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Abstract—Programming multicore or manycore architectures
is a hard challenge particularly if one wants to fully take advan-
tage of their computing power. Moreover, a hierarchical topology
implies that communication performance is heterogeneous and
this characteristic should also be exploited. We developed two
load balancers for Charm++ that take into account both aspects
depending on the fact that the application is compute-bound or
communication-bound. This work is based on our TREEMATCH
library that compute process placement in order to reduce an
application communication cost based on the hardware topology.
We show that the proposed load-balancing scheme manages
to improve the execution times for the two classes of parallel
applications.

I. INTRODUCTION

Simulation is now wide-spread in the fields of science
and technology, because actual experimentation, even when
possible at all, is becoming increasingly costly both in terms
of time and resources. This simulation step itself is often
conducted as a scientific application executed on a dedicated
computer. Moreover, since these simulations are expected to
be more and more refined and precise and to deal sometimes
with very large time scales, the required computing power is
therefore huge. As a consequence, delivering this computing
power to the scientific applications is a challenge that needs
to be addressed.

From a hardware perspective, a single type of computers
is able to deliver the required computing power: parallel
computers. However, programming a parallel architecture is
not a trivial undertaking because of the intrinsic concurrency of
these machines and of the multiplicity of the computing nodes
and cores present. As a consequence, dedicated paradigms,
tools and environments have to be used to ease the task of
developing parallel applications.

Structuring the application and exposing its parallelism
as much as possible is an efficient solution advocated
by several programming environments such as Cilk [1] or
Charm++ [2] [3] for instance. Such environments rely on fine
grain parallelism and create software computing entities that
usually outnumber the physical computing units available in
the parallel architecture. This induces execution issues that
have to be handled by the environment’s runtime system.
For instance, the workload can be very different from one
core to the other, resulting in a global imbalance that may
harm the application’s performance. As a consequence, load
balancing schemes are usually proposed in these environments

and improve the performance by optimizing the use of the
available resources.

However, load balancing schemes fail to grasp an impor-
tant aspect of today’s parallel computers: their hierarchical
and heterogeneous nature, communication wise. Indeed, since
the advent of multicore/manycore CPUs, organization of the
memory banks as well as the presence of several cache levels
lead to non-uniform memory access times. That is, the time
to access or move data depends on the physical location of
the process inside of the computing node. Moreover, a good
load balancing scheme does not always guarantee that the
communication in the application will be optimized as well.
As a consequence, load balancing schemes can be enhanced in
order to take into consideration not only the load of the various
cores, but also the amount of communication between the
process executing the various tasks of the parallel application.
This can be achieved by matching the communication pattern
of the application to the underlying hardware.

Therefore, the various application processes have to be
placed carefully on the various cores/CPUs of the machine.
This technique can improve application performance and ul-
timately, scalability since communication costs are decreased.
So far, a compelling idea is to try and regroup on the same
computing node the processes sharing the most data so as to
reduce the application communication costs [4], [5]. However
it now becomes necessary to push further this idea and apply
it to the subsets of application processes within a computing
node to take advantage of the complex structure of its memory.

In previous works [6], we proposed a library called
TREEMATCH that computes a relevant process placement
and that targets clusters of multicore NUMA nodes. Since
TREEMATCH yields promising results for message-passing
based applications [7] on such targets, we believe that it could
benefit to other programming models, and in particular the fine
grain ones, by enhancing their load balancing schemes so as to
better take advantage of clusters of NUMA multicore nodes.
In this paper, we extend this library to deal with constraint
placement and we study the results achieved by two new
topology-aware load-balancers for applications developed with
the Charm++ framework. The choice of the load-balancer
depends on the class of the application: compute-bound or
communication bound. By introducing TREEMATCH in the
load balancing schemes of Charm++, we managed to outper-
form some other communication-aware schemes available.

This paper is organized as follows: Section II exposes the



motivation and context of the work while Section III lists vari-
ous related works. The TREEMATCH algorithm is described in
Section IV and its integration in the load-balancing scheme of
Charm++ is described in Section V. The results achieved are
detailed in Section VI while Section VII concludes this paper.

