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Abstract

The paper addresses the problem of matching and

scheduling of DAG-structured application to both minimize

the makespan and maximize the robustness in a heteroge-

neous computing system. Due to the conflict of the two ob-

jectives, it is usually impossible to achieve both goals at the

same time. We give two definitions of robustness of a sched-

ule based on tardiness and miss rate. Slack is proved to be

an effective metric to be used to adjust the robustness. We

employ ǫ-constraint method to solve the bi-objective opti-

mization problem where minimizing the makespan and max-

imizing the slack are the two objectives. Overall perfor-

mance of a schedule considering both makespan and ro-

bustness is defined such that user have the flexibility to put

emphasis on either objective. Experiment results are pre-

sented to validate the performance of the proposed algo-

rithm.

Keywords: DAG, task scheduling, robustness, heteroge-

neous system, genetic algorithm

1 Introduction

Efficient scheduling of application tasks is critical to

achieving high performance in parallel and distributed sys-

tems. The problem can be stated as assigning tasks of a par-

allel application to distributed computing systems so that

the schedule length, or makespan can be minimized. A va-

riety of application models exist in the literature of task

scheduling. For example, a parallel application with data

dependencies among subtasks is usually modeled as a Di-

rected Acyclic Graph (DAG). Problem of scheduling this

type of application is usually NP-hard. Thus, various of

heuristic approaches have been developed to solve the prob-

lem [1, 16, 18, 22, 23, 24, 28]. The most studied heuristic

methods are so called list scheduling algorithms [18]. Other

types of heuristics include clustering algorithms [16], du-

plication based algorithms [17] and guided random search

methods such as genetic algorithm and simulated anneal-

ing [15].

Although differing in the way of modeling target com-

puting systems (e.g. heterogeneous vs. homogeneous pro-

cessors, with vs. without communication cost etc.), the

methods mentioned above are all based on a deterministic

model. In this model, all information about the tasks (du-

rations) and relationships among them (dependencies in the

DAG) are supposed to be known by the scheduling algo-

rithm a priori. It is assumed that task execution time can

be estimated and does not change during the course of exe-

cution. However, this assumption does not usually hold in

a real computing environment. In many cases, the actual

execution time of a task is different from the expected one.

The problem can be dealt with in several ways. For exam-



ple, dynamic scheduling algorithm assigns each ready task

according to the current status of the resource environment

aiming to avoid the inaccuracy of execution time estima-

tion. Another possible approach is to judiciously overesti-

mate the execution time of each task according to its vari-

ability hoping that the real execution time will not exceed

the estimated one. Thus, the schedule will perform as well

as expected. However, this approach could result in a low

resource utilization. In this paper, we take on the challenge

by using static algorithm to find schedules less vulnerable to

the non-deterministic nature of the task execution time, i. e.

more robust. As with other deterministic scheduling algo-

rithms, our scheduler is fed with the expected task execution

times. We then define a metric called slack for a schedule

based on the slack of individual task. The slack of a task

represents a time window within which it can be delayed

without extending the makespan and it is intuitively related

to the robustness. of the schedule. Larger slack tends to ab-

sorb the task execution time variance with little delay. Next,

we develop a genetic algorithm based heuristic to generate

schedules that are more robust compared with schedules ob-

tained by another popular heuristic called HEFT [24]. Ge-

netic based task scheduling algorithms [8, 15, 25, 26] nor-

mally use the makespan as their objective function. How-

ever, in order to take into account both the robustness and

makespan, it is necessary to include the slack in the ob-

jective function. Unfortunately, slack and makespan are

two conflicting metrics as shown in section 5.1. Optimiz-

ing only makespan will result in schedules with small slack

thus less robust to task execution time variability. Con-

versely, optimizing slack alone tends to give robust sched-

ule but with large makespan. To handle this multi-objective

optimization problem (MOOP) [10], we employed the ǫ-

constraint method. In this method, an upper bound of

expected makespan is given by ǫ · MakespanHEFT . The

scheduling algorithm tries to find the schedules with maxi-

mal slack without exceeding the specified upper-bound. Al-

though the robustness of a schedule is a desirable property

and conceptually easy to perceive, it is difficult to measure

quantitively. There are several attempts to define it accord-

ing to different perspectives of the problem [2, 3, 12, 19].

We give two new measures of robustness. based on tar-

diness and miss rate in this work. Results show that the

proposed algorithm can effectively trade off makespan for

robustness.

