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Abstract—To address the high level of dynamism and vari-
ability in modern streaming applications (e.g. video decoding) as
well as the difficulties in programming heterogeneous MPSoCs,
we propose a novel execution model based upon both dataflow
and Kahn process networks. This paper presents the semantics
and properties of this hierarchical and parametric model, called
DKPN. Parameters are classified and it is shown that hints can
be derived to improve the execution. A scheduler framework and
policies to back the model are also exposed. Experiments illustrate
the benefits of our approach.

I. INTRODUCTION

Multiprocessor System-on-Chip (MPSoC) development is
known to be a complex task due to the combination of
software and hardware challenges. On the software side, tar-
get applications are increasingly complex and demanding in
computation power. On the hardware side, modern architec-
tures, however powerful they may be, often cannot be fully
exploited due to a lack of well-suited programming models
and tools. For instance, in the field of video decoding, the
major algorithms, namely the ubiquitous H.264/AVC [1] and
its successor HEVC [2], exhibit a very high level of complexity
and dynamism (i.e. variability and unpredictability) which
requires both flexibility and computing power on the part of
the platform. The former can only be achieved by software,
while the latter is clearly more amenable to hardware, hence
the need for heterogeneous architectures. But such mixed
hardware/software implementations are notoriously difficult to
program efficiently [3]. To ease the development process, a
number of paradigms have already been proposed, including
dataflow and Kahn process networks which lend themselves
well to streaming applications. The latter requires very little
knowledge about the application but can be costly to exe-
cute, while the former needs more information in exchange
for efficient execution. Therefore, in the context of mapping
dynamic streaming applications onto heterogeneous MPSoCs,
an important question remains: how to get the best of both
worlds?

To tackle this problem, this paper presents DKPN, a param-
eterized dataflow/Kahn process networks execution model that
aims at: (1) bridging the gap between high-level models and
real implementations; (2) supporting heterogeneous platforms,
including hybrid Von Neumann/dataflow architectures [4]; (3)
capturing the highest level of application dynamism. In detail,
the contributions of the paper are: (1) a composition semantics
for dataflow and Kahn process networks; (2) parameters to
address variability and unpredictability at run time; (3) a

scalable, dynamic, distributed scheduler to back the execution
model; (4) effective scheduling strategies.

The remainder of this paper is organized as follows. Sec-
tion II briefly describes the existing models upon which DKPN
is built. Section III details the proposed execution model
and Section IV exposes how it can be scheduled efficiently.
Section V presents some experimental results. Section VI
discusses some related work. Section VII sums up our con-
tributions and concludes.

II. BACKGROUND

A. Dataflow

Historically, the very first research in dataflow program-
ming dates back to Dennis’ seminal work [5]. Numerous
variants—called models of computation (MoCs)—have been
proposed since then, either static or dynamic. All MoCs share
a common set of definitions and properties. Every dataflow
program is defined as a directed graph whose vertices are
computational units called actors and edges are conceptually
unbounded communication channels carrying atomic data units
called tokens in a first-in-first-out (FIFO) fashion. The interface
between an actor and a FIFO is called a port. The execution
of an actor is a discrete process composed of a succession
of firings. A firing is an atomic quantum of computation that
consumes some number of input tokens to produce a certain
amount of output tokens. Those quantities are called rates and,
in the general case, can change at every firing. A necessary
condition for an actor to fire is that a predefined set of firing
rules should be satisfied. These rules concern the number and
possibly the values of input tokens [6]. When an actor is not
firing, i.e. not running, it is said to be quiescent. In dataflow
models, reads (i.e. the attempts for an actor to consume input
tokens) are non-blocking—meaning that they always return
immediately and successfully—thanks to the very existence
of firing rules. Due to the unboundedness of FIFOs, writes are
also non-blocking in theory1. A practical implication is that,
from a scheduling viewpoint, an actor firing can be seen as a
run-to-completion task. In this paper, we focus on the Dataflow
Process Networks (DPN) [6], which is the most expressive
dataflow MoC: rates and firing rules are not constrained in
any way.

