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Abstract—Process placement, also called topology mapping, is

a well-known strategy to improve parallel program execution by

reducing the communication cost between processes. It requires

two inputs: the topology of the target machine and a measure

of the affinity between processes. In the literature, the dominant

affinity measure is the communication matrix that describes the

amount of communication between processes. The goal of this

paper is to study the accuracy of the communication matrix as a

measure of affinity. We have done an extensive set of tests with

two fat-tree machines and a 3d-torus machine to evaluate several

hypotheses that are often made in the literature and to discuss

their validity. First, we check the correlation between algorithmic

metrics and the performance of the application. Then, we check

whether a good generic process placement algorithm never

degrades performance. And finally, we see whether the structure

of the communication matrix can be used to predict gain.

I. INTRODUCTION

We are currently seeing a deepening in the hierarchy of
high-performance computing system. Nodes are composed of
multicore processors with different levels of memory (standard
DRAM, non-volatile memory, faster but smaller MCDRAM
for KNL, etc.) and the network interconnecting these nodes
can also be highly intricate with complex topology and high
diameter. The consequence of these architectural features
is that the performance of the parallel applications highly
depends on the nodes allocated for the job as well as the
mapping of these jobs. Process placement (also known as
topology mapping) is an active field of research that deals
with the development of strategies targeting the improvement
of parallel applications by carefully allocating processes onto
the resources [14]. The goal is to reduce the communication
by mapping close to each other processes that communicate
the most.

The communication time depends on the algorithm imple-
mented in the application: it depends on the quantity of data to
be exchanged. Moreover, since all computing resources are not
directly connected, it also depends on the distance between the
running processes as well as the speed of the different links.
Figure 1 shows what can be the distances (in number of hops)
between cores in a fat-tree machine with 6 nodes with 24 cores
each (two processors made of two NUMA nodes with 6 cores
each). We see clearly blocks of same distances.

Hence, it seems natural to put closer two processes that
communicate a lot to reduce the communication cost. To
this purpose, we need to adapt the execution of parallel
applications to the target machine according to its specific
topology.

Fig. 1: Distance matrix between cores in a fat-tree machine
with 6 nodes with 24 cores

To address this problem, process placement algorithms have
been proposed. They use two input models: the target machine,
often the topology graph, and the affinity between processes,
often given as a communication graph, and they compute a
mapping. Gains above 30% in terms of execution time have
been reported in [15], [16], [7].

In this paper, we will not propose another process placement
algorithm but we rather address generic questions about this
research field. Here, we study how is defined and used affinity.
This paper therefore aims at studying the following questions.
What are the limits of these models? Are performance corre-
lated with metrics to optimize? What is a good measure of
affinity? Indeed, such questions are often overlooked in the
literature.

Our scientific method is the following. We formulate a
hypothesis that is often made in the literature and we conduct
experiments in order to check this hypothesis and try to define
its limits.

The remaining of the paper is organized as follows. In
Section II, we present the context for our study. Then, in
Section III, we formulate three hypotheses about processes
affinity, placement and metrics. We experimentally check these
hypotheses in Section IV. Section V shows the related work.
Finally, we present our conclusions in Section VI, and we
discuss improvements and future work.

II. CONTEXT

We consider parallel applications composed of processing
entities (e.g. processes) that exchange data through message
passing (e.g. using MPI [12], Charm++ [17], etc.). In this case



the total or a sub-part of the data exchanged is accountable
for the execution walltime. Indeed, except the case of a full
overlap between communication and computation, each mes-
sage takes a time that depends at least on its size, the available
bandwidth and the latency of the interconnection network (or
of the memory, if the message is sent between processes on the
same node). The mapping of the processing entities onto the
computing resources consists in deciding where each of them
will execute its computations [14]. Such mapping has been
shown to improve the overall performance of the application
by reducing the communication time [6], [18], [15]. The
idea is that highly communicating processing entities should
be mapped as close as possible onto the topology in order
to reduce communication cost. Indeed, the communication
cost of a message is increasing with the distance between
the processing units hosting the sender and the receiver (see
Fig. 1). Moreover, the bandwidth within a node is much larger
than the network interconnect and each hop costs some time
in terms of latency.