The rest of the paper is organized as follows: In the next

section, we provide some related work about robust task

scheduling. In Section 3 the robust task scheduling prob-

lem is described. Section 4 presents a genetic algorithm

based approach to solve the bi-objective optimization prob-

lem. We show some experimental results in Section 5. The

paper concludes in Section 6.

2 Related work

A large amount of research has been carried out in deal-

ing with uncertainty in task scheduling, aiming to make

schedules more robust to the uncertainty. In [9], the authors

conduct a survey about some of the research performed

within the Artificial Intelligence and Operations Research

communities. The survey shows that very little understand-

ing or characterization of dynamic, uncertain scheduling en-

vironments is available. Many issues such as how to strike

a balance between robustness and other scheduling perfor-

mance metrics need be addressed. Chiang and Fox [7] study

the job shop scheduling problem with deviations in sched-

uled operation time due to the uncertainty of machine break-

down. Their idea is to add slack to protect the job from

the need of rescheduling. The uncertain processing time

was modeled with several types of fuzzy numbers. Leon

et.al. [19] redefine the evaluation function of a schedule

to include the robustness. A number of robustness mea-

sures are developed and evaluated in the context of job shop

scheduling. The uncertainty in their model is due to disrup-

tion. The authors define the slack for each job as the amount

of room it has to shift within the schedule without breaking

any constraint nor extending the makespan. Experiments

show that the mean job slack was a good predictor of aver-

age schedule delay.

In [20, 21], the problem of scheduling tasks with prece-

dence constraint and communication disturbances is stud-

ied. The authors propose a partially on-line scheduling al-

gorithm based on critical paths to deal with the possible dis-

turbances. An off-line schedule is generated first based on

estimation of communication time. Then a partial order is

computed by adding precedences between tasks assigned to

the same processor according to some rules. At execution

time, a complete schedule considering the static schedule

and partial order can be obtained use some specified pol-

icy. Their model only considered uncertainty of commu-

nication delay. In addition, processors were assumed to be

identical. Gupta et.al. [14] consider the problem of schedul-

ing precedence task graph with disturbances in computation

and communication times. Their solution to the problem is

to add some extra edges to protect the off-line schedule from

performance degradation. The purpose of adding so called

“pseudo-edges” is to wait for high priority tasks to become

ready in order to avoid situations where high priority tasks

cannot be executed according to the static schedule because

of disturbances. Robust scheduling of meta-programs is in-

vestigated in [5]. The authors give two measures of robust-

ness. The number of critical components within a sched-

ule is a good indicator of the robustness of the schedule.

The fewer critical components, the more robust the sched-

ule. Another measure of robustness proposed is the entropy

of the schedule which is based on the probability of an exe-



cution path that will become critical. However, determining

this probability is non-trivial. The authors argue that ro-

bustness analysis can improve the quality of the schedule by

showing that the number of safer components is increased.

Nevertheless, the performance of generated schedule is not

examined within the real computing environment. In this

paper, we compare the performance of schedules obtained

using our algorithm with those generated by another heuris-

tic (HEFT) in the real resource environment. Furthermore,

we propose two more expressive definitions of the robust-

ness of a schedule.

3 Robust task scheduling problem

In this section, we present a formulation of robust

scheduling a task graph.

3.1 Basic Models

A task graph is defined by G = (V , E), where V =
{v1, v2, ..., vn} is the set of n tasks. E is the set of directed

arcs or edges between the tasks that maintain a partial or-

der among them. The partial order introduces precedence

constraints, i. e. if edge ei,j ∈ E , then task vj cannot start

its execution before vi completes. vi is an immediate pre-

decessor of vj and vj is an immediate successor of vi. A

node with no predecessor is called an entry node and a node

with no successor is called an exit node. Matrix D of size

n × n denotes the communication data size, where di,j is

the amount of data to be transferred from vi to vj . A het-

erogeneous multiprocessor computing system is composed

of a set P = {p1, p2, ..., pm} of m fully connected proces-

sors. We assume that all inter-processor communications

are performed without contention and computation can be

overlapped with computation. To each task vi, there is an

associated vector representing its minimal duration on each

processor, i. e., the best case execution time (BCET ). B
is an n × m matrix where bi,j gives the best case execution

time of task vi on processor pj . Furthermore, we assume

that random variables ci,j are independent of each other.