II. MOTIVATIONS AND CONTEXT

As discussed in the introduction, scientific applications that
are in need of a massive computing power rely on parallel
computer since they are the only architectures able to deliver
the requested resources. However, a gap remains between the
performance achieved at the application level and the perfor-
mance of the underlying hardware. This issue can be addressed
in several ways: first, using an appropriate programming model
can help to improve the overall performance of the target
application. Indeed, according to the application structure and
its degree of parallelism, different programming models or
frameworks might be more efficient. For instance, coarse grain
applications with explicit communications are likely to use
an interface such as the Message Passing Interface (MPI),
while finer grain ones without explicit communications are
likely to employ a standard such as OpenMP for instance.
The target architecture is also a determinant factor in the
choice of the programming tools. For instance, for cluster-
based architectures featuring an interconnection network, it is
necessary to exchange messages between the nodes, thus a
message-passing based paradigm is likely to be the best fit,
while in the case of shared-memory machines, the range of
choices is wider since models with implicit communications
are also possible (e.g. PGAS, multithreading, etc.) 1.

Second, it is necessary to use an optimized implementation
of the chosen programming standard. This encompasses two
distinct aspects: on one hand the implementation of the func-
tions defined by the standard should obviously be the most
efficient possible, on the other hand, the interactions of this
implementation with the underlying target hardware should
also be carefuly defined and enforced. This is usually the role
of the underlying runtime system (e.g. a process manager for
an MPI implementation). This runtime system will also trigger
mechanisms that can improve the overall performance of the
application. A mechanism such as load balancing falls into
this category. By dispatching the workload dynamcially (as
the application executes itself) on the various processors of
the architecture, one can expect a decrease in execution times.
However, most of load balancing schemes fail to fully take
into account other factors that have an impact on application
performance. Such factors include objects migration (when
balancing the load, processing entities are likely to migrate
from one core to another one) and communication costs for
instance.

However, these communication costs are increasingly dif-
ficult to understand, because the current parallel architectures
have undergone tremendous changes over the past few years.
Indeed, the amount of computing cores available inside a
node has increased dramatically. It is not uncommon to find
machines featuring a dozen of cores per processor, and this
number is expected to grow steadily in the forthcoming years.

1Our course, PGAS and OpenMP implementations for distributed memory
do exist, but their runtime system rely on the message passing paradigm for
their internode communications.

Moreover, this trend also impacts the memory organization and
layout: memory banks are scattered throughout the node and
the cache levels now form a complex, multi-level hierarchy.
As a consequence, the communication costs within a single
node are not homogeneous anymore. Practically speaking,
these costs for exchanging data or messages between processes
sharing the same node depend on their physical location (in
the node). This is known as Non-Uniform Memory Access
(NUMA) effects. An intuitive idea is therefore to place pro-
cesses that communicate the most to processors/cores that
are physically the closest to each other, because they share
more cache levels and the NUMA effects are less prominent.
Moreover, the increase of the memory resources does not
follow the same trend as the number of processors. Indeed, the
amount of memory available per core is expected to decrease.
As a consequence, the issue of reducing the communication
costs in a parallel application is going to become more and
more crucial, even for compute-bound applications as the
amount of communications in such applications is likely to
increase due to the scarcity of the memory resources.

The underlying physical architecture has thus to be mod-
eled in a convenient but realistic and usable fashion. One
way is to assess the performance of the hardware with sev-
eral benchmarks and to make use of these results to place
the processes accordingly. This quantitative approach lacks
dynamicity, requires to gather information prior to any appli-
cation run and is prone to measurement errors. Another way
to deal with this issue is to use a qualitative approach where
hardware organization and structure shall guide the placement.
The advantages of this approach are its flexibility since it does
not rely on a prior gathering of information, its genericity and
dynamicity, provided that a relevant tool is used to perform this
step. Currently, such a standard tool does not exist, but one can
nevertheless rely on a recent effort such as HWLOC [8] that
is available for a substantial range of hardware.