Algorithmically speaking the mapping problem takes two
inputs [14]: a description of the machine enabling to compute
the communication cost of the messages and a model of the
application describing the affinity between the computing en-
tities. The notion of affinity is important and encompasses the
fact that some processes should be mapped close to each other.
In most of the works in the literature, the affinity between
processes is given by a communication matrix that describes
the amount of communication between pairs of processes.
Indeed, as we plan to reduce communication cost, the more
communication a pair of processes has, the more affinity these
processes have. There exist several ways of measuring the
communication cost. In the context of distributed memory
computation, some authors [9] use the amount of memory that
is shared between threads. In the context of message passing,
the standard way is to use either the number of messages,
the total size of the exchange data or the average size of the
messages [16].

In this paper, we only consider applications that have a
reproducible communication graph (i.e. is the same from one
run to another) or computable when required. Many appli-
cations provide reproducible communication patterns: dense
linear algebra kernels (LU, QR, Cholesky), stencil code, etc.
In this case, extracting the communication matrix from an
application is done through monitoring. We run the application
once and extract the communication pattern based on the
messages exchanged between processes. In this work, we use a
low-level monitoring tool inside the Open MPI implementation
that has the unique advantage of being able to track messages
of collective communication once such collectives have been
decomposed in point-to-point communication [4]. In some
other cases, the communication pattern is computable at launch
time or at runtime. For instance in Charm++, the runtime
system provides the communication volume between chares.
In many mesh-based applications, the communication pattern
is driven by the domain decomposition. The mesh describing
the model to be processed is partitioned in subdomains. Each

subdomain is executed by a given process and the commu-
nication pattern between processes is directly derived from
the subdomain graph as communications will be done through
halo exchange between neighboring subdomains.

In order to evaluate a placement, several metrics have been
proposed. Let � be the mapping function computed by a given
algorithm, i.e. �(i) is the processing unit where process i is
placed. Let C be the communication matrix, i.e. C(i, j) is the
amount of communication between processes i and j. As we
do not distinguish between sending and receiving messages we
assume that C is symmetric. Let d be the distance function on
the topology graph i.e. d(a, b) is the number of hops between
nodes a and b. Let B be the cost to transfer data between two
nodes. The unit of B must be coherent with the unit of C
(i.e. B(�(i),�(j)) ⇥ C(i, j) is the cost for moving the data
between process i and j after the mapping). The literature
proposes several mapping metrics that are the targets of the
optimization (often minimization) problem:

• HopByte [20] is the accumulated cost of all the product
between messages cost and the number of hops they have
to traverse:

HB =
X

i,j

d(�(i),�(j))C(i, j)

• SumCom [19] is the sum of all the data movement cost:

SC =
X

i,j

B(�(i),�(j))C(i, j)

• MaxCom is derived from SumCom and is the maximum
of all the data movement cost:

MC = max
i,j

B(�(i),�(j))C(i, j)

Another way of measuring the performance of the mapping
is to simulate the communication inside the topology. Indeed,
one drawback of the above metrics is that they do not take
into account network contention and temporality. One way
of partially addressing this issue is to simulate data flow on
the network taking into account topology, routing, bandwidth
and latency. In this work, we use the SimDag framework of
SimGrid [5] where each process is a task with no computation
cost and communication costs correspond to entries in C. Un-
fortunately, since we provide a communication matrix with no
time information, we only express the overall communication,
hence the contention could be overestimated.

Minimizing these metrics is an NP-complete problem (un-
less for special instances) as it is reducible from the graph
embedding problem. Therefore, many heuristics and standard
placement have been proposed. Round robin (RR) consists in
having mapping processing entities i on computing resource
i (hence � is the identity function). The goal of this work
is not to compare the different strategies of the literature.
We rather aim at evaluating the communication matrix model
as a relevant affinity measure of applications. To do so, we
evaluate the performance of the mapping with several angles.
For mapping, we will take the TreeMatch (TM) strategy [16]
developed by a subset of the authors and provide a comparison



against RR and random (RND) mapping: the idea is to
study if careful mapping provides significant improvement.
We will also look at the correlation between metrics and
performance: does minimizing mapping metrics leads to per-
formance improvement? We will also investigate the question
of communication matrix characteristics and its impact on the
benefit of mapping.