The data transfer rates between processors are represented

by matrix T R of size m × m. Intra-processor communi-

cation cost is assumed to be zero. In this paper, we do not

consider the variation in data transfer rates.

A schedule represents the assignment of tasks onto pro-

cessors. It is denoted as a vector s = {s1, s2, ..., sm},

where si = {(vj1 , vj2), ..., (vjki−1
, vjki

)} denotes the task

execution order on processor i. ki is the number of task

nodes assigned to processor i. Fig. 1 illustrates an exam-

ple of task graph, a multiprocessor system and a sched-

ule. The schedule shown in Fig. 1(c) can be denoted as

{{(v1, v2), (v2, v4)}, {(v3, v5), (v5, v8)}, {(v6, v7)}, φ}.
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Figure 1. (a) An example task graph (b) A mul­

tiprocessor system (c) A schedule (d) A dis­
junctive graph of (a) with schedule (c)

Definition 3.1. Given a task graph G = (V , E) and a sched-

ule s = {s1, s2, ..., sm}, we denote by Gs the disjunctive

graph of G under schedule s as: Gs = (Vs, Es), where

Vs = V , Es = E
⋃

E ′. E ′ is the set of disjunctive edges.

E ′ = {ei,j |ei,j /∈ E , ∃k ∈ {1, ..., m}, s.t.(vi, vj) ∈ sk}.

The data size matrix associated with Gs, Ds is:

ds,ij =

{

0 ∃k ∈ {1, ..., m}, s.t.(vi, vj) ∈ sk

dij otherwise
(1)

Fig. 1(d) represents the disjunctive graph of (a) with

schedule shown in (c). Here, E ′ is illustrated in dashed line.

In traditional list scheduling algorithms such as those

proposed in [11, 23, 24, 27], task is assigned to a “best”

processor one by one according to a pre-computed order.

After the last task is scheduled, its finish time becomes

the makespan of the whole schedule. There is only one

makespan value for each schedule. This is not the case

in robust task scheduling where task execution time varia-

tion is considered (in our experiments, the actual execution

times will be modeled by random variables). We call it a

realization of a schedule when the task graph is executed

in the real resource environment according to the schedule.

Clearly, each realization of a schedule can result in different

makespans. The following claim states how we can obtain

the actual makespan of a schedule.

Claim 3.2. Given task graph G = (V , E) and a schedule

s = {s1, s2, ..., sm}, if each task starts to execute as soon

as it becomes ready, then the makespan corresponding to



the schedule s is the length of the critical path of disjunctive

graph Gs.

3.2 Slack

Using the concept of slack to manage uncertainty in

scheduling originates from the field of operations research.

In [19], the authors uses several surrogate measures based

on average slack time to generate schedules which are ro-

bust to machine breakdown and processing time variations.

Recently, Bölöni et. al [5] use slack to identify safe compo-

nents in DAG scheduling. A safe component will not cause

the increase of total makespan.

We propose to use the following as the definition of slack

of a task node:

Definition 3.3. Consider a task graph G, and a schedule

s for the task graph. The makespan of G under schedule

s is M . For a task node ni, let T l(i) denote its top level,

which is the length of a longest path from an entry node to

ni (excluding ni). The length of a path is the sum of all the

node and edge expected duration along the path, once the

schedule is computed. Let Bl(i) stand for its b level. The

bottom level of a node ni is the length of a longest path from

ni to an exit node [18]. Then the slack of ni is defined as:

σi = M − Bl(i) − T l(i) (2)

The average slack of task graph G is:

σ =
N−1
∑

i=0

σi/N (3)

where N is the size of task graph.

It can be shown that definition ( 2) is equivalent to the

one proposed in [5]. The usefulness of slack in absorbing

the uncertainty in task processing time can be revealed by

the following theorem.

Theorem 3.4. Let ni be a node with slack σi. If the dura-

tion of ni exceeds it expected duration by ∆i ≤ σi then the

makespan is unchanged, provided that all other nodes have

a duration that does not exceed the expected duration. For

all tasks nj that are independent to task ni in the disjunctive

graph G′, their own slack is unchanged.

Sketch of proof. When the duration of a task i is in-

creased a new valid schedule is computed by shifting the

start time of its descendents. The definition of the slack en-

sures that it is possible to shift the start time of any task k
by value lower than σk. Thus, the makespan is unchanged

(because the slack of any exit task is 0). For any task j
independent of i in G′, its bottom level and top level are un-

changed after the shifting hence the slack of j is unchanged.