1As we shall see later, FIFOs in real implementations are bounded due to
limited memory capacity.



TABLE I. DIFFERENCES BETWEEN DPN AND KPN.

DPN KPN
Execution Discrete Continuous

Firing rules Yes No
Blocking reads No Yes

B. Kahn Process Networks

KPN [7] is a MoC very closely related to dataflow, and
especially to DPN. The main difference is that in KPN the
execution is continuous rather than discrete, in the sense that
there is no well-defined quantum of computation, i.e. no notion
of firing. Thus, input tokens are processed as soon as they
become available and output tokens are pushed as soon as
they have been produced. Due to the lack of firing rules
and so as to guarantee determinism, reads are blocking: an
attempt to consume tokens from an empty channel will result
in suspending the reading process. Hence, from an execution
viewpoint, the need for context switches between processes
to avoid deadlocks as long as there are more of them than
execution resources.

Besides, KPN and DPN graphs can be classified according
to two properties [8]:

• termination: a complete execution consists of a finite
number of operations;

• boundedness: the execution requires a finite amount
of memory.

Table I sums up the main differences between these two MoCs.

C. PEDF

Predicated Execution Dataflow [9, sec. 2.1.5.1] is the pro-
gramming model developed and used by STMicroelectronics
for STHORM (formerly P2012) [10], an embedded hybrid
platform for MPSoCs comprising programmable cores and
hardware accelerators. A PEDF application is a hierarchical
graph whose computational units are called filters. Several
filters can be clustered into a module with a controller aimed at
reconfiguring them and driving their execution. This execution
is decomposed into firings but without firing rules. The idea
of separating control and processing into distinct entities lays
the ground for the proposed model.

Still, PEDF suffers from a number of shortcomings. First, it
is not supported by a well-defined execution model. Second, it
does not feature a scheduler. Third, software filters are not sup-
ported, which greatly hampers heterogeneous flexibility. Thus,
given a heterogeneous platform and a dynamic application,
we propose the DKPN execution model to solve the mapping
problem and fill the gap left by existing approaches.

III. THE DKPN EXECUTION MODEL

The execution model defines a set of actions and rules
involved in executing the application. It can be seen as the
intermediate layer between the compiler, aimed at generating
the application’s code, and the runtime software supporting the
target platform, as depicted by Fig. 1. Moreover, it provides
guidelines for the scheduler’s action.

DKPN is an execution model in which a program is
described as a graph with the structural properties stated in

Fig. 1. Place of the execution model within the software stack. Source:
STMicroelectronics.
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Fig. 2. Decomposition of a DKPN actor into its controller and its filter. The
controller exchanges commands (fire/done) with the scheduler and param-
eters with other actors. It drives the filter through run and ready commands
and reconfigures it through internal parameters. The filter exchanges data with
other actors via streaming interfaces and processes them. Controller and filter
respectively belong to DPN and KPN spaces.

Section II-A, similarly to dataflow MoCs. The building block
is still the actor, here defined as a composite entity consisting
of a controller and a filter, as shown in Fig. 2. As in PEDF,
the filter processes the data while the controller is responsible
for its reconfiguration.

Formally, a DKPN graph G is a pair (A, E) where A is the
set of actors and E the set of FIFOs. A DKPN actor A ∈ A is
a pair (AC , AF ) ∈ C ×F where C and F are respectively the
sets of controllers and filters. A FIFO may carry either data or
parameter tokens, but not both: E = ED

⊎
EP where ED and

EP respectively denote the sets of data and parameter FIFOs,
and

⊎
denotes disjoint union. A DKPN graph is split into two

spaces with well-defined semantics: the DPN space, denoted
D, encompasses controllers and parameter FIFOs, while the
KPN space, denoted K, comprises filters and data FIFOs. Thus:

D = (C, EP ), K = (F , ED) .