To perform this study we use the NAS parallel benchmarks
(NPB) as they comprise an important and recognized set
of typical parallel programs. However, these benchmarks are
mainly computational ones and are not perfectly suited to our
study. Indeed, mapping optimizations concern only commu-
nication. Therefore, if computation dominates the execution
time, the gain (or loss) can be difficult to observe. Hence,
in addition to NPB, we have chosen a MPI-based mini-
application called miniGhost [2]. Its main advantage is the
possibility to set many parameters that have an influence
on the ratio of computation and communication (number of
variables by stencil point, number of iterations, size of the
problem, number of cells by process, etc.) and for which
the structure of the execution can be tuned to see different
behavior of mapping strategy (stencil dimension 2D or 3D,
stencil size in each dimension, connectivity between stencil
point, communication strategy). We also chose miniGhost as
there is no overlap between communication and computation.
Indeed, as we are trying to improve the communication time,
such an overlap could distort the experiments and hence hinder
one of our goal: finding correlation between the execution time
gained with the mapping and other metrics. Having such a
tunable application is a huge asset for this experimental study.

III. HYPOTHESES FORMULATION

Process placement consists in mapping processes onto re-
sources in order to optimize execution time. This optimization
is done based on some inputs and after an algorithmic process.
There is lot of research in this area and designing new
and efficient algorithms requires a deep understanding of the
interaction between models and metrics.

Therefore, we formulate here hypotheses that are often made
when designing process placement strategies and give the
intuition that drive them. Our goal is to study these hypotheses
in order to give hints to algorithm developers when they design
and analyze their own solution.

A first set of questions concerns the metric to be optimized
when computing the placement. As described in Section II,
some metrics are proposed in the literature. However, these
metrics concern an evaluation of the mapping within the
machine model and application affinity model (i.e. here the
communication matrix). A good metric should be such that if
it tells that a mapping is better, then the execution time should
be lower. Even if it is not expected to have a quantitative
gain (i.e. if the metric is x time better, then the runtime is
x time lower), at least we should see a correlation between
metrics and performance. We can therefore formulate a first
hypothesis:

Hypothesis A: algorithmic metrics are correlated with

performance

This hypothesis means that a mapping improving an algo-
rithmic metric (e.g. HopByte, SumCom, etc.) should lead to
a decrease of the execution time of the application. Testing
hypothesis A can be done by computing the different metrics
on two mappings (Round-Robin and Random) as well as
measuring the corresponding runtimes. Moreover, such exper-
iments can be used to evaluate each metric: the better the
correlation is, the more relevant the metric is.

If we find high correlated metrics regards to performance,
we can wonder if a placement optimizing these metrics never
degrades performance compared to standard mapping (i.e.
RR). We can therefore made the following hypothesis:

Hypothesis B: a process placement algorithm that is

optimized with regards to relevant metrics never

degrades performance

Testing hypothesis B is not very difficult. We take a pro-
cess placement optimizing the considered metric(s) and we
compare the execution of the application with it and with the
round-robin placement.

The last set of questions we want to address in this paper
concerns the relationship between the communication matrix
structure and the performance gain: does the communication
matrix structure impacts performance gain? The idea is to
characterize the communication pattern by a single value that
computes the potential gain of an optimized mapping. For
instance, if the non-zero values of the matrix are only near
the diagonal, this means that process i only communicates
with processes i� 1 and i+ 1. In this case the potential gain
of a clever mapping is very low because the distance between
consecutive indices of cores will be often the lowest possible.
On the contrary, if the large values are far from the diagonal
and the values have a huge variability then potential gain may
be important. This leads to formulate the following hypothesis:

Hypothesis C: communication matrix structure and

values impact the performance gain

To test hypothesis C we need to compute different matrix
metrics from the literature and compare their value to the
gain when executing a good placement. The hypothesis can
be validated if we see a correlation between matrix metrics
and gains.