This leads to the immediate following corollary:

Corollary 3.5. If the expected time of several tasks is in-

creased by a value smaller than their own slack and these

tasks are all independent in the disjunctive graph then the

makespan is not increased.

3.3 Robustness

A robust schedule is defined as a schedule that is insensi-

tive to disturbances in task processing time. Robustness of

a schedule provides a measurement of the degree of the “in-

sensitiveness”. In [19], the authors define the robustness of

a schedule as the linear combination of expected makespan

and delay. This is one of the few early attempts to formal-

ize the definition of schedule robustness. Unfortunately, the

definition conflates the notion of robustness with the opti-

mization criteria of makespan minimization which limits its

applicability. In [5], although the authors devise an empiri-

cal formula for robustness measure as an objective function

to be optimized, it does not provide a way to evaluate the ro-

bustness of the schedule. We believe that the robustness of

a schedule should reflect how stable the actual makespans

will be with respect to the expected one. The overall per-

formance of a schedule should consider both the expected

makespan and the robustness. We propose two definitions

in light of this perspective.

Definition 3.6. Let M0(s) denotes the expected makespan

of schedule s obtained with expected task execution time

and Mi(s) the real makespan with ith realization of ex-

pected task execution times. The relative schedule tardiness

is:

δi(s) =
max(0, Mi(s) − M0(s))

M0(s)
(4)

The first definition of robustness of schedule s is:

R1(s) =
1

E(δi(s))
(5)

where E(·) represents the expectation operator.

Definition 3.7. M0(s) and Mi(s) are defined as above. N
realizations of the expected task execution times are per-

formed. Let M = {Mi(s)|Mi(s) > M0(s)}. The schedule

miss rate is: α(s) = ‖M‖
N

. Then, the second definition of

robustness of schedule s is:

R2(s) =
1

α(s)
(6)

4 A Bi-objective Task Scheduling Problem

As noted, there are two objectives in the context of ro-

bust task scheduling, namely minimizing the makespan and



maximizing the robustness. In addition, we use average

slack as the robustness measurement. The task of finding

optimum solutions in this case is a bi-objective optimization

problem. As will be shown in Section 5.2, these two objec-

tives are conflicting. Different solutions produce trade-offs

between the two objectives, which means there is no single

optimum solution. There exist a number of solutions which

are all optimal. These solutions are called non-dominated

solutions [10]. In dealing with such bi-objective optimiza-

tion problem, a few commonly used classical methods can

be employed. In the next section, we will briefly describe

the ǫ-constraint method [10] used in this study.

4.1 ǫ­constraint Method

ǫ-constraint method is proposed by Chankong and

Haimes [6]. It is based on a scalarization where one of

the objective function is optimized while all other objec-

tive functions are bounded by some additional constraints.

In the context of this study, the ǫ-constraint method can be

formulated as follow:

{

Maximize σ

subject to M0(s) < ǫ · MHEFT

(7)

where σ is the average slack as defined in Eqn. 3. ǫ is

a user defined parameter. MHEFT is the makespan of the

schedule generated by the popular HEFT algorithm [24].

4.2 A Bi­objective Genetic Algorithm

We are now in a position to introduce the bi-objective ge-

netic algorithm. Genetic algorithm (GA) is a powerful tool

in finding global optimal solutions in large search spaces. It

has been used extensively in task scheduling [15, 25, 26].

There are many approaches to GAs in the literature. In this

study, we implement a standard GA. In a standard GA, the

first step is to encode any possible solution to the problem

as a chromosome. Each chromosome represents a solution

where a set of chromosomes is referred to as a population.

Then an initial population is generated as the first genera-

tion from which the evolution starts. Each chromosome is

associated with a fitness value which represents the quality

of the solution. The algorithm next evaluates the quality

of each chromosome with problem-dependent fitness func-

tion. Selection, crossover and mutation are applied subse-

quently to the population to generate population with bet-

ter expected overall quality than the previous generation.

These steps are repeated until the solution is converged ac-

cording to predefined criteria. We present the details of each

step of the bi-objective genetic algorithm as follow.