To sum up, our approach is to consider additional factors
when balancing the load for applications using a fine grain
programming model. These factors include the migration costs
and the communication costs between computing entities (e.g.
tasks, processes, objects, threads). As for the communication
costs, we decrease them thanks to a qualitative model of the
underlying hardware, which ensures dynamicity, flexibility and
genericity.

III. STATE OF THE ART

The issue of topology-aware mapping has been studied
previously [5], [9]. In particular, MPI implementations allow to
easily gather communication information such as the number
of messages or the amount of data exchanged. Besides, some
of these implementations feature means to bind processes
on processing units in their runtime systems (e.g. process
managers).

MPI 2.2 is a good example [10]. Beyond a static placement,
some works focus on online placement by relying on a tech-
nique called rank reordering ([7], [4]). Finally, Dummler [11]
explored the issue of hybrid, MPI + OpenMP application mul-
tithreaded process mapping. TREEMATCH [6] is an algorithm
which takes an application’s communication pattern as input
and the target machines’s architecture to compute a relevant
process placement.



Charm++ [2], [12] is a message passing-based program-
ming environment based on the C++ language. However, while
MPI considers processes in its programming model (with a
granularity that is most of the time coarse), Charm++ model
is based on a finer granularity by splitting computation in
smaller tasks called chares. These chares are characterized by
their CPU load, their input and output communication and
some other useful fields. This makes it easier to introduce
load balancing mechanisms. A strong advantage of Charm++
is therefore the possibility to design, plug and test load-
balancers transparently without changing the application code.
Moreover, several applications have been developed using
Charm++ in different scientific topics. For instance, it is the
case of NAMD [13] and LeanMD [14] (molecular dynamic
applications), or ChaNGa [15] (cosmological computations).

Common load balancing schemes, which take into ac-
count the CPU load on each processing unit, have been
extended in some works to take into account the topology of
the underlying architectures. In a previous work, Bhatelé &
Kalé [16] presented the benefits of topology aware mapping on
a torus topology. NucoLB and HwTopoLB [17] [18] apply load
balancing based on a quantitative approach of the topology
links (latency and bandwidth figures are necessary). Besides,
this kind of strategy requires to assess the target architecture
communication performance with appropriate tools before
running any application. Our solution based on TREEMATCH
is fully dynamic because we use only a qualitative approach
for our representation of the hardware topology.

IV. EXTENSION OF TREEMATCH TO ACCOUNT FOR
PLACEMENT CONSTRAINTS

0" 2" 4" 6" 8" 10" 1" 3" 5" 7" 9" 11"Cores: 
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0" 1" 2" 3" 4" 5" 6" 7"

0" 1" 2" 3" 4" 5" 6" 7"TreeMatchConst: 

TreeMatch: 

Fig. 1. A 2 : 3 : 2 topology tree modeling a node with two processors
featuring 6 PUs/cores each, where two PUs/cores share a common cache.
Note that the core numbering follows the physical one and not the logical one.
Two results are displayed. The basic TREEMATCH one and the TREEMATCH-
CONST one with constraints on leaves/cores number 0, 2, 4 and 1 as in the
example.

In this section, we present the process placement method
based on our TREEMATCH solution. The aim of our work is
to assign each process to its dedicated processing unit (usually
a core) in order to reduce communication costs between
processes. The core algorithm takes as input a matrix modeling
the amount of communication between processes and a repre-
sentation of the underlying hierarchical architecture modeled
as a tree where the leaves represent the processing units
(PUs) on which the processes should be mapped (see Fig. 1).
TREEMATCH considers balanced trees, that is, trees in which
the arity of the node at each level is the same. This enables the
following compact notation of trees: a1 : a2 : . . . : an where

