Bi-objective approximation scheme for
makespan and reliability optimization on
uniform parallel machines

Emmanuel Jeannot!, Erik Saule?, and Denis Trystram?

! INRIA-Lorraine : emmanuel . jeannot@loria.fr
2 INPG, LIG(MOAIS) : firstname.lastname@imag.fr

Abstract. We study the problem of scheduling independent tasks on
a set of related processors which have a probability of failure governed
by an exponential law. We are interested in the bi-objective analysis,
namely simultaneous optimization of the makespan and the reliability.
We show first that this problem can not be approximated by a single
schedule. Then, we provide a <§, 1>-approximati0n algorithm (i.e. for
any fixed value of the makespan, the obtained solution is optimal on the
reliability and no more than twice the given makespan). This solution is
finally used to derive a (2 + ¢, 1)-approximation of the Pareto set of the
problem, for any € > 0.

1 Introduction

With the recent development of large parallel and distributed systems (com-
putational grids, cluster of clusters, peer-to-peer networks, etc.), it is difficult
to ensure that the resources are always available for a long period of time. In-
deed, hardware failures, software faults, power breakdown or resources removal
often occur when using a very large number of machines. Hence, in this context,
taking into account new problems like reliability and fault-tolerance is a major
issue. Several approaches have been proposed to tackle the problem of faults.
One approach is based on duplication. The idea is that if one resource fails, the
other resources can continue to correctly execute the application (thanks to re-
dundancy). However, the main drawback of this approach is a possible waste of
resources. Another solution consists in check-pointing the application from time
to time and, in case of failure, to restart it from the last check-point [1].However,
check-pointing an application is costly and may require to modify it. Further-
more, restarting an application slows it down. Therefore, in order to minimize
the cost of the check-point/restart mechanism, it is necessary to provide a re-
liable execution that minimizes the probability of failure of this application.
Scheduling an application correspond to determine which resources will execute
the tasks and when they will start. Thus, the scheduling algorithm is responsible
of minimizing the probability of failure of the application by choosing the set of
resources that enables a fast and reliable execution.

In this paper, we consider an application modeled by a set of independent
tasks to be scheduled on a set of heterogeneous machines that are character-
ized by their speed and their error rate. The goal of the scheduling algorithm is
then to minimize the makespan of the application (its run-time) and to mini-
mize the probability of failure of the execution. As no hypothesis is made on the
relationship between the speed and the error rate of the resources, there is no
correlation between minimizing the makespan and optimizing the reliability of a
schedule(the most reliable schedule is not necessarily the fastest one). Moreover,
it has been shown that minimizing the schedule length is NP-hard even in the
case of two homogeneous machine and independent tasks [2]. Therefore, unless
P=NP, it is not possible to find the set of optimal trade-off in polynomial time
; i.e. to answer the question “find the shortest schedule that has a probability
of success greater than a given value p”. Moreover, we show that approximat-
ing the problem within a constant ratio for both objectives at the same time is
impossible. Therefore, in order to solve the problem, we first propose a <§, 1>—
approximation algorithm 4.e. an algorithm which finds a schedule which length is
at most twice as long as a guess value (given by the user), if such a schedule ex-
ists, and the reliability is optimal among the schedules that are shorter than this
guess value. Based on this algorithm, we are able to construct a set of solutions
that approximates the Pareto set (i.e. the set of Pareto optimal® solutions) by
a factor of 2+4-¢€ for the makespan and 1 for the reliability. For constructing this
set, € can be chosen arbitrarily small at the cost of a larger number of solutions.

The paper is organized as follows. In Section 2, we formally define the problem
and briefly discuss the related works. Then, we show that the problem cannot
be approximated within a constant ratio. We discuss the most reasonable way
to approximate the Pareto set. Section 3 reports the main result which is the
design and analysis of the @, 1>-appr0ximation algorithm. In Section 4 we derive
the Pareto set approximation algorithm.