4.2.1 Chromosome representation

In GA, a chromosome representation, also called encoding,

of a solution is a data structure that holds the information

about the individual solution. In our GA based schedul-

ing algorithm, each chromosome ci consists of two parts,

namely the scheduling string and assignment strings. The

scheduling string is a topological sort of the task graph. This

represents the execution order of the tasks. In a valid solu-

tion, the ordering of task node in the scheduling string must

observe the precedence constraints of the task graph. In

the second part, p assignment strings represents the task as-

signment in each processor. Each string includes all tasks

assigned to the processor that the string represent and the

order of execution of the tasks on that processor. Includ-

ing scheduling string in the chromosome can avoid illegal

solutions where the precedence constraints are violated. In

crossover and mutation steps, the scheduling string is used

to enforce the precedence constraints among tasks.

Each generation of population contains a set of chromo-

somes. We denote the size of the population as Np. In the

GA, this size is kept constant throughout the evolution.

4.2.2 Initial population generation

Before the GA can evolve, an initial population must be

generated. For each chromosome, a new scheduling string

is produced by randomly generating a topological sort list.

In forming the assignment strings, the algorithm chooses

each task ni from the newly created scheduling list in order

and selects a processor pj randomly. Then ni is appended to

the tail of string sj which represents the assignment string

of pj . As suggested in [25], it is a common practice in GA to

incorporate solutions from some non-evolutionary heuris-

tics into the initial population aiming to reduce the time

needed for finding a near-optimal solution. In our GA, we

include one chromosome that represents the solution from

HEFT [24] in the population along with those generated

randomly.

Newly generated chromosome are checked for unique-

ness. If a new chromosome is identical to any of previously

generated ones, it is discarded. Identical chromosomes

could lead to a premature convergence where all chromo-

somes in a population have the same fitness values.

4.2.3 Fitness function

As noted, we use ǫ-constraint method to solve the multi-

objective optimization problem. In the GA, our goal is to

maximize the average slack of the schedule subject to the

constraint that the makespan will not exceed some prede-

fined threshold as formalized in Eqn. 7. We can classify the

individual solutions of the population into two categories,



namely feasible (F) and infeasible (F ′) solutions. Individ-

uals in the first category satisfy the constraint in Eqn. 7.

Otherwise, they are categorized as infeasible solutions. The

tenet of ǫ-constraint method in dealing with MOOP is to

choose one objective function as the only objective and the

remaining objective functions as constraints. Therefore,

those solutions which violate the constraint should be pe-

nalized in the fitness values. In light of this observation, the

fitness of a chromosome ci is set as follow:

fitness(ci) =



















σ

if ci ∈ F

min{fitness(ci)|ci ∈ F} · ǫ·MHEF T

M0(ci)

if ci ∈ F ′

(8)

where σ, ǫ, MHEFT and M0 are defined the same as those

in Eqn. 7. For feasible solutions, the larger σ, the fitter. On

the other hand, for infeasible solutions, those severely vio-

late the constraint are penalized more. Note that the above

fitness function is population-based, where individual chro-

mosome’s fitness is related to other chromosomes’ fitness

values.

Elitism is employed in the GA where the chromosome

with smallest fitness value in the new population is re-

placed with the fittest chromosome in the current popula-

tion. Elitism is an important mechanism that guarantees the

quality of the best solution found over generations is mono-

tonically increasing.

4.2.4 Selection

The primary objective of the selection operator is to empha-

size good solutions and eliminate bad ones in a population,

while keeping the population size constant. It is designed

to improve the average quality of the population by giv-

ing individuals of higher quality a higher probability to be

copied into the next generation. There are several selection

schemes proposed in the literature, such as proportionate

selection, ranking selection, tournament selection. It has

been shown [13] that the tournament selection has better

convergence and computational time complexity properties

compared to any other selection operator that exist in the

literature, when used in isolation. We implement the binary

tournament in our GA. It works as follows: Choose two

individuals randomly from the population and copy the bet-

ter one into the intermediate population. Then another two

individuals are picked and the better one is put into the in-

termediate population. This process is repeated 2Np times.

Each individual can be made to participate in exactly two

rounds of tournaments if done systematically. The best so-

lution in a population will win both times, therefore making

two copies of it in the new population. Similarly, the worst

solution will lose in both tournaments and will be removed

from the population. In this way, the average quality of

the intermediate population is improved. The intermediate

population is subject to crossover and mutation operators to

produce the next generation.