Such hypothesis are not always looked with all the required
scientific rigor. For instance, in [15] the authors use sparse
matrices from the Florida Sparse Matrix Collection instead of
real communication matrices taken from parallel applications.
The idea is that having an algorithmic system working on
any sparse matrices is sufficient. They assume that optimizing
metrics lead to optimizing performance (hypothesis A is
true), that improving the mapping improves the running time
(hypothesis B is true) and the structure of the communication
matrix is irrellevant with regards to the problem (hypothesis
C is false).



IV. HYPOTHESES TESTING

To check our hypotheses, a set of tests were run on several
machines. For each test, that is, each parameter set on each
machine, we have executed ten times the same application with
same inputs. We have run a t-test on the results to validate
them and the ten runs have been compiled by computing the
median value.

A. Experimental environment

The first test machine is Plafrim 1, a 68 nodes machine with
a fat-tree network. It is an InfiniBand QDR network made
of four leaf switches with around 17 nodes each. Each node
has two quad-core Intel Xeon X5550 processors, as shown
in Fig. 2a. Therefore, the topology of the whole machine,
considering the network topology and the intra-node topology
is a fat-tree which number of children from the root is 4, 18,
2 and 4. Since a fat-tree is a balanced tree, we use 18 for the
number of nodes by switch as it is the maximum.

The second machine is Plafrim 2, a 88 node machine with
a fat-tree network.It is an InfiniBand QDR network made of
four leaf switches with 22 nodes each. Each node contains
two Intel Xeon E5-2680 v3 processors (24 cores total, split in
4 NUMA nodes with 6 cores each), as shown in Fig. 2b. For
the whole fat-tree, the number of sons from the root is 4, 22,
2, 2 and 6.

The third machine is Blue Waters, a Cray XE/XK hybrid
machine composed of 22, 640 nodes with AMD 6276 In-
terlagos processors all connected by the Cray Gemini torus
interconnect1. The topology is a 24 ⇥ 24 ⇥ 24 Torus with a
tree which number of sons from the root is 2, 2, 2, 4 and 2.

To generate the process mapping, Netloc, a tool included
in hwloc [11], after discovering the topology of the machine,
takes a communication matrix as input and uses a mapping
tool like TreeMatch [16] to generate the topology-aware
mapping with one process per core as a rank file for MPI.
The communication matrices are generated with a monitored
version of Open MPI [10]. With each pair of processes, we
get statistics about communication: number of messages, total
number of bytes, and average size. For affinity measure, we
used both the number of messages and the total size of the
communication.

For the miniGhost parameters we explore several dimen-
sions. We tried two communication method strategies: SVAF
(data aggregated by face) and BSPMA (BSP synchronous
mode). The number of variables per stencil point is set to
20 or 40 and the dimension of the stencil is 24, 48 or 96 in
each dimension (27 combinations). The tests were done with
three stencil types as defined by miniGhost: 21, 23 and 24.
We tested execution on 4 and 8 nodes for Plafrim 1, on 1,
2, 3 and 6 nodes Plafrim 2, and on 1, 2, 3, 4, 8, 16 on Blue
Waters.

1This machine is used only for testing hypothesis A as our mapping
algorithm is not designed for Torus topologies. Extensive study on that
machine is left to future work

For the NAS benchmark, we have used the bt, cg, ft, lu
and mg kernel with class form A to D (with only the largest
number of processors in the later case).

B. Hypothesis A: algorithmic metrics are correlated with

performance

To check if we have algorithmic metric correlated with
performance, we have computed the correlation between two
sets of values: the gain in execution time and the difference be-
tween the metrics for two mappings (RR and RND) computed
with size as an affinity measure. We do not use any special
algorithmic process to improve the mapping in this section as
we only want to see the impact of the mapping change on the
performance and the metrics.

We use the difference between the different measurements
because values can be very large and hence the difference
between two placements can be important while ratio can be
small.

The results presented in Fig 3, show the correlation of our
placement compared to the four performance metrics presented
in Sec. II for the miniGhost application and the Plafrim
machines. Fig 4 present the same results but for the NAS
benchmarks.