In dataflow, an important notion is that of an iteration,
defined very generally as a minimal sequence of firings after
which a graph or a subgraph is back into its initial state. In
dynamic models such as DKPN, it is not possible to derive
analytically an iteration from the graph’s specification—which
is why dynamic scheduling is required in the general case (see
Section IV)—since it can be data dependent2. Therefore, the
precise definition of an iteration largely depends on the appli-
cation. For instance, in an H.264 video decoder, an iteration
may correspond to the decoding of one video frame. In DKPN,
each actor has its own concept of iteration. When an actor has
ended its iteration, it is put into a special state. When all actors

2Thus, the application’s designer has to ensure that his or her design will
not end up inevitably in an infinite accumulation of tokens.



are in end-of-iteration state, the graph is also done with its
iteration. This is a quiescent point for the whole graph that may
serve for synchronization or structural reconfiguration (see
Section III-B). DKPN supports non-terminating applications
and thus allows infinite iterations.

A. Composition semantics

This paragraph describes how the DPN and KPN spaces of
a DKPN graph interact. The composition rules at actor level are
the following. During quiescent states, the filter has no concep-
tual existence: the actor is solely constituted of its controller.
The firing of the actor is thus equivalent to that of its controller,
and consequently abides by DPN semantics: it has to follow its
firing rule. In other words, a DKPN actor firing shall happen
only if the parameters required are present in input FIFOs.
This firing is then internally split into three subfirings, but
from an external viewpoint the firing is still atomic. The first
subfiring stands for the reconfiguration of the actor: it enables
the controller to gather input parameters and spawn a filter
instance configured accordingly through internal parameters
defined by the application. The second subfiring corresponds
to the execution of the filter under KPN semantics: data is
read, processed and written continuously until completion of
the filter’s work. During the second subfiring, the controller
conceptually disappears and the actor as a whole behaves as
a KPN process. The last subfiring happens when the filter is
done: it then yields to the controller which gathers internal
parameters, renders some post-processing and sends resulting
output parameters. After the end of firing, which corresponds
to the end of the last subfiring, the actor goes back to its initial
quiescent state. Thus, when quiescent, a DKPN graph can be
treated as a dataflow graph.

B. Parameters

We propose to use parameters to drive reconfigurations
both at actor and at graph levels. This is in contrast to
Neuendorffer’s approach [11], which distinguishes parametric
(actor-level) and structural (graph-level) reconfigurations, and
uses parameters only for the former. We define parameters as
a class of tokens distinct from data tokens. Parameter tokens
have their own ports, FIFOs and semantics. Conceptually, data
tokens undergo some processing from filters duly reconfigured
under the control of parameter tokens. A parameter has one
the following types depending on its effects:

• functional: modify the internal behavior of the target
actor;

• data-rate: change the rates of the data ports of the
target actor;

• parameter-rate (or meta-): change the rates of the
parameter ports of the target actor;

• structural: alters the graph structure by enabling or
disabling some set of actors and FIFOs.

Functional, data-rate and meta- parameters trigger actor-level
reconfigurations, whereas structural parameters drive graph-
level reconfigurations. Actor-level reconfigurations can happen
at each actor firing, while graph-level ones are restricted to
hierarchical quiescent points. Data-rate parameters do not have
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Fig. 3. Refinement and clustering between a primitive actor and its
corresponding hierarchical actor.

to be taken into account since they belong to the KPN space of
the DKPN graph, but they might be of interest for the scheduler
as shown in Section IV-A.

