOINC, the major challenge comes from reducing latency
and increasing laxity time. This means, we need to re-
duce the physical communication delay between server and
clients. Latency-aware scheduling is a way to reduce the
delay, and we can expect the worst-case communication
delay. By using communication delay for each client as
a major factor of scheduling, the server can distribute



tasks to appropriate clients. Measuring the communication
delay may have negligible overhead, and the latency-aware
scheduling may reduce the total makespan time significantly
when distribution of the communication delay has a high
variance.

In addition, we need to consider the availability of each
client. Availability-aware scheduling can reduce the number
of non-responding clients within deadline. BOINC currently
has the factor error rate to handle such unavailability, but it
works only for statistical long-term expectation.

V. PERFORMANCE EVALUATION: CASE STUDIES

In this section, we evaluate performance using two prac-
tical case studies on both BOINC and RT-BOINC and show
several results in many aspects.

A. Environment Settings
Table II

SPECIFICATION OF THE SERVER PLATFORM

Platform detail Description

Processor 2.0GHz (8 threads)
Intel Xeon E5504 (2 dual-quads)

Main memory 8×4GB (1066MHz)
dual-channel DDR3

Secondary storage 1 TB disk (7.2K RPM)
Network interface 1 Giga-bit Ethernet

Operating system Ubuntu 9.10 (64-bit)
kernel version 2.6.31-19

Web and database Apache and MySQL
released in Aug. 2010

RT-BOINC detail Description

Lookup tables Three-levels tables
first, second: 4 bits, third: 8 bits

Number of records 50K for each table
in-memory data structure

Volunteer resources
Grid’5000 hosts (64-bit)

grenoble, nancy, rennes, and
sophia sites (40 ∼ 800 cores)

Table II shows the hardware and software specification of
the base server platform. We used a general-purpose, off-
the-shelf server system to measure practical performance
of RT-BOINC without paying significant cost for the hard-
ware platform. Volunteers were chosen using GRID’5000
sites [16]. Indeed, doing reproducible experiments with
churns, large-scale, heterogeneity, failures, etc. is possible
only with simulation. But here, we wanted to test the
implementation, hence we choose a real-scale environment.

B. Case Study 1: Game of Go (Baduk)

The game of Go, also known as Baduk, is a well-known,
very complex game. In fact, numerical estimates show that
the number of possible status the game of Go is much greater
than the number of atoms in the known universe. The full
size board of Go is 19×19, but the small board which has 9×
9 still has high complexity, and the best professional players
are still much stronger than the best Go AI mechanism which
is based on several cluster machines [5].

In the first case study, we focus on parallelizing monte-
carlo-based Go AI based on RT-BOINC. Table III shows the
parameters and their settings for the game of Go case study.

Table III
PARAMETER SETUP FOR THE GAME OF GO

Parameter Setting
Board size 9× 9

The game of Go server KGS Go Server
Protocol between players Go Text Protocol

Player’s AI engine Fuego 0.4.1
Opponent’s AI engine GNU Go 3.8

Computation time for each worker 5 seconds
Deadline for each move 25 seconds

We used the small 9×9 board, and we made experiments
on both BOINC and RT-BOINC. We used a “Fuego” for
the player (on BOINC and RT-BOINC side), which is
a well-known open-source monte-carlo Go engine (http:
//fuego.sourceforge.net/). Also, we used a “GNU Go” for the
opponent, which is known to be 1st strongest open-source
Go engine without using parallelism (http://www.gnu.org/
software/gnugo/).

We used a KGS (http://www.gokgs.com) as the main
server, and used GTP (Go Text Protocol) between two
players. We made 10 games for each spot, and measured
the average and the worst-case response time for making
one move.

Figure 5 represents the average and the worst-case re-
sponse time for deciding one move according to different
amount of volunteer cores. We made experiments with
different cores on the server system to find out the perfor-
mance difference based on the computational capacity of
the main server. Here, BOINC(8) means that the BOINC
server utilizes 8 cores on the server, thus, BOINC(2) and
BOINC(1) use less cores on executing the server-side loads.
As we observe in Fig. 5, BOINC-based Go AI has much
longer response time when the number of volunteer cores
are greater than 160. This means, the some execution flow
on the BOINC server is saturated with 160 volunteer cores
because of handling so much requests from the volunteers.
However, RT-BOINC does not have significant difference up
to 800 cores.

