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Abstract

In this paper, a practical approach of diffusion load balancing algorithms
and its implementation are studied. Three problems are investigated. The
first one is the determination of the load balancing parameters without any
global knowledge. The second problem consists in estimating the cost and the
benefit of a load exchange. The last one studies the convergence detection of
the load balancing algorithm. For this last point we give an algorithm based
on simulated annealing to reduce the convergence towards a load repartition
in steps that can be done with discrete loads. Several simulations close
this paper and illustrate the impact of the various methods and algorithms
introduced.

1 Introduction

One of the most important problems in distributed processing consists in balancing
the work load among all processors. The purpose of load (work) balancing is to
achieve better performances of distributed computations, by improving load allo-
cation. The load balancing problem was studied by several authors from different
points of view [1, 2, 3, 4, 5, 6, 7].

In this paper we focus our study on the iterative load balancing algorithms
introduced in [1]. These kinds of algorithms assume that a node manages its load
only with its nearest neighbors. They are generic algorithms, useful when the
system is decentralized or when some nodes cannot directly communicate with
all the other nodes. However these algorithms face several problems. Firstly, the
majority of studies about these algorithms use a global knowledge, like the network
or the nodes properties, to determine the load balancing parameters. Secondly,
most of these algorithms assume that balancing the load is always beneficial and
leads to a reduction of the execution time. Thirdly, since the load is not infinitely
divisible, the final load balancing (after convergence of the algorithm) can face a
step problem.

In this paper we propose a practical approach of load balancing that solves the 3
above problems. They are 3 main problems that can appear in an implementation
of these load balancing algorithms. To the best of our knowledge no load balancing
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algorithm of the literature can deal with these 3 issues at the same time. We give
methods to determine the diffusion parameters without any global knowledge. We
propose an analysis of the cost and benefit of load exchange in order to determine
when it is worth exchanging some load. The convergence of the load balancing
algorithms with no infinitely divisible loads is also studied in this paper. Finally,
the given methods are efficient and easy to implement.

It is important to note that, in this work, we make very few assumptions. We
can deal with either static or dynamic load. The network topology can be of any
type as long as it is connected. Nodes and networks can be homogeneous or hetero-
geneous. The notion of load is very abstract, it can be anything that just requires
some time to be processed (data, etc.). The proposed methods deal with static
networks but the adaptation to dynamic networks is straight forward. Finally, no
global knowledge is required to process the algorithm. The knowledge is limited to
the neighborhood. The obtained results give in the better case, performance gains
greater than 100% and the algorithm does not always use all the available resources:
it is able to find the right amount of resources that gives a good speed-up.

This paper is organized as follows. Section 2 presents the related works, we
review the diffusion on any static network. In Section 3.1, we study the problem
of the connection links heterogeneity. Section 3.2 presents a decentralized method
to compute the load balancing parameters. Section 3.3 is dedicated to the not in-
finitely divisible loads and to the detection of the convergence of the load balancing
algorithm. In Section 4 we illustrate the behavior of the load balancing algorithm
according to the methods that we give by some experimentation.

2 Related Work

The studied algorithms are generally dedicated to static networks. A static network
topology is classically represented by a simple undirected connected graph G =
(V, E), where V is the set of vertexes and E is the set of edges, E ⊆ V × V .
Each processor is a vertex of the graph and each communication link between two
processors i, j is the edge (i, j) ∈ E between the two vertexes i and j (i, j ∈ V ).
Vertexes are labeled from 1 to n where n is the number of processors, hence |V | = n.
Let m be the number of communication links (|E| = m). Let F be the vector of
edge-weight and let us note fi,j the weight of edge (i, j) (fi,j = Fk|Ek = (i, j)).
Let Cn be the vector of node-weight such that the average of Cni

is normalized
∑

i
Cni

n
= 1.

In [1], Cybenko introduced a distributed load balancing (LB) algorithm for
static networks called the diffusion algorithm or FOS (First Order Scheme). It
assumes that a process i balances its load simultaneously with all its neighbors.
To balance the load, a ratio αij of the load difference between the process i and j

is swapped between i and j. In the general case - on heterogeneous networks - the

LB step of a process i with all its neighbors is given by Equation (1) where w
(t)
i is

the work load done by process i at time t.

w
(t+1)
i = w

(t)
i −

∑

j

αi,j .fi,j .