2 Problem

Let T be a set of n tasks and @) be a set of m uniform processors as described
in [3]. p; denotes the processing requirement of task ¢. Processor j computes 1/7;
operations by time unit and has a constant failure rate of A;. p;; = p;7; denotes
the running time of task ¢ on processor j. In the remainer of the paper, i will be
the task index and j will be the processor index.

A schedule is a function © : T — @ that maps a task to the processor
that executes it. Let T'(j,w) = {i | w(i) = j} be the set of tasks mapped to
processor j. The completion time of a processor j is C;(m) = ZieT(j,ﬂ) DiTj.
The makespan of a schedule C,, . (7) = max;C;(m) is the first time where all

max
tasks are completed. The probability that a processor j executes all its tasks

3 intuitively, a solution is said Pareto optimal if no improvement on every objective
can be made

successfully is given by an exponential law: pl, .. (7) = e %% (™) We assume

that faults are independent, therefore, the probability that schedule 7 finished
correctly is: psuce = Hjplyee(m) =€~ 2.; % (M The reliability index is defined
by rel(m) =3, Cj(m)A;. When no confusion is possible, 7 will be omitted.

We are interested in minimizing both C,,,.. and rel simultaneously (i.e. min-
imizing the makespan and maximizing the probability of success of the whole
schedule).

2.1 Related Works

We now discuss briefly how each single-objective problem has been studied in
the literature.

Optimizing the makespan: Scheduling independent tasks on uniform proces-
sors in less than K units of time is a NP-complete problem because it contains
PARTITION as a sub-problem which is NP-complete [2]. For the makespan op-
timization problem, a (2 — ﬁ)—approximation algorithm has been proposed
by [4]. It consists of classical list scheduling where the longest task of the list is
iteratively mapped on the processor that will complete it the soonest. [5] pro-
poses a PTAS based on the bin packing problem with variable bin sizes. However,
the PTAS is only of theoretical interest because its runtime complexity is far too
high.

Optimizing the reliability: Minimizing the objective function rel is equivalent
to maximizing the probability of success of the schedule on a parallel system
subject to failure. More precisely, if processor j can fail with a constant failure
rate A\; and if we assume that faults are statistically independent, the probability
of success of a schedule is psucc = e~ Tt has been shown in [6] that a p-
approximation on rel is a p-approximation on 1 — pgycc. The minimal rel is
obtained by scheduling all tasks on the processors j having the smallest \;7;.
Indeed, if a task ¢ was scheduled on another processor j', migrating it to j will
result in changing rel by the negative value piA\;7; — peAji7y.

In [7, 8] several heuristics have been proposed to solve the bi-objective prob-
lem. However, none of the proposed heuristics have a guaranteed approximation
ratio.

In [9], Shmoys and Tardos studied the problem of optimizing the makespan
and the sum of costs of a schedule on unrelated machines. In their model, the cost
is induced by scheduling a task on a processor and the cost function is given by a
cost matrix. They proposed an algorithm that receives two parameters, namely, a
target value M for the makespan and C for the cost and returns a schedule whose
makespan lower than 2M with a cost better than C. This model can be directly
used to solve our problem. However, their method is difficult to implement as it
relies on Linear Programming and its complexity is high: O(mn?logn).

2.2 On the approximability

Proposition 1. The bi-objective problem of minimizing C,,,, and rel cannot

be approximated within a constant factor with a single solution.

Proof. Consider the instance of the problem with two machines such that 7 = 1,
7y = 1/k and A\; = 1, Ay = k? (for a fixed k € R™*). Consider a single task t;
with p; = 1. There are only two feasible schedules, namely, 71 in which ¢; is
scheduled on processor 1 and 7 in which it is scheduled on processor 2. Remark
that 79 is optimal for C,,,, and that 7 is optimal for rel.

Crox(m) =1and C,,,.(m2) = 1/k. This leads to C,,,,,(71)/C ez (m2) = k.
This ratio goes to infinity when k goes to infinity. Similarly, rel(m) = 1 and

€T

rel(mg) = %2 = k which leads to rel(ms)/rel(m) = k. This ratio goes to infinity
with k.

None of both feasible schedules can approximate both objectives within a
constant factor.