Figure 6 shows the comparison between the worst-case
and the average time for making one move on the game of
Go. In case of BOINC, there is a huge, 10 ∼ 25 seconds
difference between the average and the worst-case, while
RT-BOINC has less than 5 seconds.

C. Case Study 2: Chess

To play chess using RT-BOINC, the general idea we used
is to distribute the current position to each workers, then ask
each of them to do several random moves and use a chess
engine to analyze the position reached after these random
moves. Once this analysis is done, the worker returns: the



Figure 5. The time for deciding one move according to the amount of volunteer cores (left: average, right: worst-case)

Figure 6. Comparison of the worst-case and the average response time (on the game of Go) according to the amount of volunteer cores (left: BOINC,
right: RT-BOINC)

sequence of random moves, the best possible move from the
intermediate position and the score. When the server has
received the answers, it builds a tree based on the results
from the workers and determines the best move.

Stockfish: A UCI Chess Engine: UCI (Universal Chess
interface) is a protocol to communicate with chess engines. It
provides ways to configure the engine, to define the position
to search and to set several parameters (max depth to search,
max time to search, etc.). It then returns what it estimates
to be the best moves along with a score for each of them.

Among the available UCI chess engines we have used
the “stockfish” chess engine, an open-source engine ported
on many systems (Windows, Linux, and Mac OS). It ranks
second on CCRL (Computer Chess Rating Lists) website2,
and is evaluated with an elo of 3, 218 for long games at
December 2010 (the best professional players on the world
are around 2, 800 elo).

A Randomized Distributed Chess Engine: Most chess
engine algorithms are based on the min-max algorithm with

2http://www.computerchess.org.uk/ccrl/4040/rating list pure.html

alpha-beta pruning [17]. However, these algorithms require
a global knowledge of the search state. Hence, they are not
suitable for a distributed environment where communication
between workers is difficult (if not impossible) to implement.
Therefore, we need that each worker performs its computa-
tion independently. Moreover, for performance question, it
is better if each client receives the same input. To fulfill all
these constraints we have designed a randomized algorithm
that works as follows.

� When it is time for the workers to compute the best
moves the server generates a single input file with: the
move number; the current position; the moves played
since the start; the maximum allocated time for search;
n: a number of random moves to be played before
searching.

� When a worker receives such an input file it plays n
moves at random starting from the current position and
reach an intermediate position.

� When a worker has reached its intermediate position it
start searching this position using a local chess engine



(e.g. stockfish).
� When the allocated time for search (including the

random moves) has expired, the engine returns what it
estimates is the best move with its score. The workers
then returns to the server an output file with: the move
number; the starting position; the random moves; the
intermediate position; the estimated best move with its
score.

� The server receives the different answers from the
workers. It aggregates the different random moves and
the estimated best move of the different workers to form
a tree. This tree has a depth of n + 1 (The n random
moves plus the best move found at the intermediate
position). Then it runs the min-max algorithm on this
tree to determine what is the best sequence of moves
among the ones explored by the different workers.
Using this sequence it determines what is the best move
to play from the current position.
Uniform Random Search: The key point of the above

algorithm is the n random moves done by each worker. If
we have a lot of workers and n is not too large it is expected
that when we aggregate their answers the formed tree will
cover all possible move combinations and hence the decision
taken by the server will be the same than if it would have
generated all possible intermediate positions at depth n from
the current position and explore each of them using the chess
engine. However, if the workers are not enough, or the value
of n is too large then some sequences of move can be missed
and the aggregation can be erroneous.

If the moves are chosen uniformly among all possible
moves then the number of workers required to reach all
possible intermediate positions is similar to the coupon
collector’s problem [18]: “how many sample trials are re-
quired to collect m coupons with replacement?”. Analysis
shows that for large m the number of trials is lower than
m lnm+ 10m in 99.99% of the cases( [18] section 5.4.1).

For a typical chess position, there is about 30 legal moves.
Hence m = 30n. If n = 2 we have about 900 possible
intermediate positions and we need around 15, 000 workers
to be sure that in 99.99% of the cases all these positions are
generated and explored by the workers.