(

w
(t)
i

Cni

−
w

(t)
j

Cnj

)

(1)

Equation (1) is linear and thus it can be re-written in matrix form: W (t+1) =
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MT W (t), where W (t) is the vector (w
(t)
i ) and M is the diffusion matrix defined by

mij =











αijfi,j

Cnj

if (i, j) ∈ E ∧ i 6= j,

1 −
∑

k mik ∀k|(i, k) ∈ E ∧ i = j,

0 otherwise.

This algorithm has often been studied and derived - Dimension Exchange Algo-
rithm [1, 2, 8], Second Order Scheme [9, 4], dynamic networks [10, 11, 12] ...

In the literature, various methods can be found that determine these parmeters
αi,j or fi,j . There are three classical methods to compute α: Cybenko Choice [1],
Boillat Choice [5] or optimal Choice [13]. The optimal Choice and the Cybenko
Choice need a global knowledge of the network and the Boillat Choice only needs
a knowledge of neighbors degree to determine α: αij = 1

max(d(i),d(j))+1 , where d(i)

is the degree of node i at time t. The parameter fi,j must be determined according
to the constraints of the diffusion matrix M , M must be stochastic, irreducible
and aperiodic [1].

3 A decentralized practical approach

3.1 Cost and benefit of load balancing

Let us start by defining the cost and the benefit of a LB algorithm. The cost is
the time lost by exchanging the load, it is generally due to communication. The
benefit is the time gained by exchanging the load, it is due to a better balance. In
Equation (1) the parameter fi,j corresponds to the weight of edge (i, j). Hence,
the parameter fi,j must be determined such that the cost of the LB algorithm is
lower than the benefit given by the exchange of load. In our practical approach,

fi,j is in {0, 1}. If the cost of an exchange L
(t)
ij between i and j is greater than its

benefit, then fi,j is set to 0 and there is no exchange between i and j, otherwise
fi,j is set to 1. It can be noted that by this definition fi,j depends on the time,

hence it becomes f
(t)
i,j and its corresponding vector F becomes F (t).

The cost and the benefit of an exchange depends on the size of this exchange.
To determine the cost of an exchange we give the following equation,

Cost(L
(t)
ij ) = PreExcCost(|L

(t)
ij |) + ExcCost(|L

(t)
ij |) + PostExcCost(|L

(t)
ij |).

The cost of a load exchange L
(t)
ij is the time to prepare this load for the exchange

(PreExcCost(|L
(t)
ij |)), plus the time of the exchange (ExcCost(|L

(t)
ij |)), plus the time

to integrate it on the receiver (PostExcCost(|L
(t)
ij |)). PreExcCost and PostExcCost

completely depend on the application. ExcCost only depends on the load L
(t)
ij

and on the edge (i, j), a good estimation of this cost can be: ExcCost(|L
(t)
ij |) =

Latij +
|L

(t)
ij

|

Bwij

, where Latij and Bwij are respectively the latency and the bandwidth

of edge (i, j). Let us note that the communication can always be hidden some
computation.

The benefit given by the exchange of L
(t)
ij can be estimated by the computation

time on i and j without exchange minus the computation time on i and j after
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this exchange. Intuitively the benefit of a load exchange must be positive if the
computation time is reduced by this exchange and negative in the other case. Let
us recall that the computation time on i and j is given by the maximum between
the computation time on i and the computation time on j. The following equation

gives the benefit for the cases - L
(t)
ij > 0 and L

(t)
ij < 0.

Benefit(L
(t)
ij ) =



















max(Cp(w
(t)
i ), Cp(w

(t)
j ))

−max(Cp(w
(t)
i − L

(t)
ij ), Cp(w

(t)
j + L

(t)
ij )) if L

(t)
ij > 0,

max(Cp(w
(t)
i ), Cp(w

(t)
j ))

−max(Cp(w
(t)
i + L

(t)
ij ), Cp(w

(t)
j − L

(t)
ij )) if L

(t)
ij < 0,

(2)

where Cp(w
(t)
i + ...) is the computation time of (w

(t)
i + ...) on i.

