Experimental Study of Multi-Criteria Scheduling
Heuristicsfor GridRPC Systems

Yves Caniou* and Emmanuel Jeannot

L LORIA, INRIA-Lorraine
2 LORIA, Université Henri Poincaré

Abstract. We study in this paper several scheduling heuristics for GridRPC mid-
dlewares. When dealing with performance issue, the scheduling strategy is one of
the most important feature. However, many heuristics implemented in available
middlewares were not designed for this context (for instance MCT in NetSolve).
Therefore, schedulers are not necessarily effective. We propose to use heuristics
based on a non-intrusive module which is able to estimate the duration of all
tasks in the system. Three criteria are examined among which the execution time
of the application, e.g. the makespan. Experiments on a real platform show that
the proposed heuristics outperform MCT for at least two of these three criteria.

Keywords : time-shared and heterogeneous resources, dynamic scheduling heuristics,
historical trace manager, completion dates estimations, DAGs

1 Introduction

GridRPC [1] is an emerging standard promoted by the global grid forum (GGF).This
standard defines both an API and an architecture. A GridRPC architecture is heteroge-
neous and composed of three parts: a set of clients, a set of servers and an agent (also
called a registry). The agent has in charge to map a client request to a server. In order
for a GridRPC system to be efficient, the mapping function must choose a server that
fulfills several criteria. First, the total execution time of the client application, e.g. the
makespan, has to be as short as possible. Second, each request of every clients must be
served as fast as possible. Finally, the resource utilization must be optimized.

Several middlewares instantiate the GridRPC model (NetSolve [2], Ninf [3], DIET [4],
etc.). In these systems, a server executes each request as soon as it has been received:
it never delays the start of the execution. In this case, we say that the execution is time-
shared (in opposition to space-shared when a server executes at most one task at a
given moment). In NetSolve, the scheduling module uses MCT (Minimum Completion
Time) [5] to schedule requests on the servers. MCT was designed for scheduling an
application for space-shared servers. The goal was to minimize the makespan of a set
of independent tasks. This leads to the following drawbacks:

* This work is partially supported by the Région Lorraine, the French ministry of research ACI
GRID

— mono-criterion and mono-client. MCT was designed to minimize the makespan of
an application. It is not able to give a schedule that optimizes other criteria such as
the response time of each request. Furthermore, optimizing the last task completion
date does not lead to minimize each client application makespan. However, in the
context of GridRPC, the agent has to schedule requests from more than one client.

— load balancing. MCT tries to minimize the execution time of the last request. This
leads to over-use the fastest servers. In a time-shared environments, this implies
to delay previously mapped tasks and therefore degrades the response time of the
corresponding requests.

Furthermore, MCT requires sensors that give information on the system state. It
is mandatory to know the network and servers state in order to take good scheduling
decisions. However, supervising the environment is intrusive and disturbs it. Moreover,
the information are sent back from time to time to the agent: they can be out of date
when the scheduling decision is taken.

In order to tackle these drawbacks we propose and study three scheduling heuristics
designed for GridRPC systems. Our approach is based on a prediction module embed-
ded in the agent. This module is called the Historical Trace Manager (HTM) and it
records all scheduling decisions. It is not intrusive and since it runs on the agent there
is no delay between the determination of the state and its availability. The HTM takes
into account that servers run under the time-shared model and is able to predict the du-
ration of a given task on a given server as well as its impact on already mapped tasks.
In this paper, we show that the HTM is able to predict precise task durations when the
server load is not too high. The proposed heuristics use the HTM to schedule the tasks.
We have plugged the HTM and our heuristics in the NetSolve system and performed
intensive series of tests on a real distributed platform (more than 50 days of continuous
computations) for various experiments with several clients.

In[5], MCT was only studied in the context of independent tasks submission. In this
paper, the study is more general. The tests are submissions of task graphs (1D meshes
and stencil). For some of them, independent tasks are submitted during the execution of
the graphs. We do not assume any knowledge of the applications graphs and thus, we
schedule dynamically each request. The goal is to serve at best each client request (a
task of a graph as well as an independent one). We have compared our heuristics against
MCT in NetSolve on three criteria. Results show that the proposed heuristics outper-
form MCT on at least two of the three criteria with gain up to 20% for the makespan
and 60% for the average response time.

2 MCT in GridRPC Systems

GridRPC is an emerging standard for Grid Computing. It allows the remote execution
of tasks to computational servers. The architecture is composed of clients that submit
requests to an agent (or a registry), the agent sends back the identity of the servers that
can execute the tasks. The client sends input data to the chosen server which performs
the computation and sends back output data.