C. Hierarchical composition

The baseline DKPN execution model can be extended to
support hierarchy, it is then called HDKPN. As formalized
by Neuendorffer [11], a hierarchical dataflow graph can be
represented as a tree of actors. In an HDKPN graph, a leaf node
is called a primitive actor and a non-leaf node a hierarchical
actor3. A primitive HDKPN actor is a DKPN actor. A hierar-
chical HDKPN actor consists of one controller and any number
and combination of actors, which can themselves be hierar-
chical, similarly to a PEDF module. Thus, a primitive actor
can easily be refined into a hierarchical one by decomposing
its filter into an HDKPN subgraph. Conversely, a hierarchical
actor can be clustered into a primitive one by merging its
subgraph into a single filter. To ensure compositionality, both
refinement and clustering transformations shall preserve the
actor’s external interface and controller.

From an external viewpoint, the firing of a hierarchical
actor has exactly the same semantics as a primitive actor.
Furthermore, a firing is still internally split into three sub-
firings. The main difference lies in the second subfiring:
the execution of the filter is replaced by the execution of
the subgraph, called subiteration. For instance, in an H.264
video decoder, a subiteration may correspond to the decoding
of one macroblock4. Subiterations are defined analogously
to DKPN iterations: all actors in the subgraph have to be
in end-of-iteration state for the subiteration to terminate. To
guarantee compositionality, transformations shall not impact
the application’s termination property. In particular, refining an
actor in a terminating graph shall not make it non-terminating
by introducing an infinite subiteration.

As regards hierarchical reconfigurations, they shall hap-
pen only during hierarchical quiescent points [11]: all actors
(primitive or hierarchical) involved in the reconfiguration must
be quiescent simultaneously. As a matter of fact, hierarchical
reactivity demands that a nested actor should be quiescent
whenever its encompassing parent is. For the special case of
structural reconfigurations, the nearest ancestor of all involved
actors in the tree must be quiescent.

Tokens are passed across the hierarchy in the following
way. When an actor is refined, the data FIFOs previously
connected to the filter are extended to enter the resulting

3The terms atomic and composite are not used in this context since leaf
nodes are already composite due to their decomposition into controller and
filter entities.

4A macroblock is a block of pixels, typically of size 16× 16.
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Fig. 4. Model of the target computing environment.

subgraph and reach the relevant actor. As regards parameters,
new FIFOs must be added to route the internal parameters
issued by the subgraph controller to their respective recipient
actors5 during the first subfiring. Symmetrically, additional
FIFOs are required for the subgraph controller to gather
internal parameters resulting from the subgraph’s computation
during the last subfiring.

IV. SCHEDULING OF DKPN

In this section, the target computing environment is sup-
posed to be a heterogeneous platform featuring both general-
purpose software processing elements (SWPEs) and special-
ized hardware accelerators (HWPEs) with shared memory, as
depicted by Fig. 4. Each HWPE supports only a single actor
but runs it faster than a SWPE. Given such a heterogeneous
platform and an application described as a DKPN graph, the
scheduling problem consists in deciding on the assignment and
ordering of actor firings onto the available PEs. The sched-
uler’s duties are: arbitrating between actors sharing the same
resources, enforcing the semantics of the execution model and
preventing deadlocks. The proposed scheduler structure has the
following properties:

• symmetrically distributed on all SWPEs;

• cooperative: a task6 has to yield explicitly to the
scheduler, otherwise it cannot be preempted;

• policy agnostic: any user-defined scheduling strategy
can be used, Section IV-B provides examples of some
them.

As shown in Fig. 5, parameters are passed directly across
actors. Nevertheless, as the scheduler is in charge of checking
the firing rules, it has to constantly monitor the availability
of parameters thanks to counters. When an actor has its firing
rule asserted, i.e. required input parameters are available, it is
flagged as ready, then the scheduler emits the fire signal.
At the end of its firing, an actor sends the done signal
to the scheduler—meaning that output parameters have been
produced and that it is waiting for the next command—and is
put into idle state.

A scheduling step is a sequence of operations performed
by the scheduler and comprising three phases:

5Note that internal parameters emitted by the subgraph controller are still
viewed as regular input parameters by the receiving actors.

6In the sequel, the term task refers to an actor firing whose mapping and
ordering have already been decided.

