A Hierarchical Model to Manage Hardware Topology in MPI
Applications

Emmanuel Jeannot
Inria
200 Avenue de la Vieille Tour
Talence 33405, France
LaBRI
351, Cours de la Libération
Talence 33405, France
emmanuel jeannot@inria.fr

ABSTRACT

The MPI standard is a major contribution in the landscape of paral-
lel programming. Since its inception in the mid 90’s it has ensured
portability and performance for parallel applications on a wide spec-
trum of machines and architectures. With the advent of multicore
machines, understanding and taking into account the underlying
physical topology and memory hierarchy as become of paramount
importance. The MPI standard in its current state, however, and
despite recent evolutions is still unable to offer mechanisms to
achieve this. In this paper, we detail several additions to the stan-
dard that give the user tools to address the hardware topology and
data locality issues while improving application performance.

KEYWORDS

Hierarchy, Hardware Topology, Message Passing

ACM Reference format:

Emmanuel Jeannot, Farouk Mansouri, and Guillaume Mercier. 2017. A Hi-
erarchical Model to Manage Hardware Topology in MPI Applications. In
Proceedings of 24th European MPI Users’ Group Meeting, Argonne National
Laboratory, USA, September (EuroMPI 2017), 11 pages.

https://doi.org/

1 INTRODUCTION

Parallelizing or writing from scratch a parallel application is a very
challenging task and this challenge has become even more bigger
due to the current trend in processors design and supercomput-
ers architecture. Indeed, the hardawre that the programmer has
to tackle becomes more and more hierarchically organized. For
instance, CPUs now feature various levels of memories that have
different properties in terms of size, performance ansd even nature.
As a consequence, a parallel application performance is likely to
be impacted by the communication occuring between processes
and by the way they access data. Thus, if a process accesses some
data located in a memory bank physically far from the core it cur-
rently executes on, a penalty shall occur (NUMA effect). Also, if

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

EuroMPI 2017, September, Argonne National Laboratory, USA

© 2017 Copyright held by the owner/author(s).

ACMISBN ...$15.00

https://doi.org/

Farouk Mansouri

Inria

200 Avenue de la Vieille Tour
Talence, France 33405, France
LaBRI
351, Cours de la Libération
Talence 33405, France
farouk.mansouri@inria.fr

Guillaume Mercier
Bordeaux INP
Avenue des Facultés
Talence 33405, France
LaBRI
351, Cours de la Libération
Talence 33405, France
guillaume.mercier@bordeaux-inp.fr

two processes share a cache level, they will communicate one with
the other more efficiently. This is known as the data locality issue.

In order to better exploit the underlying hardware, applications
need to take this locality phenomena into account. They need to
get a better grasp of the underlying physical architecture they are
running on. The current success of hwloc demonstrates the need for
such a tool and the information it allows to gather. This knowledge
may offer the possibility of optimize the code, to better exploit the
memory hierarchy or the network topology as well as a global and
comprehensive view of the hardware (a continuum of hierarchies
between the network and the memory).

To this end, a relevent programming model (along with tools
and libraries that implement it) can be of valuable help. The most
obvious and natural choice would be to first look at what current
parallel programming standards and libraries offer in this area.

In the case of the Message Passing Interface (MPI) [15], some
mechanisms are already available that could make it possible for an
application to exploit the hardware hierarchy to improve interpro-
cess communication and locality. For instance, in the case of virtual
topology management routines, such as MPI_Dist_graph_create
or MPI_Graph_map, the reorder argument can be used to create a
topology where processes are reorganized according to the under-
lying physical topology of the target architecture.

However, there are several issues with this approach: first, this
argument might be used in this fashion, but that is not necessar-
ily the case, which means that the expected behaviour is totally
implementation-dependent (and thus not standard) hence likely to
change from one implementation to the other or even worse from
one implementation version to the other. An application cannot
rely on a particular MPI implementation version to be able to use
the specific features it needs. Then, in absence of dedicated and
relevent mechanisms directly within the standard, an application is
forced to use some side-effects of already available features, which
constitutes an issue in terms of both interface expressiveness and
usability.

In this paper, we present abstraction mechanisms that can help
a programmer to structure his applications in order to exploit the
underlying hardware so as to improve its data locality. We also
present the implementation of this abstraction and mechanisms in
the context of the MPI standard.

This paper is organized as follows: the current status of the MPI
interface with regards to hardware topology management is dis-
cussed in Section 2 and our proposal is detailed in Section 3. Section

https://doi.org/
https://doi.org/

EuroMPI 2017, September, Argonne National Laboratory, USA

4 describes the target applications of this work and experimental
results are analyzed in Section 5, while Section 6 concludes this
paper and give potential future directions.

2 HARDWARE TOPOLOGY MANAGEMENT
AND THE MPI STANDARD

In this section, we shall examine the current possibilities offered
by the MPI standard to deal with the issue of hardware topology
management in parallel applications. One key-characteristic of the
MPI standard is its hardware-agnosticity. Indeed, it makes no as-
sumptions about the hardware on which the application is going
to be deployed and run. This behaviour ensures the portability of
parallel programms using MPI. It is to be noted also that despite
this independence from any hardware considerations in its pro-
gramming model, the MPI standard and programming model does
not prevent from accessing the hardware topology directly from
an application.

2.1 Interactions with external tools

One way to tackle this issue is precisely to use an altogether dif-
ferent tool or interface, fully external to MPIL. That is, one current
practice is to deal with tools representing the hardware topology
such as hwloc [2], LibNuma [12], or Pthread sched [16]. These
libraries could give a relevent representation of the hardware struc-
ture and components. However, they are rather low-level tools and
need a good knowledge of the underlying hardware to be used
correctly and efficiently. In addition, this practice increases the
complexity of developing and supporting codes. Last, as these tools
or interfaces are not standard, portability is not guaranteed.

2.2 Current status in the MPI standard and its
implementations

The MPI library even offers some means to better understand the
nature of the physical architecture in order to exploit it to its full
potential. For instance, the extension of Remote Memory Opera-
tions with Shared Memory operations in the standard has allowed
programmers to structure their applications to take into account
the fact that processes are located on the same machine. This can be
seen as an alternative to the use of multithreading when memory
consumption is at stake [20, Chapter 16]. In this particular case, the
MPI standard acknowledges that some physical resource (e.g. mem-
ory) is sharable between processes and offers the tools to actually
access this resource.

However, despite the presence of some mechanisms in MPI to
better understand and use the hardware, they address the issue
only partially. Some MPI implementations offer mechanisms but
since they are implementation-dependent they are typically non-
standard. Portability is therefore not guaranteed. The bottom line
is: an application should not (or cannot) rely on a specific imple-
mentation nor on a specific version of an implementation (which
is even worse). The following paragraphs describe some of these
mechanisms and their shortcomings.