Results are read as follows. On the diagonal we have
the different metrics and the execution time as well as the
distribution of the difference between the RND mapping and
the RR mapping. Under the diagonal we have the different
projections of the different runs in the subspace defined by
the metric on the line and the one on the column as well
as the interpolation line. Above the diagonal, we have the
correlation coefficient. This coefficient is between -1 (perfect
anti correlation) and 1 (perfect correlation). Moreover, in the
same box we plot the histogram of the executions. On the
upper part, we plot the correlations between each statistic. On
Plafrim 1 for example, the correlation between Simgrid and the
time difference is 0.5. On the lower part, we plot the point in
the dimension of both statistics as well as the linear regression
line (in red).

On both machines, the worst correlation is for the MaxCom
metrics. This metrics fails to express the execution time gain
and optimize it does not lead to improvement in general.
The other metrics (Simgrid, SumCom and HopByte) perform
similarly. In other experiments (where we compare TreeMatch
and RR), we have seen that Simgrid has a better correlation
with performance gain, than the two other metrics. This is
not surprising, since Simgrid is the algorithm that will exploit
the best the input matrix and the architecture topology by
simulating communication.

Then, the correlations for HopByte and SumCom are of the
same order. It is expected as HopByte is like SumCom with
particular values for bandwidth. However, tuning the costs of
communication for SumCom is a strong disadvantage. This
tuning has to be done for one architecture but we need several
applications to be sure it is not dependent of the application.
However, this is out of the scope of this paper and will be
done in future work.
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Fig. 2: Node topology of the test machines, from lstopo.
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Fig. 3: Metrics correlation for the miniGhost application. Difference between round-robin and random placement

Due to lack of space, we do not the show Figure for Blue
Waters. Yet, on this machine, for HopByte and SumCom the
correlations are high: 0.81. As for the fat trees, MaxCom
shows a low correlation (0.2). However, with Simgrid, we have
to investigate further as we see a low correlation (0.21) but
with no explanation.

To conclude, we can say that there is a quite good corre-
lation between the time we gain by other placements and our
algorithmic metrics, on fat-tree machines and on a 3d-torus
machine. However, the HopByte metric has a strong advantage
over its counterpart. Indeed, it does not required to be tuned
according to the target machine: it considers only the topology
of the machine and not the performance of its network. We
believe this to be a decisive advantage, as gathering such
information is error-prone, might be incomplete and subject
to inaccuracy.

C. Hypothesis B: a process placement algorithm that is

optimized with regards to relevant metrics never degrades

performance

As we have seen with the previous hypothesis, HopByte is
well correlated with the performance and therefore seems to
be a good candidate as a metric to be optimized in a process
placement algorithm. To check the validity of hypothesis B
with HopByte, we choose TreeMatch as the process placement
algorithm.

TreeMatch [16] computes the mapping from the topology
of the underlying machine and the behaviour of the applica-

tion and optimizes the HopByte metric. It has shown good
placement strategies for NAS applications. It takes as input a
tree topology (where the leaves stand for computing resources
and internal nodes correspond to switches or cache levels)
and a matrix describing the affinity graph between processes.
A hierarchy is extracted from the communication pattern that
matches the topology tree hierarchy. The outcome is therefore
a mapping of the processes onto the underlying computing
resources. TreeMatch works only on fat-trees and we do not
test this hypothesis on the 3d-torus machine.

To test hypothesis B, we first build the communication ma-
trix by using the monitoring in Open MPI. Then, we compute
an optimized placement with our TreeMatch algorithm, run our
application with this mapping and compare the execution time
against the time measured with RR mapping. We build two
different types of communication matrices. The first contains
the number of messages shared by processes and is called msg.
The second contains the total size of data shared by processes
and is called size. We carry out the experiments with these
two matrices and compare them. For the miniGhost application
results are displayed as empirical cumulative distribution func-
tions (ECDF) in Fig. 5 and in Fig. 6 for the NAS benchmarks.