Fig. 5. Relations between scheduler and actors. Parameters a and b are
exchanged directly between actors x and y. The scheduler drives the actors
through fire and done signals.

1) find ready actors and select the next to be scheduled;
2) map and order them using the selected scheduling

policy;
3) fire an actor.

Algorithm 1 describes in more detail these operations.

During phase 2, tasks are pushed to one of the global7 task
queues. The number and the nature of such queues depends
on the strategy. Increasing this number may be necessary
for scalability reasons. It may also improve the scheduler’s
performance by allowing some specialization, e.g. one queue
for high-priority tasks and one for low-priority ones, or one
for SWPE-mapped tasks and one for HWPE-mapped ones. In
phase 3, the scheduler has to select a task queue according to
the strategy and the available PEs.

A. Hint parameters

The parameter types presented in Section III-B do not
reflect the full expressiveness of parameters. In fact, it is
possible to devise a new class of parameters aimed at pro-
viding hints to the scheduler so as to improve its efficiency;
therefore we refer to them as hint parameters. This class is
orthogonal to the previous classification in the sense that a
hint parameter can be of any of the defined types. Thus,
a parameter is a hint parameter if its value can be taken
as input and interpreted by the scheduler for optimization
purposes. The rationale is that application designers often
have useful additional knowledge about individual firings that
cannot be expressed through classical models: computation or
memory boundedness, amount of data transferred, complexity,
etc. This information can be encoded using ad hoc or existing
parameters (functional, dataflow, etc.) and leveraged at run
time, for instance to predict the execution time of the next
firing, with a view to improving scheduling decisions. The
exact nature of the information typically depends on each
application’s specificities, but a simple scenario would be to
map a parameter value modeling computation complexity to a
proportional duration indicator.

B. Scheduling policies

To implement the second phase of the presented scheduler,
we propose five scheduling strategies. To ensure fairness, all
policies schedule every ready actor at each step; only the order
differs. Also, they require only a single task queue.

7Global in the sense that it is shared by all SWPEs.



begin scheduling step
/* Phase 1 */
foreach pending done signal do

A: emitting actor ;
Acknowledge signal from A ;
Update available parameters ;
Put A into idle state ;
if no input parameter required or all available
for A then

Flag A as ready
end
foreach produced parameter do

F: associated FIFO ;
B: target actor ;
if exactly 1 parameter token in F then

Flag parameter as available ;
if all parameters are available and B is
idle then

Flag B as ready
end

end
end

end
/* Phase 2 */
scheduling_policy() ;
/* Phase 3 */
Pop from task queue ;
Run task ;

end
Algorithm 1: Description of a scheduling step, applicable
to all policies detailed in Section IV-B.

a) Round-robin (RR).: Ready actors are sorted in topo-
logical order. At each step, the list is traversed to find and
schedule ready actors in this order. The last scheduled actor
in step n is memorized and the scan is resumed in step n+ 1
with the next actor in the list.

b) Short first (SF).: This scheduling strategy uses hint
parameters to predict the duration of each firing. At each
step, actors are sorted in increasing duration order. The list is
traversed once, starting by the shortest actor. Ties are broken
using topological order.

c) Long first (LF).: This scheduling policy is similar to
the previous one, except that actors are sorted in decreasing
duration order. Then longer actors are scheduled beforehand.

d) Dynamic priorities (DP).: At each step, actors are
assigned a priority that reflects the filling of their data FIFOs.
Parameter FIFOs are not considered when setting priorities
because they pertain to the DPN space and thus token transfers
across them are already regulated by firing rules. The idea is
to prioritize actors with fuller input and emptier output FIFOs
so as to prevent token accumulation and thus avoid context
switches. Let c(e) denote the capacity of FIFO e ∈ ED and
n(e, s) the number of tokens in e at step s. Then, the priority
P of actor A ∈ A at step s is given by:

P (A, s) =
∑

ei∈Ei
D
(A)

n(ei, s)

c(ei)
−

∑
eo∈Eo

D
(A)

n(eo, s)

c(eo)
,

where E iD(A) and EoD(A) are the sets of input and output data
FIFOs of actor A. The sums are normalized over the capacities
since they may differ even for a single actor and we are only
interested in FIFO fullness. Moreover, normalizing over the
number of FIFOs rather than capacities would not be helpful
since a higher number of FIFOs generally means more sources
of deadlock so actors with more asymmetrical inputs/outputs
should have higher priorities in absolute value. Ties are broken
using topological order.

e) Dynamic priorities with hint parameters (DP+H).:
This policy is the same as the previous one, except that ties
are broken using hint parameters. In this case, shorter actors
are scheduled first.

C. Discussion on deadlocks

In process networks, deadlocks can result either from an
inconsistent application design or from the execution model.
On the one hand, the DPN part of the model is guaranteed
to be free from deadlocks thanks to firing rules. On the
other hand, the KPN part can yield deadlocks, except if
data token rates are provided through hint parameters. The
rationale for not including deadlock-detection and -resumption
mechanisms is threefold. First, in most cases, resolving a
deadlock implies a context switch between processes, which
incurs a non-negligible run-time cost. Second, it can be avoided
in a number of cases like in all our experiments. Third, since
the issue of deadlocks in KPN has already been extensively
studied [12], [13], [14], existing techniques can easily be
adapted to our model. Thus, in this article, we chose to focus
on deadlock prevention through adequate scheduling rather
than resumption.

V. EXPERIMENTS

A. Overhead evaluation

As the presented execution model is geared toward dy-
namic applications, we assess its overhead by applying it
to a static one. The evaluation consists in running a real-
world Temporal Noise Reduction (TNR) application from
STMicroelectronics on the TLM simulator8 of the STHORM
platform [10]. Controllers are supposed to be mapped to
SWPEs and filters to HWPEs. We have reworked the original
PEDF implementation of TNR to comply with DKPN. Also,
the whole PEDF/STHORM toolchain has been modified to
adapt to DKPN. We compare a reference implementation with
a scheduled one. The reference PEDF is a monolithic version
very similar to the original, with a hand-written optimized
schedule. In the scheduled PEDF, DKPN is used in conjunction
with a simple dynamic scheduler that fires actors repeatedly in
topological order. As the simulator only provides a functional
model for hardware filters, their execution times cannot be
derived directly. Instead, the variability is simulated by random
durations of actor firings generated as follows.

Each actor is assigned a—supposedly mean—reference
computation time rct that serves as a basis for the computation
of a delay added to the simulated time. This delay includes a

8The platform is modeled as loosely timed and SWPEs as instruction-
accurate.



Fig. 6. Comparison of execution times of the TNR application in reference
and scheduled PEDF with different variability levels for overhead evaluation.

random factor rdf sampled from a Beta law and a constant fac-
tor cdf ; both factors are common to all actors. cdf models the
average speedup introduced by the hardware implementation
over the reference software, while rdf accounts for variability
and unpredictability. The resulting total delay td is computed
as: td = cdf × rdf × rct. td is then reevaluated at every
firing and added to the SystemC time during the simulation.
In these experiments, we measured the makespans of several
TNR runs with both reference and scheduled PEDF versions
against different cdf values. The simulated platform comprises
three SWPEs for the scheduler and controllers and one HWPE
for each filter. Figure 6 shows the results.

For lower cdf values, the performances of both versions
are equivalent, with a slight advantage of about 4% for the
scheduler. When the delay factor increases, the gap widens in
favor of the reference up to 16% for cdf = 20. For cdf ≥ 50,
the difference becomes insignificant: only about 1%. There-
fore, three distinct behaviors can be observed for different
variability levels. For a small delay factor (cdf ∈ [1, 5]),
computation times are of the same order of magnitude as the
time spent by the SWPEs to control and schedule actors. For
a medium delay factor, computation times begin to dominate,
hence a sharp increase in makespans: the reference is better
than the scheduler since the raw cost of its decisions prevails
over their benefits in terms of schedule. Lastly, for longer
hardware-filter delays, all the control is negligible compared to
the computation: both versions have comparable performances.
Ultimately, in the worst case, DKPN entails a 16% overhead
in execution time compared to an ad hoc, optimized scheme.