Biased Random Search: Given a position not all moves
are equivalent and hence choosing one move should not be
done uniformly. Indeed, it can be very easy to see that some
moves are very bad (i.e. one put his queen in chess without
obvious counter play) or very good (move leading to a quick
mate). Hence, we should biased the random choice towards
these good moves while keeping a chance that every moves
can potentially be chosen.

To rapidly estimate which are the “good” moves, given
the current position, the engine explores this position to a
fixed shallow depth (in our case depth 5, as it takes some
milliseconds). Then the engine ranks all the moves according
to their score after this exploration.

We have done the following experiment to determine the
quality of the ranking of moves after an exploration at depth
5. We have taken 1407 positions from the Spassky-Fischer
games of the 1972 world championship match (these are
all the played position excluding the one on the stockfish
opening book). Most of these positions are tight positions
and potentially very hard to analyze (among the 21 games
we had 11 draws). The engine analyzes each position for 20
minutes (in general to a depth greater than 20) and returns
a so-called “best move”. During the search, we record the
rank of this “best move” when the search reached depth 5.
The result is plotted as an empirical cumulative distributed
function (ECDF) in Fig. 7. For a given value on the x-axis,
we give the proportion of the ”best moves” that have a rank
less or equal to this value when the search reached depth 5.
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Figure 7. Empirical cumulative distributed function of the rank of the best
chess move when search reaches depth 5

The result shows that 47.5% of the “best moves” are
ranked 1 at depth 5, 17.5% of the “best moves” are ranked
2 at depth 5, . . . and 0.07% are ranked 28 at depth 5.

Thanks to this experiment we have biased the search as
follows: 1) Enumerate each possible moves. 2) Rank them
according to the score computed when the search is limited
to depth 5. 3) A move is chosen according to the empirical
law shown in Fig. 7 (i.e. move ranked number one 1 is
chosen with probability 0.475 moved ranked number 2 is
chosen with probability 0.175 etc.). The advantage of such a
biased search is that a good move is more likely to be chosen
than a bad one, we provide redundancy of good position for
the exploration of the next level and last, one need less node
to explore the good part of the tree.

Figure 8 shows the response time for one move on Chess
according to the different amount of volunteers. Similar to
the results in the game of Go, BOINC requires higher re-
sponse time on larger number of volunteer cores. Especially,
the input and output file for the Chess AI is a little bit larger
than Go, thus it takes a little bit more time to distribute and



aggregate them.
Figure 9 presents the difference between the average

and the worst-case when playing Chess games on different
amount of volunteers. As we have expected, RT-BOINC
has less difference, while BOINC has significant difference
among both the volunteer cores and the server-sides cores.

Figures 10 and 11 shows the results of Chess games in
several aspects. We made 25 games per each setting, and
we observe that BOINC is not suitable for the Chess AI
parallelization because there is deadline misses if there is
high number of volunteers. Even when using low numbers of
cores, there is a difference between RT-BOINC and BOINC.
The difference comes from the fact that BOINC consumes
more time to make each move, where the same amount of
time is consumed by the opponent at the next turn. This is
the main reason why RT-BOINC is still better than BOINC
even though BOINC does not miss the deadline.

VI. CONCLUSIONS

In this work, we presented a full implementation of RT-
BOINC, with additional features such as deadline timer and
admission controlling mechanism for providing guaranteed

Figure 10. Results of Chess games (25 games per each) (left: BOINC,
right: RT-BOINC)

real-time performance on the work distribution and man-
aging process. We evaluated RT-BOINC and the original
BOINC using two applications with tight time constraints
and high-parallelism, in particular, the games of Go and
Chess. We conducted various experiments on the different

Figure 8. The time for deciding one move (on Chess) according to the amount of volunteer cores (left: average, right: worst-case)

Figure 9. Comparison of the worst-case and the average time (on Chess) according to the amount of volunteer cores (left: BOINC, right: RT-BOINC)



Figure 11. Winning, and deadline missing ratio on Chess games (25 games
per each)

scales with those two applications and the two server plat-
forms in terms of both the average and bounded response
time, scalability and efficiency. From the case studies, we
showed that RT-BOINC outperforms BOINC in terms of
both the average, the worst-case response time, deadline
miss ratio, and scalability, while showing appropriate per-
formance for the games of Go and Chess applications.
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