2.3 Solving the Bi-Objective Problem

As we proved in the last section in Proposition 1, the bi-objective problem cannot
be approximated with a single schedule. For such problems, several approaches
can be used such as optimizing a linear (or convex) combination of objectives [10],
or optimizing the objectives one after the other [11]. However, these methods
usually do not provide all interesting solutions. We would like to obtain all the
best compromise solutions and leave the final choice to a decision maker.

The notion of Pareto dominance [12] allows to formalize the best compro-
mise solutions in multi-objective optimization. A solution is said to be Pareto
optimal if no solution is as good as it is on all objective values and better on
at least one. The Pareto set (denoted by Pc*) of a problem is the set of all
Pareto optimal solutions.

Unfortunately, on our problem deciding if a solution is Pareto optimal or not
is an NP-complete problem (as the makespan decision problem is NP-complete?).
Thus, computing the whole set is impossible in polynomial time unless P=NP.
Like in standard single-objective optimization, we are interested in obtaining
approximate solutions.

Pc is a (p1, p2)-approximation of the Pareto set Pc* if each solution
m* € Pc* is (p1,p2) approximated by a solution 7 € Pc : Va* € Pc*,3r €
Pe,C (1) < p1Cun (%) and rel(w) < porel(n*). Figure 1 illustrates this
concept. Crosses are solutions of the scheduling problem represented in the
(C\hazi Tel) space. The bold crosses are an approximated Pareto set. Each so-
lution (x;y) in this set (p1, p2)-dominates a quadrant delimited in bold whose
origin is at (x/p1;y/p2). All solutions are dominated by a solution of the ap-
proximated Pareto set as they are included into a (p1, p2)-dominated quadrant.

In [14], Papadimitriou and Yannakakis give a generic method to obtain an ap-
proximated Pareto set. The idea is to partition the solution space into rectangles
of geometric increasing size of common ratio (1+¢€) among all objectives. The set
formed by taking one solution in each rectangle (if any) is a (14€)-approximation

4 The argument is straightforward in our context. The reader should be aware that
the bi-objective decision problem could be NP-complete while both single-objective
decision problems are polynomial [13].

rel

Sk
+

Z X = C

max

Fig. 1. Bold crosses are a (p1, p2)-approximation of the Pareto set.

of the Pareto set of the problem. We will use an adaptation of this method for
designing a Pareto set approximation algorithm. A similar approach has been
used in [15] for a single machine scheduling problem.

2.4 <p_1, p2>-Appr0ximation Algorithm

Because it is impossible to get a solution approximating both objectives at the
same time (Proposition 1), we are looking for the minimum reliability index
among schedules whose makespan are greater than an arbitrary threshold.
Most existing algorithms that solve a bi-objective problem construct a ps-
approximation of the second objective constrained by a threshold on the first
one. The threshold can be exceeded no more than a constant factor p;. Such an
algorithm is said to be a <p]7 p2>—approximation algorithm. More formally,

Definition 1. Given w a threshold value of the makespan, a <,0_17 p2>—appmximatz'on
algorithm delivers a solution whose C,,,. < piw and rel < pyrel™“~ where
rel™“~ is the best possible value of rel in schedules whose makespan is less than

w.

3 A Dual Approximation algorithm

In this section, we present a @, 1>—approximation algorithm called CMLT which
has a better complexity and which is easier to implement than the general algo-
rithm presented in [9].

Let w be the guess value of the optimum makespan. Let M (i) = {j | p;; < w}
be the set of processors able to execute task ¢ in less than w units of time. It

is obvious that if ¢ is executed on j ¢ M (¢) then, the makespan will be greater
than w.

The following proposition states that if task ¢ has less operations than task #',
then all machines able to schedule ¢’ in less than w time units can also schedule
¢ in the same time. The proof is directly derived from the definition of M and is
omitted.