n is the number of levels and ai is the arity of all the nodes
at level i. Therefore, the tree depicted in Fig. 1 is modeled
with this notation as: 2 : 3 : 2. TREEMATCH relies on several
algorithms. The first version was proposed in [6], [7]. In this
earlier version, when the number of PUs is larger than the
number of processes then, the user cannot specify which PUs
cannot be used and the algorithm decides where to allocate
the processes using only communication cost into account.
However, such approach is suitable only in the case of shared-
memory machines and when no load balancing is applied. In
our case, we target clusters of multicore nodes addressing load-
balancing issues. Moreover, if we consider eight processes to
be mapped on the architecture modeled in Fig. 1, there is no
guarantee that the earlier version of TREEMATCH would map
the processes evenly. Indeed, as shown in Fig 1, leaves number
8, 10 , 9 and 11 are not used. It is not possible to mark
a given subset of leaves as unused. To ensure an allocation
that comply to criteria of this type, we have designed an
enhanced version of the algorithm that is now able to take
into account constraints explicitly listing the PUs/leaves that
cannot be used for the mapping. This new version is called
TREEMATCHCONST to account for the constraints given by
the user.

For instance, imagine that the user wants to prevent
PUs/leaves number 0, 2, 4, and 1 to be used for some reason.
We give this information as new input to the algorithm along
with the topology description and the communication pattern
as shown in Algorithm 1. For the sake of simplicity, we assume
that the number of the constraints plus the dimension of the
communication matrix is equal to the number of leaves of
the tree. If this is not the case, the workaround consists of
padding the communication matrix with null values until we
reach the required dimension and then, once the result is
output, we simply ignore the mapping of the virtual processes
corresponding to the padded values.

TREEMATCHCONST is a recursive algorithm. In our exam-
ple, for the first call we have T , the tree depicted if Fig 1, m the
communication matrix displayed in Fig 2 and C = {0, 4, 2, 1}.
Let k be the arity of tree T for the corresponding recursive step
(k=2 for the first recursive step). In line 2 of the algorithm,
we k-partition the communication matrix but we take the
constraints into account. As the constraints state that three
leaves on the left subtree and one on the right subtree cannot be
used, we need to partition the communication matrix such that
exactly three processes are allocated on the left subtree and
exactly five on the right one with the goal of minimzing the
communnication cost between each partition. Unfortunately,
no graph partitioner is able to provide an unbalanced and
exact partitioning at the same time. For instance, Scotch [19]
provides only balanced partitioning while Metis [20] never
guarantees that a given partition has the exact specified size.
Therefore, we have implemented a simple, greedy, randomized
k-partitioner for performing this task. As random, greedy k-
partitioning does not necessary provide a very good solution,
we call this part a thousand times and keep the best solution.
In our example, the first three processes are mapped on the
left subtree and the five last processes on the right one. We
can then call recursively TREEMATCHCONST with new inputs
on each subtree. For instance, in the left subtree we have
only the communication matrix corresponding to the first three
processes (as shown in Fig. 3), the tree T is the one starting at



Proc 0 1 2 3 4 5 6 7
0 0 1000 10 1 100 1 1 1
1 1000 0 1000 1 1 100 1 1
2 10 1000 0 1000 1 1 100 1
3 1 1 1000 0 1 1 1 100
4 100 1 1 1 0 1000 10 1
5 1 100 1 1 1000 0 1000 1
6 1 1 100 1 10 1000 0 1000
7 1 1 1 100 1 1 1000 0

Fig. 2. Communication matrix example

Proc 0 1 2
0 0 1000 10
1 1000 0 1000
2 10 1000 0

Fig. 3. Communication matrix of the left subtree after step 1

the processors level and is of arity k = 3 and the constraints
are C = 0, 4, 2. When the algorithm reaches the bottom of the
tree the result can be aggregated. In our case, it is displayed
by Fig. 1.

It is worth to note that regardeless of the version of the
algorithm used, TREEMATCH uses structural information (a
topology tree) and never needs quantitative information about
the underlying hardware (e.g. bus speed, network bandwidth,
latencies, etc.) as opposed to other approaches such as Nu-
coLB [18] or Scotch [21]. We believe that this advocates for
our approach, as dealing with qualitative and structural infor-
mation does not require to assess the hardware performance
and is therefore insensitive to incorrect or partial measures.