NetSolve [2] instantiates this model. A NetSolve agent uses Minimum Completion
Time [5] (MCT) to map tasks on servers. The MCT heuristic chooses the server that

will complete the task the soonest. In order to determine the completion time of a given
task on a server it assumes that the load on the network and on the server is constant
during the execution. This leads to the following remarks:

1. the agent needs an evaluation of each server load ;

2. the load on a given server is seldom constant. If the server is loaded by some tasks,
they are likely to finish during the computation of the new mapped task ;

3. The time-shared model implies that mapping a task on a loaded server delays the
concurrent running tasks. In this paper, we call this delay the perturbation. The
perturbation may make the previously decision obsolete.

The load evaluation of a network or of a machine is a difficult task and is often
performed by sensors. NetSolve can use its own sensors or NWS [6]. It faces two major
problems: accuracy (MCT considers that the server load is constant when mapping a
task and do not consider the perturbation a new task will produce on the server) and
intrusiveness (sensors require some cpu cycles on the servers to evaluate the load).

3 Historical Trace Manager

The Historical Trace Manager is an attempt to efficiently answer the three remarks
exposed in the previous section. It is a prediction module that runs on the agent. It is
accurate and non intrusive. It simulates the execution of the tasks on each server and
therefore is able to predict load variation and to compute the perturbation of the new
task to already mapped ones.

We use the following model to simulate time-shared resources. When n tasks are
using the same resource (CPU, network, etc.), each one uses 1/n of its peak power.
The HTM needs several types of information: server and network peak performances,
the size of input and output data and the number of operations of each task. All these
information are static and can be computed off-line Therefore, the HTM answers the
three remarks exposed in Section 2:

1. the HTM is not intrusive because it uses only static information. Furthermore,
since it runs on the agent, information are immediately available for the scheduling
heuristic. The accuracy of the information given by the HTM is high and will be
experimentally demonstrated in the results section ;

2. the HTM is able to compute the completion date of every tasks on a given server
by simulating their executions. Therefore, the load is not assumed constant ;

3. The HTM can simulate the mapping of a task on any server. Hence, it can compute
the perturbation of this task on all the concurrent running ones. The perturbation
can then be used to take efficient scheduling decisions, as we will see in the next
sections.

4 Heuristics

We introduce here three heuristics, HMCT, MP and MSF, which are compared to MCT
in section 5. The HTM simulates the new task on each server and gives resultant infor-
mation to the scheduler. Therefore, the heuristic considers the perturbation the new task
will induce on each running one, and computes the ‘best’ server accordingly.

Historical MCT: HMCT. HMCT chooses the server that will complete the request the
fastest. Unlike MCT which assumes a constant behavior of the environment during the
execution of the task to predict its finishing date (see Section 2), HMCT uses HTM
estimations which are far more precise.

Minimum Perturbation: MP. The HTM simulates the new task on each server. MP
chooses the server that minimizes the sum of the HTM estimated delays that running
tasks will suffer. It aims to minimize overall running tasks completion dates and each
client can thus expect a lower response time.

Minimum Sum Flow: MSF. MSF relies on HTM estimations to compute the sum of the
duration (also called the sumflow [7,8]) of all the tasks. It then chooses the server which
minimizes the sumflow. MSF aims at reducing the duration of all the tasks (not only the
new one).

Table 1. Resources Composing the Environment and task durations on the unloaded servers

| Type [Machine| Processor | Speed [Memory| Swap [Systemltask 1]task 2[task 3]

Server|spinnaker Xeon 2GHz | 1Go 2Go |Linux| 15 | 30 | 43

artimon | pentium IV |1.7 GHz| 512 Mo {1024 Mo| Linux | 17 |33.5|49.5
soyotte |sparc Ultra-1 64 Mo | 188 Mo |SunOS| 128 | 256 |382.5
fonck |sparc Ultra-1 64 Mo | 188 Mo [SunOS|127.5| 254 |380.9

5 Experiments and Results

5.1 Experiments

The HTM and the heuristics HMCT, MP and MSF have been implemented in the Net-
Solve agent. Several experiments have been conducted onto an heterogeneous environ-
ment whose resources are given in Table 1. Three types of computing intensive tasks
have been used for these experiments. The duration of each task on each unloaded server
is given in Table 1. computing Table 2 gives a summary of the series of tests performed
on this platform. 8 scenarii (from (a) to (h)) have been submitted to this heterogeneous
environment. Two types of graphs have been used. 1D meshes and stencil graphs. In a
scenario, only one client submits a stencil graph while there can be several clients sub-
mitting a 1D mesh application (5 or 10). Stencil graphs have a width of 5 or 10 and a
depth of 25 or 50. In scenarii (c), (f), (g) and (h), independent tasks are submitted during
the execution of the graph(s). Their arrival dates are drawn from a Poisson distribution
of parameter u. We use the GSL library [9] for all the probabilistic calls. Experiments
in a scenario are randomized by a different seed and run 6 times per heuristics. 6 runs
were sufficient for the average values given in Section 5.3 to be stabilized. This leads to
576 experiments and about 50 days of computations.