Proposition 2. Vi,i’ € T such that p; < pyr, M(i') C M (i)

The ConstrainedMinLambdaTau algorithm (CMLT) is presented as follows:
for each task ¢ considered in non-increasing number of operations, schedule i
on the processor j of M(i) that minimizes \;7; with C; < w (or it returns no
schedule if there is no processor j). Sorting tasks by non-increasing number of
operations implies that more and more processors are used over time.

The principle of the algorithm is rather simple. However several properties
should be checked to ensure that it is always possible to schedule all the tasks
this way.

Lemma 1. CMLT returns a schedule whose makespan is lower than 2w or en-
sures that no schedule whose makespan is lower than w exist.

Proof. We need first to remark that if the algorithm returns a schedule, then its
makespan is lower than 2w (task 4 is executed on processor j € M (i) only when
C; < w). It remains to prove that if the algorithm does not return a schedule
then there is no schedule whose a makespan lower than w.

Suppose that task i cannot be scheduled on any processor of M (i). Then
all processors of M (i) execute tasks during more than w units of time, Vj €
M(’L), Cj > w.

Moreover, due to Proposition 2, each task i’ < i such that p; > p; could not
have been scheduled on a processor not belonging to M (¢). Thus, in a schedule
with a makespan lower than w, all the tasks i’ < ¢ must be scheduled on M (i).

There is more operations in the set of tasks {i’ < i} than processors in M (7)
can execute in w units of time.

Lemma 2. CMLT generates a schedule such that rel < rel™*“~

Proof. We first need to construct a (non feasible) schedule 7* whose reliability
is a lower bound of rel*“~. Then, we will show that rel(CMLT) < rel(n*).
From Theorem 2 of [6] it is known that the optimal reliability under the
makespan constraint for unitary tasks and homogeneous processors is obtained
by adding tasks to processors in the A7 increasing order up to reaching the w
constraint. For our problem we can construct a schedule 7* where we apply a
similar method. Task i is allocated to the processor of M (i) that minimizes the
A7 product. But if 4 finishes after w, the exceeding quantity is scheduled on the
next processor belonging to M (i) in A7 order. Note that such a schedule exists
because CMLT returns a solution. Of course this schedule is not always feasible
as the same task can be required to be executed on more than one processor at

the same time. However, it is easy to adapt the proof of Theorem 2 of [6] and
show that rel(7*) < rel™“~.

The schedule generated by CMLT is similar to 7*. The only difference is that
some operations are scheduled after w. In 7*, these operations are scheduled on
less reliable processors. Thus, the schedule generated by CMLT has a better
reliability than 7*.

Finally, we have rel (CMLT) < rel(n*) < rel™*“~ which concludes the proof.

Algorithm 1: CMLT
begin
sort tasks in non-increasing p; order
sort processors in non-decreasing 7; order
Let H be an empty heap
j=1
fori=1 ton do
while P; € M (i) do
Add Pj to H with key A]'Tj
L j=J7+1
if H.empty() then
L Return no solution
schedule i on j° = H.min()
Cj/ = Cj/ +pi7—j’
if Cjy > w then
| Remove j' from H

end

Lemma 3. The time complexity of CMLT is in O(nlogn + mlogm).

Proof. In fact, the algorithm should be implemented using a heap in the manner
presented in Algorithm 1. The cost of sorting tasks is in O(nlogn) and the cost of
sorting processors is in O(mlogm). Adding (and removing) a processor to (from)
the heap costs O(logm) and such operations are done m times. Heap operations
cost O(mlogm). Scheduling the tasks and all complementary tests are done in
constant time, and there are n tasks to schedule. Scheduling operations cost is

in O(n).

Theorem 1. CMLT is a <§, 1>—app7"09:imati0n algorithm of complexity O(nlogn+
mlogm).

4 Pareto set approximation algorithm

Algorithm 2 described below constructs an approximation of the Pareto set
of the problem by applying the <?, 1>—approximation algorithm on a geometric
sequence of makespan thresholds which requires a lower bound and an upper
bound.

The lower bound C™" = % &1l s obtained by considering that a single

max
J T

processor is given the computatlonal power of all the processors of the instance.