Algorithm 1: The TREEMATCHCONST Algorithm
Input: T// The topology tree
Input: m // The communication matrix
Input: C // The constraints array

1 k ← arity at the top of the tree T .;
2 p←constraint k partition(k,m,C); // find partitions of size k
taking the constraints into account

3 tab m ← split com mat(C, k, p); // Split the communication
matrix in k parts according to the partition just found
above

4 tab C ← split constraints (C, k, T ) ; // Construct a tab of
constraints of size k: one for each partitions

5 if T is not a leaf then
// recursively call TREEMATCHCONST on the k
subtrees of the root of T ;

6 foreach i in 0..k − 1 do
7 execute TREEMATCHCONST on the ith subtree of T , tab m[i],

tab C[i].

8 r ← aggregate results of each subtrees;
9 else

10 r ← assign the process/constraint to T ;

11 return r as result for T ;

V. LOAD-BALANCING IN CHARM++ WITH TREEMATCH

Charm++ is a runtime system and a programming lan-
guage implementing the message passing paradigm. Unlike
MPI, Charm++ does not manipulate processes but independant
computing objects called chares. These fine grain objects can
be in higher numbers than the hardware processing units (e.g.
CPUs, cores). Moreover, if this model is used jointly with a

dynamic load balancing system, it can easily level the CPU
consumption and consequently improve the execution time of
applications.

But while some applications are limited because of a
huge imbalance (LeanMD [14] for example), some others
feature chares which exchange lots of data (e.g. kNeighbor
or Stencil3D). These differents behaviors led us to create two
distinct load balancers based on TREEMATCH. The first one,
called TMLB MIN WEIGHT, applies a communication-aware
load balancing scheme by favouring the CPU load balance.
To do so, it solves a maximum weight matching problem in
order to minimize chares migration. The second algorithm,
designed for communication-bound applications and called
TMLB TREEBASED, computes a placement of groups of
chares on each processing unit. Then, it considers each node
and enforces some load balancing while keeping as much
balanced as possible the chare placement in order to minimize
communication costs. We detail these two algorithms in the
following two sections.

A. Load balancing with communication and migration mini-
mization

As explained previously, some applications are very un-
balanced in terms of CPU load. However, such applications
also exchange data. Our goal is to address both issues, that
is load balancing improvement and communication costs de-
crease. That is why we designed an algorithm which carries
out some load balancing while keeping as close as possible
the communicating chares, taking into account the topology.
However, if we only take into account both problems, results
show marginal improvements. The reason comes from the
chares migration. When we consider all chares and reorder
them according to their communication exchanges or their
load, the probablity that a chare will stay on its original
processing unit is poor. The goal is therefore threefold : to
balance the load, to minimize communication costs and to
minimize chares migration. We detail, in our algorithm, how
we reduce these migrations by solving a maximum weight
matching problem.

This first load balancing algorithm can be found on Al-
gorithm 2. To explain it, we can consider an application
which creates a hundred chares and will be executed on
four cores. After a few iterations, Charm++ calls the load
balancing algorithm. First, it extracts the chares communi-
cation pattern from the application monitor (provided by the
Charm++ runtime). This results in a 100× 100 matrix. Then,
we create a fake topology tree by decomposing the order of
this matrix in prime factors. In our example, the topology tree
will be: 2 : 2 : 5 : 5. Then, we run TREEMATCH to find
an appropriate chares permutation in order to have the most
communicating chares as close as possible in the tree. Once we
obtain this permutation, we split it in a number of parts equal
to the number of cores (four in our case) of the underlying
architecture. In this case, each part corresponds to the group of
chares of each of the four subtrees of the second level of the
fake topology. Then, we apply the AssignChareOnCore
function as follows: we sort each part by decreasing load.
Hence, each part corresponds to a core. The main loop first
assigns each chare to its corresponding core by considering at
each iteration the less loaded core and its most loaded chare.



When a core has received all the chares of its part but it is
still the less loaded, we select chares from an other part. This
algorithm keeps a lot of communicating chares together and
applies load balancing using the less loaded ones. Therefore,
we can make a fine CPU load balancing. Moreover, at each
new chare assignement, we update a migration matrix such
as we increment m mig[old core][new core] when the chare
has to move from old core to new core.