2.2.1 Shared Memory constructs. MPI_Comm_split_type can
accept MPI_COMM_TYPE_SHARED as a value for its split_type ar-
gument. The outcome is a communicator that encompasses all

E. Jeannot et al.

processes in the original communicator that can create a shared
memory region! By using the communicators produced by this
function, it is possible to structure an application in order take
into account the fact that memory is shared. However, the vari-
ous levels of cache, a major part of the hardware hierarchy, are
left unexploited. As explained previously, this memory hierarchy
is becoming more and more complex and performance gains are
expected from a relevent exploitation of it.

2.2.2 Process topologies and reordering. The various process
topologies available in MPI can help to structure an application
but they are virtual topologies and quoting the standard itself:
“The virtual topology can be exploited by the system in the assign-
ment of processes to physical processor, if this helps to improve
the communication performance on a given machine. How this
mapping is done, however, is outside the scope of MPL" Some im-
plementations use the reorder parameter of some functions (e.g.
MPI_Graph_map, MPI_Dist_graph_create [8], etc.) and take the
opportunity to retrieve hardware information and make use of
it [9, 14, 19]. Some others tailor the topology routine of MPI to a
specific hardware [5, 10]. This, of course, falls into the non-standard
category as it is implementation-dependent and is a side-effect of
the function. It is not the primary goal of it and the fact that the
underlying hardware is efficiently exploited can be seen as a bonus.

2.2.3 Process Managers and process mapping. Process managers
can also be of help when it comes to exploit the underlying hard-
ware. Indeed, through their process mapping and binding options,
they can allow the user to finely control the way the various MPI ap-
plication processes are dispatched and executed [7]. Thanks to an ad-
equate placement policy enforced by both these mapping and bind-
ing parameters, it is possible to take into account the physical topol-
ogy and reduce the communication costs for instance [1, 13]. This
is also used to improve collective communication performance [22],
Unfortunately, these options are totally non-standard and even
change from one version of a process manager to the other. This
point is outside the scope of this paper, but standardizing these
mapping and binding options/policies would ease the user when it
come to launch his/her application.

2.2.4 MPI Sessions. MPI sessions are a new concept that is cur-
rently being discussed by the MPI Forum. In its current state, the
standard only allows to call MPI_Init and MPI_Finalize a single
time in an application. This can raise some issues when multiple
libraries that internally rely on MPI are used concurrently. Sessions
can be seen a lightweight construct, even lighter than groups. A
session encompasses MPI processes and some information can be
attached to it, for instance about the application or the hardware.
In this case, the sharing of hardware resources could be exploited
by the application with several different MPI sessions.

3 PROPOSED EXTENSIONS TO THE MPI
STANDARD
As exposed in the previous section, there are currently no means

in the MPI standard to portably take into account the hardware
topology at the application level. We therefore propose to extend

! 1t is obviously the case when they are located on the same machine, but could also
be the case if the processes are on different machines linked by a network a la SCI.

A Hierarchical Model to Manage Hardware Topology in MPI Applications EuroMPI 2017, September, Argonne National Laboratory, USA

MPI and detail in the following section the relevent mechanisms
and features needed to achieve this objective.

3.1 Guidelines

Since its first version in 1994, the MPI standard has grown steadily
in terms of number of available routines and functionnalities. We
therefore advocate for a minimal amount of changes and prefer to
leverage existing mechanisms. We prefer not introducing new func-
tions unless it is unavoidable and rather expand existing mechanims.
MPI is about communications and how they are managed. In this
regard, exploiting the underlying topology boils down to be able
to organize the various MPI application processes in a way that is
both topologically-wise and performance-wise sensible. The same
idea has already been used in the case of reordering: the processes
that communicate a lot should be bound on two cores physically
close to each other. Consequently, the sharing of caches is likely
to decrease communication times and improve overall application
performance.

The key idea is therefore to group processes into entities where
a specific kind of resource is shared by all group? members (i.e.
processes). MPI features a concept/construct that perfectly matches
our needs: the communicator. As a consequence, we propose to
make hardware topology information and structure available at
the application level through a hierarchy of communicators. We
want to help an application developer and guide him/her to build
the most relevent communicator (hardware) topologically-wise,
without any deep knowledge of the underlying architecture and
regardless of the way the application processes are mapped and/or
bound on the machine.

In this hierarchy, each communicator corresponds to a specific
resource that is shared by all the processes belonging to it. For
instance, if a process shares a L2 cache and a L3 cache with other
processes, it will be part of the communicator encompassing all
processes sharing the same L2 and part of the communicator en-
compassing all the processes sharing this level 3 cache. Creating
communicators also allows the use of collective communications
among processes that share a resource. Collective communication
operations are a major feature of MPL It gives the programmer some
ability to structure his/her application and encourages him/her to
improve the locality factor of the communications.

3.2 Communicators creation

There exists a couple of functions in the MPI standard which create
communicators:
e MPI_Comm_create is able to create such an object from an
MPI Group.
e MPI_Comm_dup duplicates a communicator taken as input
argument of the function.
e MPI_Comm_split is able to create subcommunicators from
the original one taken as an argument. This function yields
k non-overlapping subcommunicators and the partition
of the original communicator is determined by the color
parameter (which can take MPT_UNDEFINED as a licit value).
Processes that call this function with the same value for
color will belong to the same output (sub-)communicator.

2In the generic sense, we do not deal with the concept of MPI groups here.

Since the idea behind our proposal is to create communicators
based on the sharing of common resources, splitting some input
communicator (MPI_COMM_WORLD being obviously a relevent but
not mandatory candidate) is a natural fit for the goal we want to
achieve: indeed the information about the sharing of the resource
can be conveyed by the color argument.

However, the outcome is not likely to be the one expected: let
us take for example he case of processes mapped onto different
physical nodes (for the sake of simplicity, each core of each node ex-
ecutes its own process). Let us then assume that each node features
several L3 caches. If we want to create as many communicators as
the number of L3 caches in our configuration, we cannot provide a
single color value, otherwise, all processes would end up belonging
to the same communicator. Ideally, we would like to provide the
same color value, but this value has to carry a different meaning in
different processes.

3.2.1 MPI_Comm_split_type extension. Fortunately, this is ex-
actly the behaviour of the MPI_Comm_split_type function.
MPI_Comm_split_type is part of the MPI-3 shared memory pro-
gramming functionnalities and features the following prototype®:

int MPI_Comm_split_type(MPI_Comm oldcomm,
int split_type,
int key,
MPI_Info info,
MPI_Comm *newcomm)

With :

IN oldcomm: communicator (handle)
IN split_type: type of processes to be grouped together (in-
teger)
IN key: control of rank assignment (integer)
IN info: info argument (handle)
OUT newcomm: new communicator (handle)

This function partitions the group associated with comm into
disjoint subgroups, based on the type specified by the value as-
signed to the split_type parameter. A single value is currently
defined in MPI 3.1: MPI_COMM_TYPE_SHARED. when this value is
used, the input communicator is split into communicators, where
each new communicator represents a shared-memory domain. That
is, two processes belonging to the same subcommunicator are able
to create a mutualy accessible shared-memory region. Obviously,
there is no overlap between these new communicators. This func-
tion, along with the particular MPI_COMM_TYPE_SHARED value for
the split_type parameter, already allows the user to better un-
derstand the way the processes are mapped onto the underlying
hardware. It also gives the opportunity to take advantage of it since
a different programming model (MPI-3 Shared Memory style) can
be used in each new communicator and classical Message Passing
between them.