Moreover, the memory cost of the execution model and
the scheduler has also been evaluated. The runtime code size
increased from 4.7 KB to 7.6 KB, which remains reasonable
compared to the application’s (23 KB) and the capacity of
program caches in STHORM (32 KB). The data size is still
less than 100 B.

B. Design space exploration

1) Experimental conditions: To assess the benefits of the
proposed execution model and scheduler under different cir-
cumstances, we built a custom simulator. The execution model
can thus be simulated on any number of PEs, and various
other parameters can be adjusted: actor mapping, FIFO sizes,
scheduling policy, etc. This allows to circumvent the limita-

tions of PEDF/STHORM’s simulation environment, especially
its inability to tweak FIFOs and architectural parameters as
needed, as well as its low performance and limited debugging
tools. However, for the sake of simplicity, the following
restriction is enforced: context switches are not allowed; thus
the scheduler has to find execution paths that do not yield
local deadlocks. We simulated the execution of an H.264 video
decoder based on an STMicroelectronics implementation.

To evaluate the impact of hint parameters, we used a
specific feature of modern video coding algorithms: the type
of prediction. Basically, each macroblock (MB) can be coded
from either a neighboring MB in the same picture (INTRA
prediction) or an MB from a previously decoded picture
(INTER prediction). The latter is supposed to be longer since
it requires a memory access to the buffer where the previously
decoded picture is stored and the computation involved is
more complex. Therefore, hint parameters were used to let the
scheduler know that firing an actor on an INTER-predicted
MB is on average 4 times longer than on an INTRA-predicted
one9.

The experiments we carried out consisted in feeding our
application model with a hypothetical sequence of MBs al-
ternating INTER and INTRA prediction, and measuring the
throughput expressed in total number of decoded MBs dur-
ing a fixed amount of scheduling steps10. We compared the
performances of the five scheduling strategies presented in
Section IV-B using round-robin as reference. The execution
times of the filters were generated using the scheme described
in Section V-A, where cdf = 1 for INTRA prediction and
cdf = 4 for INTER prediction, as discussed above. The
parameters of the experiments are the size of the FIFOs and
the variance of the Beta law from which rdf is sampled. The
results are represented as bar charts where each bar stands
for a complete execution. The absence of a bar means the
corresponding result is 1 (same performance as round-robin).

2) Interpretation: The first set of experiments consisted
in setting the variance and varying the size of the FIFOs.
Figure 7 depicts the results. On average, all strategies are better
than RR except LF in the lower-variance case. In detail, when
the variance is set to 1.5, both DP and DP+H give a higher
throughput for lower FIFO sizes, but only SF is consistently
better for greater sizes with up to 6% speedups. When the
variance is set to 3, on the other hand, both DP and DP+H
surpass all other policies except for unit FIFO size. DP is
slightly better for shorter FIFOs while DP+H outperforms it
for bigger ones and can achieve 9% speedups. On average,
all proposed scheduling strategies except SF increase their
advantages compared to RR when the variance is set to a
higher value.

In a second set of experiments, we set FIFO sizes and
varied the variance of the execution times. Figure 8 illustrates
the results. When FIFO sizes are set to 2, both DP and DP+H
reach 7% speedups and outperform all other policies whatever
the variance. LF is also consistently better than RR. When
FIFO sizes are set to 16, only SF has consistent performance.

9This is based upon measures we carried out on real executions of
STMicroelectronics’ H.264 decoder on the STHORM simulator.