For the NAS benchmarks and miniGhost, on both machines,
the best results are with the communication matrix using the
size of the data. This shows that all the messages between
processes do not have the same size, and therefore the number
of messages is not sufficient to model the affinity.
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Fig. 4: Metrics correlation for the NAS benchmarks. Difference between round-robin and random placement
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Fig. 5: Average gain of TreeMatch against Round Robin for
different miniGhost runs depending on the type of communi-
cation matrix

If we only consider results for size matrix, our mapping
leads to performance improvement in general but it is not
better for all cases. For miniGhost and for Plafrim 1, 83.3%
show an improvement of performance, while for Plafrim 2,
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Fig. 6: Average gain of TreeMatch against Round Robin for
different NAS runs depending on the type of communication
matrix

69.1%. We have a median gain of 3.2% on one machine and
1.5% for the other one. It leads to up to 22% improvement
while never degrading by more than 7% in the worst cases,
depending on the machine. For the NAS benchmarks results



are less impressive. On Plafrim 1 (resp. Plafrim 2) 75.9% (resp.
64.5%) of the cases are improved by using TreeMatch. The
median gain is 0.33% on Plafrim 1 and 0.16% on Plafrim 2.
The fact that miniGhost improvements are better than the NAS
one is explained by the fact that the amount of communication
is lower in NAS case and hence the potential gain is greater
for the miniGhost application.

In conclusion, we can make two statements. First, the way
we measure affinity (e.g. number of messages vs. size of the
messages) impacts the way the mapping is computed and the
overall performance. In pour case, using the size is a better
measure if affinity however, this is application dependent and
should be tested for each application. Secondly, the mapping
algorithm is not beneficial in all cases, the result depends
on the parameters of miniGhost. Hence, strictly speaking,
hypothesis B is rejected but, in general, process mapping is
beneficial.

D. Hypothesis C: communication matrix structure and values

impact the performance gain

When we look at the communication matrix, it is difficult to
evaluate a mapping. In Figure 7, for three different parameter
sets, the communication matrices are shown for two mappings
and the gain represents the time saved (or lost) in percentage
by using the mapping on the right vs the mapping in the
left. The communication matrix on the right side is simply
a permutation of the matrix on the left side. The permutation
vector represents the changes of the new mapping as well as
the changes in the communication matrix.

Interestingly, if we just look at the structure of the matrix, it
seems quite difficult to predict if we will save time or not and
it looks even more difficult to predict the value of the gain.
However, if looking at the structure is not sufficient, then the
question of designing matrix statistic (i.e. a single measure
computed from the matrix values) that show the impact on
the gain is a relevant question.

Several matrix statistics have been proposed in the litera-
ture [9], [8]. In [9], the authors studied affinity in the context
of thread placement and NUMA architectures. They study
if, given the communication matrix, it is possible to expect
a potential gain when we remap threads by looking at the
structure of the matrix. They propose a statistic (called CH
for communication heterogeneity) that takes a communication
matrix as input and compute a measure such that the higher
its value the better they expect a gain from a careful mapping.
The intuition is: to benefit from thread mapping, it is necessary

to have groups of threads that share the same data among

each other, and not with other threads. And conversely if
all the threads share the same amount of data, the expected
benefit is very low. Formally, they compute M the commu-
nication matrix where all values of M are normalized by
the largest value of the original communication matrix C:
M [i][j] = C[i][j]/max(C). Then CH, is the average variance
of the communication of each thread. Let n be the order of
M :

(a) Gain with the permutation on the right side: -5.4%

(b) Gain with the permutation on the right side: 20.8%

(c) Gain with the permutation on the right side: 24.6%

Fig. 7: Communication matrices depending on the mapping
for three different parameter sets.

CH =

P
i

P
j

✓P
k
M(i,k)

n �M(i, j)

◆2

n2

The larger CH the larger the variance of the communication
cost between processing entities (thread/processes). Hence,
CH tends to measure the communication heterogeneity.

A subset of these authors have proposed, in [8], another
statistic to measure if balancing communication (CB for
communication balance) among threads could be beneficial.
The idea is to measure how the average communication cost
of each thread is different from the largest thread communi-
cation cost. Let T (i) be the communication cost of a thread:
T (i) =

P
j C(i, j). Then

CB = 1�
P

i T (i)/n

max(T )



If CB = 0 this means that all the thread communication
costs are equal and balanced while higher values indicate more
imbalance within the thread communication costs.