The MPI standard stipulates that implementations may define
their own values for the split_type parameter, in order to enforce
specific behaviours. The flexibility granted by this approach is
counterbalanced by its sheer lack of portability.

As a consequence, we propose to enrich the set of possible values
for the split_type argument by adding a new one (MPI_COMM_TYPE

30nly the C version is shown.

EuroMPI 2017, September, Argonne National Laboratory, USA

_PHYSICAL_TOPOLOGY for instance*). The info argument can be
used to pass hints to the implementation about the way the split
should be done.

3.2.2 Proprieties of the hierarchical communicators. A call to
MPI_Comm_split_type with this new value shall yield a commu-
nicator corresponding to the highest possible level in the hierarchy
tree of the hardware topology. This newly produced communica-
tor can then be used as an input argument in subsequent calls to
MPI_Comm_split_type to produce other children communicators
that correspond to deeper levels (see the example below for a prac-
tical use). Also, the newly produced communicators should retain
the following proprieties:

o The last valid communicator produced in this fashion may
be identical to MPI_COMM_SELF, but not necessarily.

e Each recursively created new communicator should be
a strict subset of the input communicator. That is, a call
to MPI_Comm_compare (oldcomm, newcomm) should return
MPI_UNEQUAL. This propriety ensures that we do not create
unnecessary new communicators in case of redundancies
of levels in the hardware topology. For instance, if a L3
cache and a L2 cache is shared between all processes, there
is no need to create a communicator for both resources.

e If no valid communicator is to be created, MPT_COMM_NULL
should be returned.

These communicators calls will form a kind of hierarchy, mimicking
the hardware one, as all new communicators are encompassed (so to
speak) in their parent communicator. That is, if a process belongs to
the communicator corresponding to the n-th level of the hierarchy,
it also belongs to all communicators corresponding to levels 0 to
n — 1. It is to be noted that our abstraction does not make any
distinction between the network and the nodes internal memory
hierarchy. We give some means to organize an application according
to the structure of the hardware, not its nature.

3.2.3 Creation of Roots Communicators. One other usefull addi-
tion would be the ability to create at the qame time at each level of
the hierarchy another communicator which includes all root pro-
cesses of a hierarchical communicator. This forms another kind of
hierarchy of its own and could ease the communication between all
the levels of the hierarchy. This function could have the following
prototype:

int MPI_Comm_hsplit_with_roots(MPI_Comm oldcomm,
MPI_Info info,
MPI_Comm *newcomm,
MPI_Comm *rootscomm)

With:
IN oldcomm: communicator (handle)
IN info:info argument (handle)
IN newcomm: communicator (handle)
OUT rootscomm: communicator (handle)

newcomm is the same communicator created by a call to MPT_Comm_
split_type with MPI_COMM_TYPE_PHYSICAL_TOPOLOGY as value
for the split_type parameter. rootscomm is the communicator
containing all processes that are roots in newcomm. A valid roots

4Or any suitable and meaningful name.

E. Jeannot et al.

communicator can only be returned if the root process of oldcomm
calls this function. MPI_COMM_NULL is otherwise returned by
non-root processes.

3.24 Interaction with process mapping/binding policies. A spe-
cial care should be taken regarding the current binding of process
ranks. Indeed, the deepest level that shall be returned should cor-
respond to the current process binding (e.g if a rank is bound to
a L3 cache, no information below this level should be returned
since it may use different L2 caches below when moving inside
the binding. Any attempt to do so should return MPI_COMM_NULL.
Moreover, unbound processes may move across an entire shared-
memory machine and therefore cannot belong to a communicator
split deeper than the “machine” level: in such a case, the returned
communicator shall be the same as the one returned by a call to
MPI_Comm_split_type with the MPI_COMM_TYPE_SHARED value for
the split_type parameter.

Machine (2048MB total)

| NUMANode P#0 (1024MB) l I NUMANode P#1 (1024MB) I

Package P#0 Package P#1

I L3 P#0 (16MB) l I L3P#1(16MB) l

I L2 P#0 (4096KB) I I L2 P#1 (4096KB) I I L2 P#2 (4096KB) l I L2 P#3 (4096KB) l

| L1d P#0 (32KB) I | L1d P#1 (32KB) | I L1d P#2 (32KB) | | L1d P#3 (32KB) l

Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#5 Core P#6 Core P#7

[PUP:OI lPuP:lI lPuP:zI IPUP:BI IPUPN] IPUP:S] IPqus] lPuPﬂI

Figure 1: A hierarchical node example.

3.2.5 A practical example. We now detalil a practical example
of use of this new split_type value. Let us suppose that an MPI
application is launched on several machines featuring the memory
hierarchy depicted by Figure 1: each node is composed of two
NumNode with a single socket (package) and 4 cores per socket.
Each socket features its dedicated L3 cache and a L2 is shared
between a pair of cores. At some point, we assume that the various
processes of the application execute the following code:

MPI_Comm newcomm[NLEVELS];
MPI_Comm oldcomm = MPI_COMM_WORLD;
int rank, idx = 0;
while(oldcomm != MPI_COMM_NULL){
MPI_Comm_rank(oldcomm,&rank) ;
MPI_Comm_split_type(oldcom,
MPI_COMM_TYPE_PHYSICAL_TOPOLOGY,
rank,
MPI_INFO_NULL,
&newcomm[idx]);
oldcomm = newcomm[idx++];

}

In this code snippet, NLEVELS is chosen approprietly so that there
are enough elements in the newcomm array, but as we shall discuss
later (see Section 3.4), our proposal does not make any assumption
on the total number of levels in the hardware hierarchy nor on the
nature of the hardware resource the communicator is supposed to
represent for the processes.

A Hierarchical Model to Manage Hardware Topology in MPI Applications EuroMPI 2017, September, Argonne National Laboratory, USA

A simple case. In our first case, we suppose that each process is
bound to its own core. More precisely, process rank p; (in MPI_COMM_
WORLD) is bound to core number i. When the code shown previously
is executed, the following communicators are created:

e newcomnm([@] = {po, p1. p2. 3. P4 5 P P7}

o newcomm[1] = {po, p1,p2, p3} (for NumaNode 0) and
newcomm[1] = {pa, ps, ps, p7} (for NumaNode 1)

o newcomm[2] = {p2;, p2i+1)} (for each L2 number i) : 4 com-
municators

e newcomm[3] = {p;} (for each Core number i) : 8 communi-
cators

As for the roots communicators we shall have the following situ-
ation (we suppose that rootscomm[i] corresponds to the hierarchy
level newcomm[i]):

e rootscomm[@] = {po}

e rootscomm[1] = {po,ps}

e rootscomm[2] = {po,p2} and {ps,ps}

e rootscomm[3] = {po, p1}, {p2,p3}, {p4, ps} and {ps, p7}

A slightly more complicated case. Let us now suppose that the
processes are not bound to a specific core: some processes are bound
to cores, some others are bound on the L2 cache and some on a Nu-
maNode. Figure 2 depicts such a case involving 8 processes. PO and