10The simulator features no other notion of time than the number of
scheduling steps elapsed.
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Fig. 7. Comparison of throughputs of H.264 under various scheduling policies
with different FIFO sizes and fixed variances of execution times.

It is even the best solution for lower variances. On the other
hand, for greater values DP+H exhibits higher speedups (up
to 9%).

3) Discussion: Overall, DP+H is the most effective
scheduling strategy since it leverages both dynamic priorities
and hint parameters. The former allow to schedule actors
according to FIFO states, thus augmenting the throughput,
while the latter bring information on firing durations. Never-
theless, for applications exhibiting low variances in execution
times and mapped with large FIFOs—which corresponds to
the simplest case—, SF should be preferred. As a matter of
fact, it can be shown that scheduling shorter firings earlier
allows to optimize resource usage [9, sec. 6.1.2]. Moreover,
when dynamic-priority– and hint-parameter–based strategies
compare equal in simulation, the latter should be favored since
in an actual implementation it will usually be slightly cheaper
at run time. This is because dynamic priorities have to be
recomputed at each scheduling step, whereas a hint parameter
only requires a simple lookup and comparison.
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Fig. 8. Comparison of throughputs of H.264 under various scheduling policies
with different variances of execution times and fixed FIFO sizes.

VI. RELATED WORK

Surprising though it may sound, contrary to static MoCs
such as SDF [15] and its newer, parameterized derivatives like
BPDF [16], the dynamic scheduling of more expressive MoCs
has not been well studied. The most advanced research has
come from the RVC-CAL [17] and Orcc [18] communities.
Their first contribution, as regards dynamic scheduling of
dataflow programs [19], is a couple of scheduling strate-
gies: a simple round-robin policy and a combined round-
robin/demand-driven/data-driven policy. They also present a
distributed scheduler with static mapping. In subsequent
work [20], they enable automated mapping of actors through
profiling, but still not dynamically at run time. In their latest
paper [21], they target specifically MPSoCs but the schedul-
ing and mapping techniques remain the same. Our approach
distinguishes itself by targeting heterogeneous platforms and
allowing fully dynamic run-time mapping of actors.

As regards Kahn process networks, prior studies [22]
advocate data-driven execution and deadlock resolution by
increasing FIFO sizes selectively. In terms of practical imple-
mentation, lightweight threads and cooperative scheduling can
be used to run efficiently a KPN application [23]. To this end,



the execution of the processes is also discretized into separate
firings. Dynamic mapping is not considered though.

Finally, the Ptolemy project [24] addresses the general
problem of heterogeneous composition of MoCs [25], [26],
including dataflow and KPN. The theoretical framework is
interesting but Ptolemy is mainly geared towards modeling
and simulation rather than software synthesis for real-world
implementations.

VII. CONCLUSION

In this paper, we have presented DKPN, a mixed DPN/KPN
execution model for mapping streaming applications on het-
erogeneous MPSoCs. DKPN enables elegant description and
efficient execution of complex programs through a number
of properties: strict separation between control (DPN space)
and computation (KPN space), hierarchical composition, and
high expressiveness thanks to various classes of parameters.
In particular, we introduced hint parameters aimed at cap-
turing the dynamics arising from data-dependent behaviors
that cannot be predicted statically. Moreover, a cooperative,
distributed scheduler framework and five scheduling policies
have been sketched to support this execution model. The use of
hint parameters by the scheduler has been illustrated. Finally,
experiments have shown that the temporal and spatial costs
of this scheme are very low, even for static applications, and
that hint parameters associated with our advanced scheduling
strategies can bring substantial benefits compared to a baseline
round-robin approach, especially in the constrained (small
FIFOs) and dynamic (high variability) cases.

Future work include testing our contributions on real
hardware and with a larger spectrum of application types (e.g.
coding algorithms for mobile phones). An interesting extension
would be to incorporate timing annotations within DKPN to
address real-time issues. In the longer term, integrating DKPN
with some high-level synthesis tool would ease the generation
of hardware filters with proper interfaces.
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