The two above statistics were designed for a context that is
slightly different from the one of this paper: shared memory
thread placement based on data sharing. Here, we target pro-
cess placement based on communication issued from message
passing. Hence, we have also designed three original statistics
to measure the potential benefit for process mapping based on
the communication matrix.

The first statistic, called communication centrality (CC),
measures how the communication is dispersed from the diag-
onal. The idea is that, if all the communication is performed
around the diagonal of the communication matrix, then there
is no opportunity for mapping (each process j more or less
communicates with process j � 1 and j + 1). For each line
i, we compute j1 � 0 and j2  n such that half of the
communication cost is between C(i, j1) and C(i, j2) and
i � j1 = j2 � i. Then, we compute Ri = (j2 � j1)/n the
communication centrality of process i (Ri = 0 means that
half the communication is on the diagonal and larger values
means that more communication is off-diagonal). And CC is
the average value of Ri:

CC =
1

n

X

i

Ri

The second statistic called neighbor communication fraction
(NBC) follows the similar idea as CC. It computes the fraction
of communication that is performed by neighboring processes.
For each process i, we compute the fraction communication
cost that is performed with their neighbors:

NBC
2 = 1�

P
i (C(i, i� 1) + C(i, i+ 1))P

i

P
j C(i, j)

If all the communication is performed within neighbors then
NBC = 0. Hence, the higher NBC, the more opportunity for
mapping.

The last proposed statistic is called split fraction (SP(k)).
It takes a parameter k and computes the amount of commu-
nication that is done around block of k⇥ k processes. This is
useful to identify communication that are already performed
within a node of k cores:

SP(k) = 1�
Pn/k�1

s

Pk
l=0

Pk
m=0 C(s⇥ k + l, s⇥ k +m)P
i

P
j C(i, j)

If all the communication is within these blocks then SP = 0
meaning that all communication is local within a node of k
cores. On Plafrim 1 we have taken k = 8 while on Plafrim 2
we have taken k = 24.

In Fig. 8 we plot the correlation graph between the different
matrix statistics described, and the time difference between the
RR mapping and the TreeMatch mapping for the miniGhost
application. We plot the same correlation for the NAS bench-
marks in Fig. 9. We compare with the ratio between the RR

2We of course, ensure i� 1 � 0 and i+ 1  n

and TM as, contrary to the miniGhost case, timing difference
are much lower and hence results are more visible with ratio
of timings. We can draw several interesting conclusions from
these graphs.

First CB and CH are anti-correlated. This is counter-intuitive
as, as stated above, they are designed to describe a similar
expectation: the larger they are the better should be the benefit
from a careful mapping. However, by carefully looking at the
formula of CH and CB, we see that CH is proportional to
the variance of the values of the communication matrix while
CB is inversely proportional to the mean. However, these two
quantities (variance and mean) are correlated as the values
follow a Bernoulli distribution with a a parameter p < 0.5.
This explains why CB and CH are anti-correlated. See [3] for
all details.

Secondly, the different statistics span different intervals. The
values of CH are between 0 and 0.09, the values of CB are
between 0.92 and 1 which are very small intervals and make
values hard to distinguish. On the opposite, CC is between
0.03 and 0.47, NBC between 0.3 and 0.9 and SP between 0.1
and 0.9. These larger intervals help to make a better difference
between the cases.

Thirdly, if we look at the correlations themselves, we see
that, for miniGhost, on Plafrim 1 the best correlation is CB
followed by SP[8] while on Plafrim 2 the best correlation is
CC followed by SP[24]. However, on Plafrim 1 there is no
correlation between performance gain and the CC statistic (the
coefficient is -0.028) and on Plafrim 2 the correlation between
performance and the CB statistic is only 0.24. Therefore, it
appears that the most consistent statistic to predict gain is
the SP . On the NAS benchmarks results are slightly different
and the correlation are in general smaller. This is due to the
fact that gain are in general smaller with the NAS benchmarks
than with miniGhost as the amount of communication is larger
for miniGhost than for the NAS. Again a consistent metric
is the SP one (as well as NBC, which also determines the
communication made to neighboring processes). This means
that, taking into account the intra-node communication versus
inter-node one is an insightful way of determining the potential
benefit of a mapping.