Machine (2048MB total)

| NUMANode P#0 (1024MB)

Package P#0 Package P#1

I L3 P#1 (16MB) |

| L3 P#0 (16MB)

L2 P#0 (4096KB)

I L2 P#2 (4096KB) I | L2 P#3 (4096KB) |

I L1d P#2 (32KB)] I L1d P#3 (32KB) l

I L1d P#0 (32KB) l

Core P#0 Core P#1 Core P#4 Core P#5 Core P#6 Core P#7

(@’ I vuml I PUPsS I I PUPSS I I puml

B L2 (L1) Communicators
Il Core Communicators

Figure 2: A case of non-uniform binding policy for processes

P1 are bound to their own cores, P2 and P3 are bound to a L2 cache,
while P4, P5, P6 and P7 are bound to a NumaNode/Package/L3 cache.
In this case, and according to the proprieties of the hierarchical
communicators:

e newconm[@] = {po, 1. p2. 3. Pa. 5 P P7}

e newcomm[1] = {po, p1,p2, p3} (for NumaNode 0) and
newcomm[1] = {pa, ps, ps, p7} (for NumaNode 1)

e newcomm[2] = {po,p1} (for L2 0) and
newcomm[2] = {p2, p3} (for L2 1)

e newcomm[3] = {po} (for Core 0) and

newcomm[3] = {p1} (for Core 1)
The roots communicators would then be:
rootscomm[@] = {po}
rootscomm[1] = {po, pa}
rootscomm[2] = {po, p2}
rootscomm[3] = {po, p1}

This demonstrates that our proposal is flexible enough to accom-
modate the case of non-uniform binding policies within the same
MPI application.

3.3 Communicators characteristics query

The main aspect of our proposal deals with hierarchical commu-
nicators creation. However, we need to introduce other functions
in order to make the use of these communicators more practical
to the application developer. So far, with the proposed abstraction,
users are able to leverage the structure of their hardware. However,
more information might be needed, for instance in case of data dis-
tribution between the various communicators created at a certain
level in the hierarchy.

3.3.1 Getting information for a hierarchical level. A process is
able to retrieve some information about a specific communicator it
belongs to with a call to the follwing function:

int MPI_Comm_get_hlevel_info(MPI_Comm comm,
int *num_comms,
int xindex,
char x*type)

With:
IN comm: communicator (handle)
OUT num_comms: number of siblings communicators (integer)
OUT index: communicator index (integer)
OUT type: type of communicator (string)

e num_comms is the number of communicators in the same
level with the same parent communicator. For instance, in
the case of a node similar to the one shown on Figure 1, a
call to MPI_Comm_get_
hlevel_info with newcomm[2] (that is, a L2 cache) would
yield a value of 2 for num_comms, since there are 2 L2 caches
per NumaNode (i.e. newcomm[1], the parent communica-
tor).

e index is a kind of rank for each communicator which
should be contiguously numbered and starting from 0. It is
the rank of the communicator among all communicators
created by its parent communicator.

e type is a string giving information about the kind of re-
source that the communicator represents. It should be un-
ambiguous, like L2_Cache, L3_Cache or NumaNode.

All this information should be cached by the communicator in an
info object attached to it containing a set of (key,value) proprely
defined. This would require the use of the MPI_Comm_set_info and
MPI_Comm_get_info functions.

3.3.2 Getting the minimal level. Another helpful feature would
be the ability for a programmer to know the name (type) of the low-
est level in the hardware hierarchy that is shared by some processes.
To this end, we propose to add the following function:

int MPI_Comm_get_min_hlevel(MPI_Comm comm,
int nranks,
int *ranks,
char x*xtype)

With:

IN comm: communicator (handle)

EuroMPI 2017, September, Argonne National Laboratory, USA

IN nranks: number of MPI processes (integer)
IN ranks: list of MPI process ranks (array)
OUT type: type of the resource (string)

This function returns the name of the lowest level in the hierarchy
shared by all the MPI processes which ranks in the communicator
comm are listed in the rank array. If the calling process rank is not
among the ranks listed in the array passed as an argument, the type
returned should be "Unknown" or “Invalid".

3.4 Discussion

In this section, we discuss the advantages and potential drawbacks
of our approach. We propose an abstraction based on existing MPI
objects (the communicators), hierarchically modelling the hardware
topology in order to improve performance and scalability. Commu-
nicators are often used in MPI applications and a well-understood
concept to boot. A large majority of application developers are
familiar with it (beyond MPI_COMM_WORLD). Therefore, using our
proposal would require little effort, conceptually speaking. The com-
municators created do not feature a predetermined name, taken
after the underlying resource it is supposed to represent. This en-
sures that there will no need to make any change nor modifications
in the future in case new levels in the hardware hierarchy should
appear. This also justifies why we do not specify a maximal depth
for the hierarchy. By creating "recursively” new communicators,
the user is able to get all needed objects until the bottom is reached
and no new communicator can be produced. The user can of course
chose the desirable depth by querying the name/type of the com-
municator created and deciding to go further or not.

One drawback of our approach is the fact that it targets archi-
tectures which are hierarchically organized. It is the case for most
machines, but there are some exceptions that our model does not
currently address. And the same issue arises for network topolo-
gies that are not hierarchical, such as torus for instance. In such a
case, should the split be made on just a particular dimension of the
torus? The info argument could be used to pass this information.
But if some form of hierarchy can be extracted from the network
topology, we shall be able to exploit it with our mechanism.

Currently, the interface proposed features one new value for
the split_type argument of the MPI_Comm_split_type function
and three new routines. But one open question is whether or not
we should offer more elements. Indeed, it could be interesting to
create several hierarchies of communicators, based on different
criteria with different split_type values. For instance, making
a distinction between the network topology and the nodes in-
ternal topology could be a relevant idea. The info argument in
MPI_Comm_split_type could also be used to split a communicator
directly at a desired level, without creating the whole hierarchy.

As for the names (types) returned by the MPI_Comm_get_hlevel_
info function, they could be given or derived from the names used
by an external tools such as hwloc. By doing so, portability could
be enforced to some degree, or at least across MPI implementations
that feature hwloc (which is the case of Open MPI, MPICH and
MVAPICH for instance).

Last, its is possible to create the roots communicators with the
current functions available in MPI. However, from a performance

E. Jeannot et al.

standpoint, an hwloc-based implementation (and thus a new func-
tion in the standard) is more efficient. It also removes the burden
of implementing it by the user.