At the end of this phase, we have as many groups of
chares as we have cores. The remaining question is how
to map this group of chares onto the physical cores. We
solve this problem with the goal of minimizing the chares
migration. Minimizing the migrations corresponds to solve a
minimum weight matching problem on the migration matrix.
Indeed, each entry m mig[i][j] gives the migration cost when
allocating group i on core j. A minimum weight marching of
this matrix is therefore an assignment of the groups to the cores
such that the sum of migration costs is minimized. Finding
such matching is done in polynomial time by the Hungarian
algorithm [22]

Algorithm 2: The TMLB MIN WEIGHT Algorithm
Input: m chares The communication matrix between chares
Input: n Order of m_chares
Input: fake T A fake topology tree with n leaves
Input: m mig The migration matrix between cores

1 ;
2 p←Permutation(m chares, fake T );
3 SortEachPartDesc(p, nbcores)
4 foreach i in 0..n do
5 c←LessLoadedCore();
6 chare←ChooseChare(c);
7 AssignChareOnCore(chare, c);
8 UpdateMigrationMatrix(m mig, chare)

99
10 h←HungarianAlgorithm(m mig);
11 foreach chare do
12 SetNewPe(chare, h)

B. Tree-based chares placement and load balancing

The algorithm of the previous section is designed for
compute-bound applications. In this section, we tackle the
issue of balancing the load for communication-bound appli-
cations. Here, the load balancer based on TREEMATCH first
reduces communication costs while balancing the load on each
processing unit. Our algorithm is presented on Algorithm 3.

For example, consider a 110 chares applications to be
executed on two nodes, eight cores architecture (four cores
per node). At the beginning of the execution, Charm++ groups
these chares to the cores. At each load-balancing step, the first
part of the algorithm consists in building the communication
matrix of these groups of chares, gather the topology and
apply TREEMATCH to permute these groups to the cores
such that we minimize communication costs between cores.
The second part of our algorithm goes up in the topology
tree and considers the nodes (i.e. the set of cores that share
the same memory banks). For each node in our architecture,
we apply locally and in parallel a load-balancing algorithm.
For example, assume that the first step assigns 55 chares
to each node. This means that these 55 chares are grouped
in 4 parts (one per core). In order to balance the load of
these chares on each of the 4 cores, we have to create a

fake topology on which we will be able to bind the chares.
Because of the grouping algorithm of TREEMATCH, we could
fail to find a good placement if the prime factorization contains
a large prime number. To avoid this problem, we use the
new feature in TREEMATCHCONST: the possibility to put
constraints on leaves in our topology. Thus, to create the
needed fake topology, we take the number of chares to be
bound and we increment this value to obtain a number for
which the prime factorization will be only decomposed in 2
and 3. This increment will improve the ability of TREEMATCH
to create groups and to find a good process placement. In
our case, the increment leads to consider a topology of 64
leaves and the following binary tree: 2 : 2 : 2 : 2 : 2 : 2.
To map the 55 real chares to the 64 leaves of this tree and
keep a good chares balance, we apply constraints regularly on
each smallest subtree. These constraints will be given to the
TREEMATCHCONST algorithm that is based on an unbalanced
k-partitioning. Once we have a satisfactory chares permutation,
we assign them on their new core. This is done using the same
AssignChareOnCore method as in the previous algorithm.