4.2.5 Crossover

In GA, crossover is an operator that combines the informa-

tion of two individuals to produce one or two new individ-

uals. The most common form of crossover involves two

parents that produce two offspring. By exchanging parts of

parent strings, usually starting from one or two randomly

chosen crossover point, offspring inherit desirable qualities

from both parents. In this study, an single-point crossover is

implemented. Two strings are chosen randomly as the par-

ents to perform the crossover. First, a cutoff position is ran-

domly selected. This divides the scheduling strings of both

parents into two parts which we call them the left and right

parts. Then the tasks in each right parts of the chromosome

are reordered to form the scheduling strings of the offspring.

The left parts of the scheduling strings remain intact. The

new ordering of the tasks in one right part is the relative po-

sitions of these tasks in the other parent’s scheduling string.

This guarantees that the newly generated scheduling strings

are valid topological sortings of the task graph. Finally, for

the assignment strings of the offspring, we first convert each

parent’s assignment string into a processor string represent-

ing each task’s assigned processor number. Then, we ran-

domly select a cut off point and exchange the right parts of

the converted strings. Now the two new processor strings

represent two new assignments. The offspring’s assignment

strings are formed by converting the processor strings back

to their corresponding assignment strings.

In order to preserve some good strings selected dur-

ing the selection operator, not all strings in the population

are used in crossover. If a crossover probability of pc is

used then 100pc% strings in the population are used in the

crossover operation and 100(1−pc)% of the population are

simply copied to the new population.

4.2.6 Mutation

Mutation is GA’s another way to explore the solution space.

It can introduce traits not in the original population and

keeps the GA from converging prematurely before sampling

the entire solution space. The classical mutation operator

flips single bits in a string with a small mutation probability

pm. The mutation operator implemented in this GA works

as follows. First, an individual is randomly chosen. Next,

the mutation operator is applied to the selected chromosome

with probability pm. Then mutation operator selects a task

v randomly from the scheduling string and put it to a new

position such that the resulting new scheduling string does

not violate the precedence constraint of the task graph thus



guaranteeing the validity of the solution. This can be done

by first identifying the range that the select task can be put.

The range is defined as the positions between the last posi-

tion of the immediate predecessors of v and the first position

of the immediate successors of v in the original scheduling

string. Any position in the range is a valid choice. After

task v is put into a new position in the scheduling string, a

new processor p for v is picked at random. v is inserted into

processor p’s assignment string while keeping the relative

order of all the tasks assigned on that processor according

to the scheduling string.

5 Experimental results and discussions

Our goal in the experiments is to answer the follow-

ing questions: (1) Is slack an effective metric to control

the robustness of a schedule? (2) How do the schedule’s

makespan and robustness change with respect to the ǫ value

in the ǫ-constraint method used for solving the bi-objective

optimization problem? (3) What is the best ǫ value when

the overall performance which considers both the robust-

ness and makespan is to be optimized?

In order to answer the above questions, extensive simu-

lations have been carried out. Random task graphs are gen-

erated using same method as in [22] with the following in-

put parameters: task number n, shape parameter α, average

computation cost (cc), communication-to-computation ra-

tion (CCR). In the experiments, we set n = 100, α = 1.0,

cc = 20 and CCR = 0.1. The best case execution time

(BCET ) matrix B is generated with method suggested

in [4]. It is a coefficient-of-variation(COV ) based gener-

ation method. COV is a set of values act as measures of

heterogeneity. There are two different kinds of heterogene-

ity considered, namely task heterogeneity and machine het-

erogeneity. Task heterogeneity represents the the degree to

which the task execution times vary for a given machine.

Similarly, machine heterogeneity is the the degree to which

the execution times vary for a given task. Four parame-

ters, µtask,Vtask,µmach,Vmach, are defined in [4]. Among

them, µmach can be obtained from the first two parame-

ters. Thus, µtask, Vtask, Vmach are three input parameters

for the generation method. In fact, the average compu-

tation cost cc has the same definition as µtask. We set

Vtask = 0.5,Vmach = 0.5 to represent medium task and

machine heterogeneities.

One important aspect of the experiments is to study how

our algorithm will perform under different degrees of un-

certainty in the actual resource environment. We use uncer-

tainty level as a measurement of such degrees. Let ULi,j

be the uncertainty level of the execution time of task vi on

processor pj , then the real execution time ci,j is a uniformly

distributed random variable U(bi,j , (2ULi,j−1)bi,j), where

bi,j is the best case execution time. So the expected ex-

ecution time of vi on pj is ULi,jbi,j . The ULi,j matrix

is generated similarly to the way we set the computation

cost matrix. To start off, we have an average UL value for

the graph. Then a vector q = {q1, q2, ...qn} representing

the expected uncertainty levels of each task is generated

according to gamma distribution G(1/V 2
1 , UL · V 2

1 ). Fi-

nally, each ULi,j is obtained according to gamma distribu-

tion G(1/V 2
2 , qi · V

2
2 ). We set V1 = V2 = 0.5 in this study.