4 BENEFITS OF THE HIERARCHICAL MODEL
FOR PARALLEL APPLICATIONS
In this section we propose to model the class of MPI applications

that can leverage our hierarchical abstraction to enhance the per-
formance of their communications. Let us suppose that an MPI

Figure 3: Superstep of MPI application familly based on native collective communications

application features p MPI processes. The application execution
model we focus on is in the form of a repetitive phases of super-
steps including communication operations C followed by execution
operations E as shown by Figure 3. Each process needs to terminate
its communication operation to start the processing of data and its
pseudo code is:

Algorithm 1: MPI algorithm covered by our hierarchical model

1 MPI_Initialization(); (// Initialisation part) foreach
s« S—1.0do // Algorithm super-steps

2 MPI_Collective_Communication_Operations();
L MPI_Processing_Operations();

ORONONONONONO0)

Communicator Levell

U|SS530]
UISS9504
UISS90.

UISS9504

Figure 4: Superstep of MPI application familly based on hierarchical collective communi-
cations

If the communication operations C include collective operations,
then the application can take advantage of the hierarchical model
described by Algorithm 2, where L is the number of levels in the
hierarchy allowed by the target architecture and generated au-
tomatically by our approach. Figure 4 illustrates the application
communication model based on a three-level communicator hierar-

chy.

A Hierarchical Model to Manage Hardware Topology in MPI Applications EuroMPI 2017, September, Argonne National Laboratory, USA

Algorithm 2: MPI algorithm based on a hierarchical commu-
nication model
1 MPI_Initialization();(// Initialisation part) while

L # MPI Comm_NULL do
2 L « MPI_Comm_hsplit_with_roots(); // Topological
Communicators creation

3 foreach s<— S—1..0do // Algorithm super-steps
4 foreach l— L —-1..0do // Hierarchy levels
5 L MPI_Collective_Communication_Operations(l);

6 | MPI_Processing_Operations();

Applying a hierarchical model can improve the communication
times and thus the total time of the application. As a matter of fact,
by exploiting more parallelism in the hierarchy levels, it is possible
to enhance the scalability and performance of collective operations.
In order to illustrate this claim we propose a short discussion to
highlight the important features which can explain this benefit.

The collective communications are modeled with well-known
works such as the Hockney [6], the LogP [3] or the PlogP [11] model.
These models express the maximum time taken by a collective
communication operation as a linear f unction depending on several
variables such as:

e p: The number of processes performing the collective com-
munication operation c.

o m: The size of the data exchanged between processes.

o The collective algorithm used.

o «: The hardware latency that may be a function of m and
p.

e f: The hardware bandwidth that may be a function of m

and p.

For example, the processing time of the simple Flat Tree broad-
cast is expressed with the Hockney [6] model as equal to :

(p = Dl + mp)

As shown by Algorithm 2 L levels of communications are present
in the topology-aware hierarchical model according to the structure
of the architecture. Thus, the time of collective operations will be
represented as a sum of L functions depending on the previous
cited features but where each level is characterised by a set of
specific parameters: p;, «;, fi and m;. As a consequence, the Flat
Tree broadcast example shall be expressed as:

SE i — D(ai + mp;)

The hardawre topology-aware hierarchical model could reduce
the processing time of collective operations by exploiting the fol-
lowing points:

e Less number of processes per level: in most applications, it
is enough to use a pyramidal structure in the hierarchical
model of computation. In fact, as illustrated by Figure 4, the
structure based only on the roots of hierarchical communi-
cators in upper levels is enough to perform the communica-
tion. such a structure implies to use fewer processes p; by
level, which reduces the processing time of the collective.

e Parallelism by level: this point regards the exploitation of
parallelism at each level of the hierarchy. Indeed, and ex-
cept for the top level of the hierarchy, the communications
inside the communicators of the same level are carried out
in parallel.

e Data locality and process affinity: This point highlights the
advantage of using hardware-aware communicators. In-
deed, taking into account the hardware affinity of processes
placement in the machine, the communication between
them is enhanced thanks to the cache optimizations.

e Improved latency and bandwidth per level: this point con-
cerns the physical latency and bandwidth which could be
improved when the number of processes is small. In fact,
because of the contention phenomenon, the higher the
number of processes involved in the communication at the
same time through an interconnect, the lower the latency
and the bandwidth delivered to each process.

From all the above points, collective communication operations
could be improved depending on the execution conditions. For
instance, if we take the Flat Tree broadcast of a single message
(m = 1) and operated in the simple context of 8 processes and the
three-level hierarchy as described by Figure 4 then the result is:

The simple case: Time = (8 — 1)(a + f§)

The hierarchical case:
Time = (2 — 1)(ao + fo) + (2 =)(e1 + 1) + (2 = (a0 + p1)

If we compare both expressions, it is clear that the hierarchical
approach enhances the simple collective with the factor of at least
(7/3) times when latencies and bandwidths are equal in both the
simple and the hierarchical cases. However, in the real situation,
the simple execution could generate more contention on the inter-
connects of each level than the hierarchical execution. Thus, the
factor of enhancement of collective time could be greater than (7/3).

5 EXPERIMENTAL RESULTS

In this section we present the experimentations we carried out their
results to demonstrate the benefits of our proposal. We modified
two benchmarks by introducing our hierarchical model of commu-
nicators and we compared their executions on three architectures.
In all cases we used the roots communicators hierarchy generated
by calling the primitive described in subsection 3.2.3. In addition, we
used all cores of a targeted architecture and bound an MPI process
on each of them.

5.1 Platforms and architectures

For our study, we used tree architectures: a network of 10 nodes
(NTW10E5) and two SMP machines (SMPE12E5, SMP20E5) from
the Plafrim platform [17]. The characteristics of these architectures
are given in Table 1.

5.2 Collective Communications

The first benchmark is the broadcast and the reduce collective
communication operations which we chose to test the proposed hi-
erarchical communication model. There has been other works that
aimed at exploiting hierarchy in the hardware in order to improve

EuroMPI 2017, September, Argonne National Laboratory, USA

Table 1: Characteristics of the used architectures

Name SMP12E5 SMP20E7 NTW10ES5
oS Red Hat 4.8 | SUSE Srv 11 | Red Hat 4.8
Kernel 3.10.0 2.6.32.46 3.10.0
Nodes 1 1 10

Cores per NUMA | 8 8 6

NUMA nodes 12 20 4

Sockets 12 20 2

NUMA groups 12 20 1

Socket E5-4620 E7-8837 E5-4620
Clock rate 2600Mhz 2660Mhz 2600Mhz
Hyper-Threading | Yes No No

L1 cache 32K 32K 32K

L2 cache 256K 32K 256K

L3 cache 20480K 24576K 15360K
Mem Interconnect | NUMAlink6 | NUMAlink5 | QPI

Node Interconnect | N/A N/A InfiniBand
Hierarchical levels | 3 3 4

GCC 5.1 5.1 5.1

Open MPI 2.0.1 2.0.1 2.0.1
Hwloc 2.0-git 2.0-git 2.0-git

collective communications. In [23] a distinction is made between
inter-node and intra-node communication, because shared-memory
based communications are expected to be faster than their network-
based counterparts. In this case, the hierarchy was limited to two
levels (intra vs. inter-node) and sometimes three (intra. vs inter-
cluster). We generalized this approach and make no assumption
about the number of levels. Moreover we are able to exploit the
memory hierarchy inside the nodes of a cluster which is not ad-
dressed at all by these works. However, the aim here is not to rewrite
collectives or to propose some new algorithms. Our goal is merely
to experiment our abstraction in order to assess the potential gains
achievable by optimizing communication and data locality.
We compared two implementations:

e Native: this is the Open MPI implementation of the consid-
ered collective.

e Hierarchical: this is a loop over the levels of the hierarchy
calling the Open MPI version of the collective. Hence, we
do not rewrite the collective but just call it through our
hierarchy.