Algorithm 3: The TMLB TREEBASED Algorithm
Input: m pu The communication matrix between Pe
Input: T The topology tree

22 p←Permutation(m pu, T );
3 foreach chare do
4 SetNewPe(chare, p)

55
6 foreach node in parallel do

Input: m chares The communication matrix between
chare in the current node

Input: n Order of m_chares
7 fake T ←CreateFakeTopology();
8 p←PermutationWithConstraints(m chare, fake T );
99

10 foreach i in 0..n do
11 c←LessLoadedCore();
12 chare←ChooseChare(c);
13 AssignChareOnCore(chare, c);

VI. EXPERIMENTAL RESULTS

In this section, we present the results obtained with our
two load balancers. We selected three applications. The first
one, called LeanMD [14], is a molecular dynamic application
known to have a huge load imbalance. We did our tests for
this application with TMLB MIN WEIGHT. The last two
applications, kNeighbor (an iterative application where each
chare communicates with k others) and Stencil3D (a three
dimensional stencil application)2 are known to exchange a
lot of data. That is why we conducted the tests using the
TMLB TREEBASED scheme. All experiments were carried
out on 16 nodes of the PlaFRIM platform. The nodes are
linked with an InfiniBand interconnect (HCA: Mellanox Tech-
nologies, MT26428 ConnectX IB QDR). Each node contains
two Quad-core-INTEL XEON NEHALEM X5550 (2.66 GHz)
processors. 8 Mbytes of L3 cache are shared between the four
cores of a CPU. There are also 24 GB of 1.33GHz DDR3
RAM on each node. The operating system is a SUSE Linux
(2.6.27 kernel). We used the repository version of Charm++
which was a 6.4.0 development version. Finally, for all these
experiments, the metric accounting for chares/process affinity
if the number of messages exchanged.

2kNeighbor and Stencil3D are part of the Charm++ benchmarks suit



We compare our solutions on one hand with an execution
without any load balancing (DummyLB or Baseline) and
on the other hand with the standard load-balancers that are
available by default in Charm++. These load balancers are
greedy strategies or are the suggested ones for the applica-
tion. Particularly, GreedyLB (resp. GreddyCommLB) uses load
(resp. load and communication) to assign chares on cores with
the following strategy: the highest loaded chare is mapped
on the less loaded core. RefineCommLB take objects from
overloaded cores and assign them in order to reach an average
load. RefineCommLB is one of the suggested strategy for
KNeighbor. We did not compare our approach to NucoLB as
it was designed for shared-memory machines.

A. LeanMD
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Fig. 4. Execution time (including load-balancing) vs. number of particles
per cell of the LeanMD application on 64 cores for different load balancing
strategies

LeanMD is a molecular dynamics application which is very
unbalanced. Among others parameters, the number of particles
per cell (per chare in a software manner) can be modify in
order to generate more computation and communication. We
vary this value in our experiments. This application provides
some communication flow but it is insignificant compared
to the load imbalance. Our TMLB MIN WEIGHT algorithm,
which favours the load balancing, is a perfect case for this test.
The results we obtained with this load balancer are presented
on Figure 4. On this figure, we plotted the whole execution
time (including load balancing) according to the number of
particles per cell. We can see that except for the small cases,
we are always better than the other algorithm. On problems
equal or larger than 2000 particles per cell, we reduce by 30%
the execution time without load balancing (Baseline).

Now, if we compare the load balancing time of each
strategy we can notice that TMLB MIN WEIGHT take on
average 233 ms when RefineLB take 1 ms. As for GreedyLB,
the load balancing is calculated in 14.5 ms. However, even
if TMLB MIN WEIGHT is much more slower than the two
other load balancers it is counterbalanced by the benefits
obtained on the total execution time of the application.

In Fig. 5 we present the number of chares that migrate
from one core to a new one for the same execution than the
one depicted in Fig 4. We see that GreedyLB does not take into
account this goal as almost all the chares migrate. RefineLB
is mainly an incremental strategy that balances the load by
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Fig. 5. Average number of migrated chares (among a total of 960 chares)
for each load balancer and for each set of runs of LeanMD.

moving as few chares as possible, therefore, the number of
migration is very small. The TMLB MIN WEIGHT strategy
finds a good compromize between migration cost and other
factors impacting the execution time (e.g. load, communica-
tion, topology). Without migration minimization the number
of migrations is much higher (around 680 migrations) as the
execution time is (approximately 5% increase), therefore this
feature is necessary to achieve good performance.