Table 2. Scenarii, Modalities and Number of Experiments

Scenario Application(s) Independent Tasks Experiment
nbclients|width x depth|nbtasks| 1 (sec) |nbseedsx nbrun|total nbtasks|
(@) 1D-mesh 10 1x50 - - 4x6 500
(D) 1D-mesh 10 | xvarishle | - - 4x6 500
(C) 1D-mesh + 250 independent tasks| 5 1x50 250 20 4x6 500
(d) stencil (task 1) 1 10x50 - - 1x6 500
(€) stencil (task 3) 1 10x50 - - 1x6 500
(T) stencil + 175 independent tasks 1 10x25 175 28 2x6 425
(9) stencil + 87 independent tasks 1 10x25 87 40 4x6 337
(h) stencil + 87 independent tasks 1 5x25 87 25 4x6 212
5.2 Accuracy of HTM Predictions
8
7
r rato = ratio
6l
g o
Q
g af 3 4r
£
= 3 E 3
2 S
1 mtinmsrmndt A
0 0 1[;00 2(;00 3(;00 4(;00 5(;00 60‘00 70‘00 80‘00 9000 N N N N N
" . 0 1000 2000 3000 4000 5000 6000
time in seconds
time in seconds
::'(?' tl ;02 Indepir;dgn; -Ic-jasikfj SUT\TS”F Fig. 2. Scenario (d) Scheduled by MP
cdataRate p = cheduled by on Spinnaker
on artimon

Scheduling decisions rely on the accuracy of the HTM, e.g the ratio of the HTM
estimated duration by the real post-mortem duration. We show in this section that it is
high but may degrade with the server load and for some types of submission. Two main
information appear on Figures 1(1) in dark dots: the value for each task (represented by
its submission date on the abscissa) of the HTM estimated duration divided by the real
post-mortem one. Hence, the closest to 1 is the ratio, the most accurate the prediction
is ; (2) in light dots: the number of tasks that have interfered with the considered task
during its execution.

We can observe in Figure 1 the accuracy of the HTM on the 222 tasks which have
been scheduled by MSF on artimon. Estimations are degrading with the load of the
server. Indeed, until 2800 seconds, estimations are more than 96% accurate on the av-
erage and still 93% accurate until 3156 seconds. Then, more than 6 tasks are simultane-
ously executed on artimon, thus increasing prediction errors. The HTM regains a high

accuracy when the load decreases. We can note that the HTM estimations accuracy is
not decreasing with time.

We can observe on Figure 2 the information collected on the 301 tasks scheduled
by MP on spinnaker, the fastest server, during an experiment of the scenario (d). We
can observe two regions: before and after time equals 1000 seconds. Until time reaches
1000 seconds, accuracy is uneven. During that time, the server executes an average
of 4 tasks running concurrently, with a peak equal to 7 tasks. After 1000 seconds, a
maximum number of 3 tasks are running concurrently. The HTM is over 95% accurate.

As a conclusion, we see that the HTM accuracy is high when the number of simul-
taneous running jobs is lower than 5. Moreover, for some scenarii ((d) and independent
tasks submissions) the HTM is able to regain a high accuracy alone and the accuracy
does not degrade with time.

5.3 Comparison Between Heuristics

For each scenario we compare each heuristics on three criteria [10]. MCT is used as
the comparison baseline. First, we compare the application completion time, e.g. the
makespan. This comparison is done for all the scenarii. Second, when independent tasks
are involved (scenarii (c), (f), (g) and (h)), we compare the response time, e.g. in our
context (see section 2), the average duration of a task. The response time is only mea-
sured for each independent task. Third, when independent tasks are involved, we give
the percentage of independent tasks that finish sooner when the experiment is scheduled
with our heuristic than with MCT. If an heuristic is able to give a good response time
and a majority of tasks finishing sooner than if scheduled with MCT, it improves the
quality of service given to each client.

HMCT o=
MP

20 MSF m—

@ () © (@ (&) [l (@ Q)
aaaaaaaa

Fig. 3. Gain on the Makespan for each Client of each Scenario

Figure 3 shows the average gain on the makespan performed by each heuristic over
MCT for each client and for each scenario. We see that MSF and HMCT always out-
perform MCT up to 22%. MP outperforms HMCT and MSF when applications are
1D-mesh graphs (scenarii (a), (b) and (c)). However, MP shows negative performance
for some stencil graphs scenarii. This is explained as follows. Due to its design, MP

can unnecessarily map a task on a slow server, for example when it is the only idle
one. This delays the completion of the graph because some critical tasks are mapped on
slow servers. The client must wait for the completion of these tasks before being able
to resume the execution of the application.