To conclude on this hypothesis, it is not necessarily immedi-
ate to see, by looking at the communication pattern if potential
gain through process mapping is achievable. However, we
observe that there is a good and consistent correlation between
the gain in execution time and the amount of inter-node
communication on the target machine. We therefore see that
the impact of matrix structure and values on the gain can be
measured.

V. RELATED WORK

Topology mapping is a very active research field. A survey
on this subject ranging from models to heuristics and imple-
mentation is done in [14].

We have used the TreeMatch algorithm [16] to test the
mapping. However, this work is not a comparison about the
performance of this specific heuristic. Concerning process
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(b) On Plafrim 2

Fig. 8: Matrix statistic correlation for the miniGhost application with the performance difference between TM and RR
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(a) On Plafrim 1
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(b) On Plafrim 2

Fig. 9: Matrix statistic correlation for the NAS benchmarks with the performance ratio between TM and RR

placement, several other approaches exist using graph embed-
ding techniques [15], geometric partitioning based on appli-
cation structure [7] or by internally exploiting the knowledge
of the application communication pattern [1].

Aside from process placement, thread placement is a similar
problem (where to map threads on cores) but with different
inputs. In process placement, the communication between
processes is used to measure affinity. In thread placement,
the situation is different. The affinity between threads impacts
the performance (if two threads share data then they should
be mapped closed to each-other) or the data access impacts
performance (threads should be mapped close to the memory
bank where the pages they access are allocated). The second
approach looks more promising as many result use it [9],
[8], [13]. However, if the affinity approach is different the
algorithmic process is similar: it consists in minimizing the
implicit communication cost of the application.

VI. CONCLUSION

Process placement is a very active and important field of
research. When designing algorithm researchers often make
implicit hypotheses about models, parameters driving the
application performance or target metrics. Surprisingly, these
hypotheses have not been extensively tested. We think that
questioning hypotheses in order to validate or invalidate them
and define there limits is as important as designing the
strategies themselves.

To do so, we have formulated, three hypotheses, provided
a protocol to test them, perform experiments on two kind of
applications (miniGhost and NAS benchmark) and discuss the
results.

After testing our hypotheses, we can make the following
statements. First, the type of applications (NAS vs. miniGhost
i.e. high vs low computation/communication ratio) impacts
the results: a low computation/communication ratio is in
general less discriminant than a higher one. Moreover, some
algorithmic metrics (e.g. HopByte, SumCom and Simgrid)
to optimize are generally correlated with the performance.



However, these correlations are not always very high. A
mapping algorithm that optimize these relevant metrics, can
sometimes lead to a decrease in performance. Even if, most
of the times, we have a performance gain, with some parameter
sets, we see degradations. Furthermore, the algorithmic metric
used in the placement algorithm and that exploits the commu-
nication matrix and the architecture graph can show limitations
in some cases. Last, in general, using the structure of the
communication matrix as an impact on the performance gain
when optimizing the placement. Interestingly, on fat-trees the
best matrix statistic is the one that needs to get input from the
number of cores per socket. It is clear that other phenomenons,
such as cache effects, contentions, message size distributions,
etc. have to be taken into account to describe performance
more accurately.

This work has some limitations. Hence, it would be inter-
esting to extend this study towards several directions. First,
hypotheses have only been tested on few nodes. Tests on
more nodes, with more levels of switches or with more hops,
could be relevant since often applications need a lot of nodes.
With that, a study on how the number of nodes influences the
correlations could be a good further work. In addition, we want
to extend it to other architectures and topologies. Then, using
the communication matrix as input for placement algorithm
has some limitations. It does not include the time dimension
and it can be restricting for applications having several phases
during their execution. Moreover, such model makes difficult
to estimate correctly communication contention. Also, we do
not take account of the distribution of the sizes of the messages
in the communication. In future work, we intend to refine the
communication matrix model to improve model consistency.
Another extension could be to test other applications (such
as HPCG, Kripke, miniFE, SNAP. . . ) and make hypotheses
based on the categorization of applications.
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