In the iterative LB algorithms, the benefit of an exchange of load at a given
iteration can increase with the next iterations. The estimation of the benefit that
we give in Equation (2) is evaluated on only one iteration. Hence, a parameter k is
introduced to estimate the benefit on the k successive iterations after an exchange.

Indeed, f
(t)
i,j is equal to 1 if and only if Cost(L

(t)
ij ) < k∗Benefit(L

(t)
ij ). The parameter

k can be constant or not (in Section 4 the impact of both cases are compared).
One limit of this cost/benefit system appears when the algorithm converges to

a load repartition in step. This problem is studied in Section 3.3.

3.2 Parameter computation

From the general equation of FOS we have determined the parameter f
(t)
i,j in the

previous section. Now, let us study the parameters αi,j and Cni
. In Section 2

we have seen that only the Boillat Choice does not need a global knowledge to
compute αi,j , but this method is limited to homogeneous networks.

In this section, a method that only needs a local knowledge is given to determine
the relation

αi,j

Cni

. Let us denote C the vector of the processors speeds. Let Cr be

the matrix of relative speeds defined by Cri,j
, the relative speed of j compared to

i:

Cri,j
=

{

Cj

Ci+Cj
(i, j) ∈ E, j 6= i

0 otherwise.

Thus the unit of C is not important, it can be MHz, Mflops or any other. With
this definition of a relative speed matrix a diffusion matrix that we denote Mr can
be given. Mr is defined such that:

Mrij
=

{

min(δiCri,j
, δjCri,j

) j 6= i

1 −
∑

j(j 6=i) Mrij
j = i

with δi = 1
∑

j
Cri,j

. By construction, it is easy to show that Mrij
≥ 0 and

∑

j Mrij
= 1, in other words the matrix Mr is stochastic.

Theorem 1 The diffusion LB algorithm with Mr as diffusion matrix converges
toward a load distribution relative to the node speed if and only if Mr is irreducible
and aperiodic - the graph G must be connected and non-bipartite.
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Proof If Mr is stochastic, irreducible and aperiodic, thus the Perron-Frobenius
Theorem can be applied, i.e. ∃µ (µ is a fixed point vector) such that MT

r µ = µ.
By construction of Mr is stochastique and MT∞

r tends to the matrix in which each

column is 1
∑

i
Ci

C, thus µ = hC where h is such that
∑

i w
(0)
i = h

∑

i Ci. Thus for

a given W (0) the invariant distribution µ is proportional to C.
As shown by Theorem 1, the LB algorithm converges if the network G is con-

nected and non-bipartite. The connectivity of the network depends on the set E

and the network is not bipartite if Mr is well constructed. The previous method
does not ensure that the network is not bipartite, to ensure that we can use the
following definition to compute Cri,j

:

Cri,j
=











Cj

Ci+Cj
(i, j) ∈ E, j 6= i

Ci

2Ci
j = i

0 otherwise.

To build the diffusion matrix M with one of these two methods and the cost/benefit

defined in Section 3.1, the vector L
(t)
r of load exchange prediction must be defined

to compute f
(t)
ij . L

(t)
r is given by L

(t)
rij = Mrij

w
(t)
i − Mrji

w
(t)
j . With F (t) and Mr

defined, the diffusion matrix M (t) - as F depends on t, M depends on t - is given
by:

m
(t)
ij =

{

f
(t)
ij Mrij

j 6= i,

1 −
∑

k(k 6=i) f
(t)
ik Mrik

j = i.

3.3 Convergence detection with unit size tokens

The last step that we study in this paper is the termination of the LB algorithm.
This step consists in detecting the end of the LB algorithm to stop it and avoid
the cost of exchange of information done by the LB algorithm. This cost can be
important if the network is slow and if the number of neighbors is high.

The main problem to detect the convergence is that the load is not infinitely
divisible for the real applications. This implies that the LB algorithm cannot always
reach a uniform load distribution, hence it does not always reach the convergence
point. Some steps of load can appear in the system that can block the LB algorithm.