Figure 4 shows, for each heuristic, the average gain on the response time that each
independent task benefits when scheduled with the considered heuristic. Scenarii (a),
(b), (d) and (e) are not concerned and only appear to ease the reading. We see that
HMCT, MP and MSF outperform MCT for all the scenarii. For scenarii (f) and (Q)
MSF is the best heuristic with a gain up to 40%. For scenarii (c) and (h) MP is the best
heuristic, with more than 67% of gain in scenario (h). For this scenario HMCT shows
nearly no gain.

The average percentage of tasks that finish sooner than MCT is given for each
heuristic in Figure 5. On the opposite of the two former figures where a gain is ob-
served as soon as the value is positive, the percentage here has to be superior to 50%
to express a gain (note that scenarii (2), (b), (d) and (e) are still not concerned here).
We see that, as for the response time, HMCT, MP and MSF always outperform MCT.
MSF is the best heuristic for scenarii (f) and (g). MP is the best for scenarii (c), (f) and
(h), where 90% of the tasks finish sooner than if scheduled with MCT. For this scenario
HMCT has the same performance than MCT.

Figure 4 and Figure 5 show together that MP and MSF are able to offer a good qual-
ity of service to each independent task. This means that on the average a task scheduled
by one of these two heuristics finishes sooner than MCT and the average gain is high.

0
HMCT == HMCT e

60 | MSF mm— MSF m—

o
9% of tasks

ssssssssssssssss

Fig. 4. Gain on the Response Time Fig. 5. Percentage of Tasks that Finish
for each Client of each Scenario Sooner for each Scenario

6 Conclusion

In the paper, we tackle the problem of scheduling tasks in gridRPC systems. MSF,
which rely on a non-intrusive predictive module called the Historical Trace Manager. It
simulates the execution of tasks on the environment with the time-shared model.

For our tests, we have used NetSolve, a gridRPC environment, in which we have
implemented the HTM and all the heuristics. An extensive study has been performed
on a real test platform. Numerous scenarii involving different kind of submissions, with
different application graphs possibly concurrent to independent tasks, have been sub-
mitted to the modified NetSolve agent.

We have shown that the HTM is accurate when the server load is not too high. In
some cases, the HTM accuracy degrades during the execution due to error accumula-
tions.

Our heuristics were compared against Minimum Completion Time, the default Net-
Solve scheduling heuristic.Results show that our heuristics outperform MCT on at least
two of the three observed criteria: makespan, response time and percentage of tasks
finishing sooner than when scheduled with MCT. MSF appears to be the best overall
heuristic as it always outperforms MCT on all the criteria.

In our future work, we will implement a mechanism to synchronize the HTM to the
reality. This mechanism will be based on the task completion date. The goal is to limit
the effect of error accumulation seen in some experiments. Early developments show
an improvement in the HTM predictions accuracy.

References

1. Nakada, H., Matsuoka, S., Seymour, K., Dongarra, J., Lee, C., Casanova, H.: A GridRPC
Model and API for End-User Applications (2003) ht t ps: // f or ge. gri df orum or g/
proj ects/ gridrpc-wy/ docunent/ G i dRPC_EndUse% _16dec03/ en/ 1.

2. Casanova, H., Dongarra, J.: Netsolve : A network server for solving computational science
problems. In: Proceedings of Super-Computing -Pittsburg. (1996)

3. Nakada, H., Sato, M., Sekiguchi, S.: Design and implementations of ninf: towards a global
computing infrastructure. Future Generation Computing Systems, Metacomputing Issue
(1999) 649-658

4. Caron, E., Desprez, F., Fleury, E., Lombard, D., Nicod, J., Quinson, M., Suter, F.: Une
approche hiérarchique des serveurs de calcul. to appear in Calculateurs Parallles, numéro
spécial metacomputing (2001) http://www.ens-lyon.fr/ desprez/DIET/index.htm.

5. Maheswaran, M., Ali, S., Siegel, H., Hengsen, D., Freund, R.: Dynamic matching and
scheduling of a class of independent tasks onto heterogeneous computing system. In: Pro-
ceedings of the 8th Heterogeneous Computing Workshop (HCW *99). (1999)

6. Wolski, R., Spring, N., Hayes, J.: The network service : A distributed resource performance

forecasting service for metacomputing. Journal of Future Generation Computing Systems

(1999) 757-768

Baker, K.: Introduction to Sequencing and Scheduling. Wiley (1974)

Pinedo, M.: Scheduling: Theory, Algorithms ans Systems. Prentice Hall (2001)

9. Galassi, M., Theiler, J.: The gnu standard library (1996)
http://www.gnu.org/software/gsl/gsl.html.

10. Dutot, P.F,, Eyraud, L., Mounier, G., Trystram, D.: Bi-Criteria Algorithm for Scheduling

Jobs on Cluster Platforms. In: Proceedings of SPAA 2004. (2004) to appear.

o N