The parameters of GA is set as follows: Np = 20,

pc = 0.9 and pm = 0.1 . The stopping criteria is that the

number of iterations has reached 1000 or the current best

solution has not improved over the last 100 iterations. Each

experiment is repeated with 100 task graphs and for each

task graph we have 1000 realizations of the expected task

execution times.

5.1 Effectiveness of slack

In this section, we present our simulation results for

studying the effectiveness of slack in increasing the robust-

ness of the schedules. The results are shown in Fig. 2 and 3.

Fig. 2 depicts the evolution process of a GA when the ob-

jective is to minimizing the makespan. The solid lines rep-

resent makespan changes under different uncertainty lev-

els. An initial observation is that when uncertainty level is

low, GA can find schedules that have smaller makespans.

For higher uncertainty level, GA fails to generate schedules

with smaller makespans. Remember that when scheduling

is performed, GA only have the information about the ex-

pected task execution times. Each point forming the solid

lines in Fig. 2 represents the makespan of the schedule gen-

erated by GA when executed in the “real” environment

with varying task execution time requirements. In fact,

the expected makespan, which is the makespan of sched-

ule when executed with the expected task execution times,

is decreasing during the evolution process. For large uncer-

tainty level, GA tends to “overfitting” the schedule based on

the expected task execution times which leads to increas-

ing makespan in the real resource environment. Fig. 2 also

shows that when minimizing the makespan is the goal of

GA, schedules will have smaller slacks and robustnesses

with the advance of the stages of evolution process. This

is due to the fact that a schedule with small makespan tends

to leave little time “window” for each task thus resulting

in small slack. For small uncertainty level, the decrease of

slack and robustness is more significant because GA finds

schedule with considerably smaller makespan at such case.

Fig. 3 presents the evolvement of makespan, slack and

robustness when the GA’s goal is to maximizing the slack

of the schedule. It can be observed that with the increase of

slack, the robustness also improves. At the same time the

makespan rises substantially.

From Fig. 2 and 3, we conclude that the slack is an effec-



tive metric that can be used to increase the robustness of a

schedule. The goals of maximizing the slack and minimiz-

ing the makespan are conflicting. We present the results of

the bi-objective optimization problem in the next sections.
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Figure 2. Evolution of a GA when minimizing
the makespan is the objective function
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Figure 3. Evolution of a GA when maximizing
the slack is the objective function

5.2 Results of solving the bi­objective optimiza­
tion problem

In this section, we show the results of solving the bi-

objective optimization problem using ǫ-constraint method.

First, we let ǫ = 1.0, which means that during the evolu-

tion, only those schedules with expected makespan less or

equal to the makespan of schedule obtained with HEFT are

feasible schedules. Infeasible schedules always have fitness

values smaller than any feasible schedule. Fig. 4 shows the

log-ratio of relative improvement of several performance

metrics over those of schedules generated by HEFT algo-

rithm. We observe the following from this figure: (1) the

average makespan of the schedules obtained with GA al-

gorithm still outperforms that of the schedules generated

by HEFT algorithm especially when the uncertainty level

is not very large. Remember that the main purpose of this

experiment is to maximize the robustness while restricting

the makespan not to exceed that of schedules obtained by

HEFT. (2) the figure clearly indicates that robustness based

on tardiness (R1) improved significantly. For example, at

UL = 2, the robustness is increased by 13%. The improve-

ment is less significant at lager uncertainty level. This is due

to the fact that at large uncertainty level, increased slack,

which is not much because we limit the makespan increase,

is not sufficient to absorb the uncertainty, thus limiting the

improvement of robustness. (3) Similar observations can be

made for robustness based on miss rate (R2). The improve-

ment is less considerable compared with that of R1.
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Figure 4. Performance improvement over
HEFT (ǫ = 1.0)