26

21

Linear
16 Chain
Pipeline

Split Binary
Binary

11

Factor of enhancement

Binomial

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6

Data size (x4Bytes)

Figure 5: Enhancement factor of hierarchical approach for Open MPI Broadcast implemen-
tations on NTW10E5 (240cores)

E. Jeannot et al.

Linear
Chain

Pipeline

Factor of enhancement

Split Binary
Binary

Binomial

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6

Data size (x4Bytes)

Figure 6: Enhancement factor of hierarchical approach for Open MPI Broadcast implemen-
tations SMP20E7 (160 cores)

26

21 Linear
Chain

Pipeline

16

11

Factor of enhancement

split Binary
Binary
Binomial

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6

Data size (x4Bytes)

Figure 7: Enhancement factor of hierarchical approach for Open MPI Broadcast implemen-
tations SMP12E5 (96 cores)

Figures 5, 6 and 7 show the enhancement factor of the hierarchical-
based implementation of six broadcast algorithms: Linear, Chain,
Pipeline, Split Binary, Binary and Binomial. This factor is obtained
by comparing the maximum time of processing several data sizes on
the architectures described in Table 1 with the hierarchical broad-
cast and the native version of Open MPI broadcast. It is possible
to note that the hierarchical approach we propose enhances al-
most all broadcast executions on the three architectures. In fact,
the maxima achieved are roughly equal to 21x on NTW10E5, 11x
on SMP20E5 and 22x on SMP12E5. This performance gain is due to
two majors factors: first, our hierarchical approach allows to better
exploit the parallelism and to reduce the complexity of broadcast
algorithms. Second, the hardware topology-based communicators
enhance the data locality and the hardware affinity between pro-
cesses performing communications. Third, the communications
are better pipelined over the network and the interconnect which
reduce their total time.

Figures 8, 9 and 10 present the same results for the Reduce collec-
tive with six algorithms: Linear, Chain, Pipeline, Binary, Binomial
and In-order Binary. In this case also the enhancement factor is
obtained by comparing the maximum time for executing the reduc-
tion collective of several data sizes on the architectures described in
Table 1 with both hierarchical and native Open MPI reduce. Here,
we note that the hierarchical approach we propose considerably
enhances the first three algorithms: Linear, Chain, Pipeline. In fact,
the maxima achieved are roughly equal to 39x on NTW10ES5, 11x on
SMP20E5 and 8x on SMP12E5. These performances are achieved by
the hardware-aware and hierarchical decomposition of the commu-
nications. Indeed, the algorithms are better parallelized, the data-
locality is enhanced and the communications are better pipelined.

A Hierarchical Model to Manage Hardware Topology in MPI Applications EuroMPI 2017, September, Argonne National Laboratory, USA

Linear
Chain

Pipeline

Factor of enhancement
@
@

Binary
Binomial
In-order Binary
1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6

Data size (x4Bytes)

Figure 8: Enhancement factor of hierarchical approach for Open MPI Reduce implemen-
tations on NTW10E5 (240cores)

11

Linear
Chain
Pipeline

Factor of enhancement

Binary
Binomial
In-order Binary
1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

Data size (x4Bytes)

Figure 9: Enhancement factor of hierarchical approach for Open MPI Reduce implemen-
tations on SMP20E7 (160 cores)

Linear
Chain

Pipeline

Factor of enhancement

Binary
Binomial

PN WA OO N ® O

In-order Binary

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6

Data size (x4Bytes)

Figure 10: Enhancement factor of hierarchical approach for Open MPI Reduce implemen-
tations on SMP12E5 (96 cores)

However, we note that the three last algorithms (e.g. Binary, Bino-
mial and In-order Binary) are less improved than the others if not
at all. This phenomenon is due to the structure of the algorithms
since they are already based on a hierarchical, tree-based struc-
ture. Therefore, the algorithm complexity is not enhanced by our
approach. The small performances obtained for these algorithms
are only due to the hardware optimisations and could be more
significant with a larger number of processes.

5.3 Hierarchical Matrix Multiplication

The second benchmark we carried out is a two-dimensional, hierar-
chical matrix multiplication [18]. This application is an hierarchical
extension of the SUMMA [21] algorithm based on two levels of
hierarchy. Its implementation is hardware oblivious and is based
on exploring several hierarchy configurations i.e. different number

Total time of HSUMA (240 Processes/1 block of 8 doubles per process)

04

03

0.2

EER |

o [|

simple Hierarchy ~ Hierarchy ~Hierarchy ~Hierarchy Hierarchy Hierarchy Hierarchy Hierarchy
No Hierarchy 2groups 4groups 8groups 12groups 16groups 20groups 24groups Topo (10x24)

= Communication time
m Processing time

Time (seconds)

Implementation configurations

Figure 11: Comparison of execution time of simple, topology-oblivious hierarchical and
toplogical implementations on NTW10E5. 240 processes process 1 block of 8 doubles

Total time of HSUMA (160 Processes/1 block of 8 doubles per process)

= Communication time
03 = Processing time

” -
o

Simple Hierarchy Hierarchy Hierarchy Hierarchy Hierarchy Hierarchy
No Hierarchy ~ 16groups 10groups 8groups 4groups 2groups Topo (20x8)

Time (second)

Implementation configurations

Figure 12: Comparison of execution time of simple, topology-oblivious hierarchical and
toplogical implementations on NTW10E5. 160 processes process 1 block of 8 doubles

of communicators on each two levels. Hence, the programmer need
to manually specify the configuration at each execution by giving
a configuration file as an input argument. With our approach, we
abstract the manual specification of the hierarchy configuration.
As a consequence we do not need to specify the configuration of
the hierarchy in our implementation. It is based on the targeted
architecture topology and automatically generated by using our
proposed set of functions. The implementations we compare are:

o Simple: this is the implementation of the SUMMA algo-
rithm based on broadcasting the blocks over rows and
columns.

e Hierarchical (xgroups): this is the hierarchical implemen-
tation of the SUMMA algorithm of matrix multiplication.
The broadcasts of blocks are performed hierarchically over
two levels. The hierarchy configuration is set by the user
through a configuration file for each execution.

e Hierarchical topological: this is the same implementation
but leveraging our communicators hierarchy. The hierar-
chy configuration is based on the underlying hardware
topology and automatically build using our primitives.