3.3.1 The unit size tokens problem

Let us start by eliminating this step problem. In the literature, the LB problem
of indivisible unit-size tokens is studied in [9] where the authors introduced the ”I
Owe You” (IOU) unit on each edge, and in [14] where the authors introduced a
randomized algorithm that deals with heterogeneous networks. In this section, a
new approach based on simulated annealing algorithms is used. The objective is to
shake the system to move the load of the most loaded nodes toward the least loaded
nodes when the classical LB algorithm is blocked. Hence, the algorithm operates
as follows: if a node i is unbalanced with its neighbor j and no load is exchanged
between these two nodes, a random value denoted alea is drawn between 0 and 1
(0 <alea< 1), and if alea < e(−κ∗Uij), a part of load is exchanged. Uij denotes the
number of successive LB iterations during which the neighbors nodes i and j are
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unbalanced and do not exchange load. The parameter κ defines the probability

to exchange load and can be defined by κ = ln(p)
τ

where p is the probability to
exchange load at the iteration τ of Uij . For example if 50% of probability to

exchange is wanted at the second iteration κ = ln(0.5)
2 . Let us note that this

method does not ensure to reach the uniform load distribution but it can reduce
the unbalance.

3.3.2 Convergence detection problem

Let us recall that the first problem presented in this section is the convergence de-
tection of the LB algorithm. Hence, we must detect that no more load is exchanged
in the network. In [15] the authors give a decentralized convergence detection al-
gorithm dedicated to parallel iterative asynchronous algorithms. This algorithm
is based on the leader election on the IEEE-1394 (FireWire) protocol, and this
base can be used to detect a global state in synchronous algorithms without any
centralization. These algorithms operate on a tree, hence a spanning tree of the
network must be defined [16, 17, 18, 19].

For the LB algorithm, an adaptation of algorithm given in [15] is used. This
adaptation is synchronous and dedicated to binary state detection. The idea of
this algorithm is as follows: each node i defines k channels where k is the number
of neighbors of i. In the first stage of the algorithm, if a node has only one channel
that is not associated to a neighbor, it associates this channel to its neighbor that
has no channel and defines this neighbor as its father and sends to its father the
state of its sub-tree. If a node receives the state of a sub-tree from a neighbor, it
associates a channel to this neighbor and defines this neighbor as one of its children.
It is obvious that the leaf nodes of the spanning tree have exactly one such channel
at the start of the protocol. Hence, the algorithm is started by a leave that sends
its state to its father. In the second and last stage of the algorithm, when a node i

has all its channels associated to all its neighbors and that all its neighbors are its
children, this node i is the root of the tree. Hence, the state of its sub-tree is the
state of the tree, in other words, this node detects the global state of the system.
It sends this global state to its children and they do likewise with their children
and so on. Thus the information of the global state goes through all the network.

To finish with, if the convergence is detected, the LB algorithm can be stopped
if the load is static. In the other case - dynamic load, dynamic networks or other
... - the convergence detection algorithm can be used to reduce the frequency of
LB steps if the system became stable or increase it if it became unbalanced.

4 Simulations

The following simulations are realized with SimGrid [20]. The application that is
balanced is represented by an integer that corresponds to the load of the appli-
cation. Let us recall that the load is static to illustrate the convergence of the
algorithm and it is considered homogeneous.

The behavior of the FOS algorithm is studied on the worse configuration - a
line topology with all the load on the first node - with 64 homogeneous nodes
(2000MFlops). The program that is balanced can be viewed as a parallel and
iterative numerical solver that computes 1000 iterations where the topology is
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virtual and depends on the data dependency - communication for data dependency
are simulated. This study is realized for two cases, a first one when the network is
a LAN and a second one when the network is a DSL.