B. kNeighbor
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Fig. 6. Execution time (including load-balancing) of the KNeighbor appli-
cation on 64 cores for different load balancing strategies with 64 chares and
1Mb messages.

kNeighbor is a application designed to simulate intensive
communication between a fixed number of chares (7 by
default). Our results are presented in Figure 6, 7 and 8.

We carried out these experiments with respectively 64,
128 and 256 elements (chares). We can see that for all
these experiments, we are faster than all the other solutions.
When there are only a few elements, no load balancer yields
good performence when compared to the native charm++
load balancers. When we reach 256 elements, the native load
balancers can achieve interesting improvements, especially
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Fig. 7. Execution time (including load-balancing) of the KNeighbor appli-
cation on 64 cores for different load balancing strategies with 128 chares and
1Mb messages.
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Fig. 8. Execution time (including load-balancing) of the KNeighbor appli-
cation on 64 cores for different load balancing strategies with 256 chares and
1Mb messages.

RefineCommLB. However, TMLB TREEBASED manages to
outperform it, by roughly 10%. Moreover we see that the
relative performance of TREEMATCH improves with the input
size.

The Figure 9 represents the execution time of each load
balancing strategy used for our kNeighbor experiments. The
first thing we can notice is that every load balancer follow a
linear trajectory while the number of chares is doubled at each
step on the x-axis. TMLB TREEBASED is clearly slower than
the other strategy but give us a good chare placement which
improve the total execution time as shown in Figures 6, 7
and 8.
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Fig. 9. Load balancing time of the different strategies vs. number of chares
for the KNeighbor application.
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Fig. 10. Execution time (including load-balancing) of the Stencil3D appli-
cation on 64 cores and 64 chares

C. Stencil3D

Stencil3D is a 3 dimensionnal stencil with regular com-
munication with some fixed neighbors. Because of this, it is
not beneficial to apply a load balancing scheme every ten
iterations. The best results we achieved, for each load balancer,
was when we balanced the load only once, after ten iterations.
The experiments presented in Figure 10 follows this principle.
Like kNeighbor, Stencil3D is a communication-bound applica-
tion. That is why we applied TMLB TREEBASED. We notice
two important results. First, we obtain a gain of roughly 18%
compared to the other strategies. Second, our algorithm offers
a better execution time stability as shown by the error bars
representing the standard deviation.

The load balancing time is very short for greedy strategies
in Stencil3d experiments. Except for RefineCommLB which
takes approximately 7.5 ms, the others greedy load balancers
take less than 1 ms to determine the new chares assignment.
Conversely, TMLB TREEBASED take on average 214.8 ms.
As for the kNeighbor case, this load balancing time has to be
compared to the total execution time of the application. The
time needed by our strategy to find a good chare placement is



completely absorbed by the gain in execution time.

VII. CONCLUSION

Efficiently executing high-performance applications on par-
allel computers is a hard task. One efficient solution consists
in structuring the application and exposing its parallelism as
much as possible in order to express all its parallelism. How-
ever, fine-grain parallelism raises the question of an efficient
load-balancing.

In the literature, there exists many load balancing strategies.
However, architectural advances have led to highly hierarchical
computing platforms and therefore it is necessary to propose
new solutions and strategies taking into account the load, the
communication, the topology or the migration cost.

In this paper, we have studied two new load-balancing
strategies and we have implemented them in the Charm++
computing environment. Both strategies address the issue
of topology-aware load-balancing but one is targeted to-
wards compute-bound applications while the other targets
communication-bound applications. These solutions are based
on the TREEMATCH library that is designed for mapping
computation to tree-structured topologies and which have the
advantage of using only qualitative information.

We have tested them on a distributed memory platform
and compared them against standard Charm++ load balanc-
ing strategies. We have chosen real applications (LeanMD,
Stencil3D and Kneighbor). Our results show that the proposed
strategies lead to better execution times even if computing the
load-balancing is higher when using TREEMATCH.

Future works are directed towards extending the scalability
of the strategies by improving their parallelism and the gather-
ing of the information required by them. For instance, we want
to improve the adaptation of TMLB TREEBASED concerning
the choice of the hierarchy level where the algorithm is
distributed in order to improve its scalability.
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