Figures 11, 12 and 13 present the total processing times of sev-
eral implementations: Simple (without hierarchy), Hierarchical with
various configurations and Hierarchical with a topological config-
uration. The total time represents the needed time to process one
block of 8 doubles per process and is composed of the average
computing time represented by the blue part of the bar and the
average communication time of processes by the red part. The used
broadcast algorithm is the Open MPI implementation of Binary
algorithm. We note that the Topological implementation (last bar)
represent the minimum total time and achieve the better speed-ups
of the simple implementation: 12x on NTW10E5, 5x on SMP20E7

EuroMPI 2017, September, Argonne National Laboratory, USA

Total time of HSUMA (96 Processes/1 block of 8 doubles per process)

01
- l I I
o .

Simple Hierarchy ~ Hierarchy Hierarchy ~ Hierarchy Hierarchy Hierarchy
(no Hierarchy) 2groups 4groups 8groupps 16groups 2dgroups Topo(12x8)

® Processing time

Time (seconds)

Implementation configurations

= Communication time

Figure 13: Comparison of execution time of simple, topology-oblivious hierarchical and
toplogical implementations on NTW10ES5. 96 processes process 1 block of 8 doubles

and 6x on SMP12E5. Indeed, all implementations feature the same
processing time (the blue part) but the communication times (the
red part) is optimally reduced by the last implementation (topologi-
cal). This is due to the optimal hardware configuration matching
with the topology. In fact, the communications inside hardware
topology-aware communicators is more efficient thanks to the data
locality and the MPI processes affinity. In addition, pipelining the
communication enhance processors occupation time and reduce
the global time.

6 CONCLUSION AND FUTURE WORK

In this paper, we have presented an abstraction that can help the
programmer to structure his/her application in order to take into ac-
count the hardware topology. We also presented how this model and
abstraction could fit into an existing programming model/standard:
the widely-used Message Passing Interface. At the expense of light
changes and a few new features introduction, we have shown that
performance improvements can be achieved in MPI implementa-
tions themselves, but more importantly in parallel applications
directly. Indeed, we introduced our topology-based communicators
in two collective communication operations (Broadcast and Reduce)
and showed that in the cases where hierarchy could improve perfor-
mance, taking into account the physical topology improves things
even further. Tested on three different architectures, our approach
enhances the performance of the tested collective communications
by factors up to 21x, 11x and 22x for the broadcast and 39x, 11x and
8x for the reduce. It also reduces the total time of hierarchical matrix
multiplication with the factors of 12x, 5x and 6x. Even if these gains
of performance are considerable, the additional effort to use our
approach is negligible. In fact, thanks to the proposed abstraction
automatically generating an hierarchy of communicators, the user
does not have to deal with the details of hardware characteristics
or manipulating low-level tools. He only deals with high-level MPI
objects: communicators.

The hardware-agnosticity nature of MPI might seem paradox-
ical with our goal, as we precisely seek to offer the programmer
means to better understand and exploit the underlying hardware.
We believe that the independence from hardware considerations is
an important strength of the MPI standard. We intend to keep MPI
hardware-agnostic but we also believe that giving the program-
mer more hints about this same hardware can be very beneficial
performance-wise. The predicament is therefore to find the rele-
vant level of abstraction for such a new functionality. Indeed, if an

E. Jeannot et al.

MPI application should be able to gather and use specific pieces of
information about the hardware, this information should neverthe-
less be abstract enough to not be tailored for a particular class of
hardware.

This work is available as an external library that features all the
functions presented in this paper. The code is downloadable at the
following URL: https://gforge.inria.fr/frs/download.php/file/36832/
hsplit-rc-0.1.tar.gz or via a git clone from URL: https://scm.gforge.
inria.fr/anonscm/git/mpi-topology/mpi-topology.git

We plan to further discuss this proposal at the MPI Forum. Our
future works include the management of networks in our imple-
mentation. Currently, we only address a node internal topology
(i.e. the memory hierarchy) and we do not create communicators
corresponding the the various switch levels (for instance) that are
present. This is only a matter of implementation as the concept we
propose is ready yet for this aspect. As we use hwloc for memory
hierarchies, we would like to support networks by integrating the
Netloc [4] software in our implementation. We also plan to address
non-hierarchical topologies, especially regarding the network. Ex-
pressing the topology with a distance function seems a promising
idea and we would like to explore it. Last, we believe that other ob-
jects in MPI implementations besides communicators could benefit
from a knowledge of the underlying physical topology, for instance
memory windows. Generalizing our approach could be of interest.

ACKNOWLEDGMENTS

This work has partially been supported by the PIA ELCI project of
the French FSN and by the ANR MOEBUS project ANR-13-INFR-
0001.

Experiments presented in this paper were carried out using the
PLAFRIM experimental testbed, being developed under the Inria
PlaFRIM development action with support from Bordeaux INP,
LABRI and IMB and other entities: Conseil Régional d’Aquitaine,
Université de Bordeaux and CNRS (and ANR in accordance to the
programme d’investissements d’Avenir (see https://www.plafrim.
fr/).

The authors would like to thank the MPI Forum for its feedback,
especially Daniel Holmes.

REFERENCES

[1] B.Brandfass, T. Alrutz, and T. Gerhold. 2012. Rank Reordering for MPI Commu-
nication Optimization. Computer & Fluids (Jan. 2012). https://doi.org/10.1016/j.
compfluid.2012.01.019

[2] F.Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin, G. Mercier, S.
Thibault, and R. Namyst. 2010. Hwloc: a Generic Framework for Managing Hard-
ware Affinities in HPC Applications. In Proceedings of the 18th Euromicro Interna-
tional Conference on Parallel, Distributed and Network-Based Processing (PDP2010).
IEEE Computer Society Press, Pisa, Italia. http://hal.inria.fr/inria-00429889

[3] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schauser,

Eunice Santos, Ramesh Subramonian, and Thorsten von Eicken. 1993. LogP:

Towards a Realistic Model of Parallel Computation. SIGPLAN Not. 28, 7 (July

1993), 1-12. https://doi.org/10.1145/173284.155333

Brice Goglin, Joshua Hursey, and Jeffrey M. Squyres. 2014. Netloc: Towards a

Comprehensive View of the HPC System Topology. In 43rd International Con-

ference on Parallel Processing Workshops, ICPPW 2014, Minneapolis, MN, USA,

September 9-12, 2014. IEEE Computer Society, 216-225. https://doi.org/10.1109/

ICPPW.2014.38

[5] T.Hatazaki. 1998. Rank Reordering Strategy for MPI Topology Creation Func-
tions. In Recent Advances in Parallel Virtual Machine and Message Passing In-
terface, V. Alexandrov and J. Dongarra (Eds.). Lecture Notes in Computer Sci-
ence, Vol. 1497. Springer Berlin / Heidelberg, 188-195. http://dx.doi.org/10.1007/
BFb0056575 10.1007/BFb0056575.