4.1 Fast network

In the former, a bandwidth of 100Mb/s is used with 0.15ms of latency on each
edge. Figure 1 shows the gain given by the FOS algorithm with the cost/benefit
system and with convergence detection (Algo2) compared to the FOS algorithm
without cost/benefit system and without convergence detection (Algo1). Let us
note that in Algo2 the cost/benefit parameter k is given by k(t+1) = k(t) − 1 with
k(0) = 1000. The gain is given by T1−T2

T1 , where T1 and T2 are the computation
time of Algo1 and Algo2, respectively. In this figure, the gain depends on the load
average w∗ - the global load is given by 64×w∗ - and on the number of LB steps.
The results on Figure 1 show that the gain is significant when w∗ is low and also
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Figure 1: Gain given with the cost/benefit parameter: k(t+1) = k(t) − 1 and with
the convergence detection algorithm on a LAN network.

show that the gain is null when w∗ is high. This is due to the cost of the LB
algorithm itself: when it has converged, its cost is constant and it only depends
of the network. Hence, when the computation time is low - when w∗ is low - the
cost of load balancing is relatively high and when the computation time is high -
when w∗ is high - it is negligible. If the cost of load balancing is negligible, the
cost/benefit system and the convergence detection are not useful but it can be
noted that they are not costly with a LAN network: the gain on Figure 1 is never
negative when w∗ is high.

4.2 Slow network

In the latter, the same problem is deployed on a DSL network where the bandwidth
is 1Mb/s and the latency is 40ms. Figures 2 and 3 show the program computation
times depending on the load average w∗ and on the number of LB steps. Figure 2
corresponds to the program with a classical FOS algorithm without cost/benefit
system and without convergence detection algorithm. Here, we can see that the
first iterations of the LB algorithm give a gain and that after some iterations
of load balancing, the computation time increases and the time to compute the
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Figure 2: Classical load balancing.
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Figure 3: Load balancing with convergence detection and cost/benefit system with
k depends on the computation time of an iteration.

program becomes much greater than a sequential computation. This problem has
two complementary reasons: the cost of load exchanges and the cost of information
exchanges after the convergence of the algorithm. Hence, the cost/benefit system
and the convergence detection algorithm can be interesting, in particular also for
for small w∗.

An implementation of the convergence detection algorithm and the cost/benefit
system as in the LAN configuration - k defined by k(t+1) = k(t) − 1 - showed us
that this definition of k is not effective in a DSL network.

Figure 3 shows the results obtained with the convergence detection algorithm
and the cost/benefit system with k depending on the computation time of an
iteration. For a given node, when the computation time of its iteration is greater
than the computation time of its previous iteration, it divides its value of k by
2. Figure 3 shows that with this system, the LB algorithm is stopped after a few
iterations in which the computation time has increased. Thus the LB algorithm is
beneficial to the program in quasi all configurations. When the global load is small
- when a parallel computation is costlier than a sequential one - the LB algorithm is
not beneficial but it is stopped fast enough for its cost to be negligible. Moreover,
it can be noted that with this extreme configuration the LB algorithm with this
cost/benefit system does not use all the processors, see Table 1. The optimal
value is the number of processors to reach the minimum computation time with
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load nxw
∗ 64x1 64x5 64x10 64x50 64x100 64x500 64x1000

number used 3/64 5/64 6/64 7/64 8/64 9/64 10/64
of opt 1/64 1/64 1/64 1/64 3/64 5/64 10/64

Table 1: This table shows for a given load, in line 2 and in line opt, the number of
nodes used and the optimal number of nodes with the cost/benefit system.

the cost/benefit system. This optimal value is computed using a global knowledge.
We see that without global knowledge, we find a result close to the optimal.

5 Conclusion

In this paper we have studied a practical approach of diffusion load balancing. We
have proposed an analysis of the cost and benefit of a load exchange. Based on this
analysis we are able to decide wherever or not to exchange the load. This cost and
benefit mechanism increases the well-known step problem. In order to tackle this
problem, we propose a new feature based on simulated annealing that shakes the
load when required. Finally, we have enhanced the classical convergence detection
to take into account these new elements.

In this work very few assumptions are made. We can deal with static or dynamic
load, with any kind of network topology, with heterogeneous nodes and networks
and with any type of load. Furthermore, no global knowledge is required to perform
the algorithm.

Results show that the proposed features do not degrade the performance of the
load balancing algorithm and can lead (in the best case) to 100% of performance
increase. Furthermore, in case of slow networks, the algorithm does not use all the
available resources in order to give a good speed-up.
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