Because limiting the ǫ value also limit the chance of ro-

bustness improvement especially when uncertainty level is

large as shown above, we next investigate how the robust-

ness can be improved by relaxing the ǫ requirement. Fig. 5

and 6 shows the comparison of the improvement of R1 and

R2 at various uncertainty levels to the improvement when

ǫ = 1.0. The y-axes are log-scaled. As can be seen from

the figures, with the increase of ǫ value, there will be more

slack to absorb the uncertainty, thus improving the robust-

ness of the schedules. Also we observe that for large uncer-

tainty level, the relative improvement is larger and is leveled

at larger ǫ values. This can be explained by noticing that at

large uncertainty level there are more “room” for improve-

ment, so increasing ǫ can be very effective. For example, at

UL = 2.0, there is relatively no more improvement of R1



after ǫ = 1.6. By contrast, at UL = 8.0, the robustness is

still improving when ǫ = 2.0. We can make another obser-

vation by comparing Fig. 5 and 6: the improvements of R2

at different uncertainty level is not as disparate as those of

R1. It suggests that R2 is less sensitive to uncertainty level

as R1.
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Figure 5. R1 improvement over ǫ = 1.0
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Figure 6. R2 improvement over ǫ = 1.0

Since makespan and robustness are two important met-

rics in evaluating a schedule and are conflicting with each

other. We propose to use the following weighted sum of the

two metrics as a mean to represent the overall performance

of schedule s.

P (s) = r log
MHEFT

M(S)
+ (1 − r) log

R(s)

RHEFT

(9)

where MHEFT , RHEFT is the makespan and robustness of

the schedule obtained by HEFT algorithm,respectively. r
(0 ≤ r ≤ 1) is a weight given by the user. If the user puts

more emphasis on having a small makespan, large r should

be applied. Otherwise, if the user prefers a schedule with

relatively large robustness, then r should be set to a number

close to 0.

Fig. 7 and 8 show the values of ǫ (1.0 ≤ ǫ ≤ 2.0)

when best overall performance with different r is achieved.

We use R1 (resp. R2) in the definition of overall perfor-

mance (Eqn. 9 in Fig. 7(resp. Fig. 8)). With the increase

of r, we put more emphasis on the makespan. The figures

clearly indicates that in order to achieve best overall per-

formance with large r, small ǫ value should be used. On

the other hand, if schedule with large robustness is desired

(r is small), then large ǫ value is preferable. Furthermore,

for larger uncertainty level, larger ǫ is required in order to

obtain better overall performance.
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Figure 7. The best ǫ value for overall per­

formance based on R1 and makespan
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Figure 8. The best ǫ value for overall per­

formance based on R2 and makespan

6 Conclusions

In this paper, we develop an algorithm for matching and

scheduling of DAG-structured applications with the goals

of both minimizing the makespan and maximizing the ro-

bustness. Due to the fact that the two goals are conflicting,

satisfying both objectives at the same time is usually impos-

sible. We use ǫ-constraint method to solve the bi-objective

optimization problem. We prove that slack is an effective



metric to be used to adjust the robustness and it is con-

firmed subsequently that slack and robustness are positively

related. Two definitions of robustness based on tardiness

and miss rate are proposed. Experiments show that consid-

ering the slack as an objective can greatly improve the ro-

bustness while we confine the makespan not to exceed that

of HEFT. By relaxing the requirement of makespan, the ro-

bustness can be improved furthermore. The algorithm is

found to be flexible to find the ǫ value in certain user pro-

vide range so that the best overall performance considering

both makespan and robustness is achieved.

Our future works are directed toward guiding the

scheduling algorithm with the stochastic information about

the environment. Currently the algorithm is provided with

the expected system performance, such as the expected pro-

cessing power (which leads to the expected task execution

time) and network speed. We believe that stochastic in-

formation about the computing system will direct the al-

gorithm to generate more robust schedules.

References

[1] I. Ahmad and Y. Kwok. A new approach to scheduling par-

allel programs using task duplication. In Proc. Int’l Conf

Parallel Processing, volume 2, pages 47–51, 1994.
[2] S. Ali, A. Maciejewski, H. Siegel, and J.-K. Kim. Measur-

ing the robustness of a resource allocation. IEEE Trans. on

Parallel and Dist. Syst., 15(7):630–641, 2004.
[3] S. Ali, H. J. Siegel, and A. A. Maciejewski. The robustness

of resource allocation in parallel and distributed computing

systems. In ISPDC/HeteroPar’04, 2004.
[4] S. Ali, H. J. Siegel, M. Maheswaran, D. A. Hensgen, and

S. Ali. Task execution time modeling for heterogeneous

computing systems. In Heterogeneous Computing Work-

shop, pages 185–199, 2000.
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