—_
=t

https://gforge.inria.fr/frs/download.php/file/36832/hsplit-rc-0.1.tar.gz
https://gforge.inria.fr/frs/download.php/file/36832/hsplit-rc-0.1.tar.gz
https://scm.gforge.inria.fr/anonscm/git/mpi-topology/mpi-topology.git
https://scm.gforge.inria.fr/anonscm/git/mpi-topology/mpi-topology.git
https://www.plafrim.fr/
https://www.plafrim.fr/
https://doi.org/10.1016/j.compfluid.2012.01.019
https://doi.org/10.1016/j.compfluid.2012.01.019
http://hal.inria.fr/inria-00429889
https://doi.org/10.1145/173284.155333
https://doi.org/10.1109/ICPPW.2014.38
https://doi.org/10.1109/ICPPW.2014.38
http://dx.doi.org/10.1007/BFb0056575
http://dx.doi.org/10.1007/BFb0056575

A Hierarchical Model to Manage Hardware Topology in MPI Applications EuroMPI 2017, September, Argonne National Laboratory, USA

[6] Roger W. Hockney. 1994. The Communication Challenge for MPP: Intel Paragon
and Meiko CS-2. Parallel Comput. 20, 3 (March 1994), 389-398. https://doi.org/
10.1016/S0167-8191(06)80021-9

[7] J. Hursey, J. M. Squyres, and T. Dontje. 2011. Locality-Aware Parallel Process
Mapping for Multi-core HPC Systems. In 2011 IEEE International Conference on
Cluster Computing (CLUSTER). IEEE, 527-531.

[8] J.L. Traff. 2002. Implementing the MPI Process Topology Mechanism. In Super-
computing ‘02: Proceedings of the 2002 ACM/IEEE conference on Supercomputing.
IEEE Computer Society Press, Los Alamitos, CA, USA, 1-14.

[9] Emmanuel Jeannot, Guillaume Mercier, and Francois Tessier. 2014. Process

Placement in Multicore Clusters: Algorithmic Issues and Practical Techniques.

IEEE Trans. Parallel Distrib. Syst. 25, 4 (2014), 993-1002. https://doi.org/10.1109/

TPDS.2013.104

Jesper Larsson Traff. 2002. Implementing the MPI process topology mecha-

nism. In Supercomputing ‘02: Proceedings of the 2002 ACM/IEEE conference on

Supercomputing. IEEE Computer Society Press, Los Alamitos, CA, USA, 1-14.

[11] Thilo Kielmann, Henri E. Bal, and Kees Verstoep. 2000. Fast Measurement of LogP

Parameters for Message Passing Platforms. Springer Berlin Heidelberg, Berlin,

Heidelberg, 1176-1183. https://doi.org/10.1007/3-540-45591-4_162

Andi Kleen. 2005. A NUMA API for Linux. Novel Inc (2005). http://halobates.de/

numaapi3.pdf

[13] G. Mercier and J. Clet-Ortega. 2009. Towards an Efficient Process Placement
Policy for MPI Applications in Multicore Environments. In EuroPVM/MPI (Lecture
Notes in Computer Science), Vol. 5759. Springer, Espoo, Finland, 104-115.

[14] G. Mercier and E. Jeannot. 2011. Improving MPI Applications Performance on

Multicore Clusters with Rank Reordering. In EuroMPI (Lecture Notes in Computer

Science), Vol. 6960. Springer, Santorini, Greece, 39-49.

Message Passing Interface Forum. 2012. MPI: A Message-Passing Interface Stan-

dard, Version 3.0. Technical Report. http://www.mpi-forum.org/docs/mpi-3.0/

mpi30-report.pdf

[16] Bradford Nichols, Dick Buttlar, and Jacqueline Proulx Farrell. 1996. Pthreads

Programming. O’Reilly & Associates, Inc., Sebastopol, CA, USA.

Plafrim. Plate-forme Fédérative pour la Recherche en Informatique et Mathé-

matiques. (????). https://plafrim.bordeaux.inria.fr/doku.php.

[18] Jean-Noel Quintin, Khalid Hasanov, and A. Lastovetsky. 2013. Hierarchical
Parallel Matrix Multiplication on Large-Scale Distributed Memory Platforms.
In 42nd International Conference on Parallel Processing (ICPP 2013). IEEE, IEEE,
Lyon, France, 754-762. https://doi.org/DOI10.1109/ICPP.2013.89

[19] M.]. Rashti, J. Green, P. Balaji, A. Afsahi, and W. Gropp. 2011. Multi-core and

Network Aware MPI Topology Functions. In EuroMPI 2011. Recent Advances in

the Message Passing Interface - 18th European MPI Users’ Group Meeting (Lecture

Notes in Computer Science), Y. Cotronis, A. Danalis, D. S. Nikolopoulos, and

J. Dongarra (Eds.), Vol. 6960. Springer, 50-60.

James Reinders and Jim Jeffers. 2015. High Performance Parallelism Pearls (1 ed.).

Vol. 2. Morgan Kaufmann.

[21] R. A. Van De Geijn and]. Watts. 1997. SUMMA: scalable universal matrix
multiplication algorithm. Concurrency: Practice and Experience 9, 4 (1997), 255~
274. https://doi.org/10.1002/(SICI)1096-9128(199704)9:4<255::AID-CPE250>3.0.
CO;2-2

[22]]. Zhang, J. Zhai, W. Chen, and W. Zheng. 2009. Process Mapping for MPI
Collective Communications. In Euro-Par (Lecture Notes in Computer Science), H. J.
Sips, D. H. J. Epema, and H.-X. Lin (Eds.), Vol. 5704. Springer, 81-92.

[23] H. Zhu, D. Goodell, W. Gropp, and R. Thakur. 2009. Hierarchical Collectives
in MPICH2. In Proceedings of the 16th European PVM/MPI Users’ Group Meeting
on Recent Advances in Parallel Virtual Machine and Message Passing Interface.
Springer-Verlag, Berlin, Heidelberg, 325-326.

[10

[12

[15

[17

[20

https://doi.org/10.1016/S0167-8191(06)80021-9
https://doi.org/10.1016/S0167-8191(06)80021-9
https://doi.org/10.1109/TPDS.2013.104
https://doi.org/10.1109/TPDS.2013.104
https://doi.org/10.1007/3-540-45591-4_162
http://halobates.de/numaapi3.pdf
http://halobates.de/numaapi3.pdf
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
https://plafrim.bordeaux.inria.fr/doku.php
https://doi.org/DOI 10.1109/ICPP.2013.89
https://doi.org/10.1002/(SICI)1096-9128(199704)9:4<255::AID-CPE250>3.0.CO;2-2
https://doi.org/10.1002/(SICI)1096-9128(199704)9:4<255::AID-CPE250>3.0.CO;2-2

	Abstract
	1 Introduction
	2 Hardware topology management and the MPI Standard
	2.1 Interactions with external tools
	2.2 Current status in the MPI standard and its implementations

	3 Proposed Extensions to the MPI standard
	3.1 Guidelines
	3.2 Communicators creation
	3.3 Communicators characteristics query
	3.4 Discussion

	4 Benefits of the hierarchical model for parallel applications
	5 Experimental Results
	5.1 Platforms and architectures
	5.2 Collective Communications
	5.3 Hierarchical Matrix Multiplication

	6 Conclusion and Future Work
	Acknowledgments
	References