The upper bound C7}5% = . p; max; 7; is the makespan obtained by schedul-
ing all tasks on the slowest processor. No solution can have a worse makespan
without inserting idle times which are harmful for both objective functions. Note
that C)'%7 can be achieved by a Pareto optimal solution if the slowest processor
is also the most reliable one.

Algorithm 2: Pareto set approximation algorithm

Data: € a positive real number
Result: S a set of solutions

begln
1 =0
S=0
while i < [logHe/g(C’J,ﬁ?ﬁ)] do

=1+ 5)'Cnas
mi = CMLT(w;)

S=S5SUm
=1+ 1
return S

end

Proposition 3. Algorithm 2 is a (2+¢,1) approzimation algorithm of the Pareto
set.

Proof. Let ©* be a Pareto-optimal schedule. Then, there exists & € IN such
that (14 §)FCmin < O, (%) < (1 + 5)PICmin. We show that 41 is an

(2+e¢, 1)—appr0x1mat10n of 7*. This is illustrated in Figure 2.

— Reliability. rel(mp41) < rel*((1+ 5)*1Cmin) (by Theorem 1). 7* is Pareto
optimal, hence rel (7*) = rel*(C’mm(*)). But, C,, .. (%) < (14 5)FF1Cmin,
Since rel* is a decreasing function, we have: Tel(']TkJrl) <rel(m)

— Makespan. Cpop(mer1) < 2(1+ 5)1CT = (2 + €)(1 + 5)*CRil (by

Theorem 1) and C,,,.(7*) > (1 + £)kC’"””

mazx*

Thus, e (Ts1) < (24 € (7).

Remark that CM LT (w;) may not return a solution. However, this is not a
problem. It means that no solution has a makespan lower than w;. CM LT (w;)
approximates Pareto optimal solutions whose makespan is lower than w;. Hence,
there is no forgotten solution.

The last points to answer are about the cardinality of the generated set and
the complexity of the algorithm.

max

— Cardinality' The algorithm generates less than [log, e Crngs

min
Cm,a:c
maz;T;

< [logy e max;7;)0 ;1/7;] < [logy, « mTEHT] solutions which is polyno-

mlal in 1 / € and in the size of the instance.

rel

rel*(wi) ... ,,, .

rel (Wipr)N
< x1
! ! ><(2 =+ F) CA/[LT(UJH,l)
I I
Wi Wit1 = (1 + %)‘Uz Cmaa:

Fig.2. CM LT (wi41) is a (2 4+ €, 1) approximation of Pareto optimal solutions whose
makespan is between w; and w;+1. There is at most a factor of 1 in reliability between
CMLT (w;+1) and rel*(wit1). The ratio in makespan between CM LT (wi+1) and wiy1
is less than 2 and wiy1 = (14 §)w;. Thus, CM LT (wit1) is a (2 + ¢, 1)-approximation
of (wi,rel” (wit1))

— Complexity: We can remark that CMLT sorts the tasks in an order which is
independent of w. Thus, this sorting can be done once for all.
Thus, the complexity of the pareto set approximation algorithm is O(n log n+

Cmam
[log1+6/2(ﬁ)] (n+mlogm)).

In Section 2.1 we briefly recalled the work of Shmoys and Tardos which can
be used in our context [9]. We can derive from it a <§, 1>—approximation algo-
rithm whose time-complexity is in O(mn?logn). This time-complexity is larger
than the time-complexity of CMLT in O(nlogn 4+ mlogm). Moreover, in the
perspective of approximating the Pareto set of the problem with the method
previously presented; the algorithm derived from [9] will have a time-complexity
of [logy, . /2(%)] (mn?logn). Unlike CMLT, their algorithm cannot be easily
tuned to avoid a significant part of computations when the algorithm is called
several time. Thus, CMLT is significantly better than the algorithm presented
in [9] which has been established in a more general setting on unrelated proces-
SOrS.

5 Conclusion

As larger and larger infrastructures are available to execute distributed applica-
tions, reliability becomes a crucial issue. However, optimizing both the reliability
and the length of the schedule is not always possible as they are often conflicting
objectives. In this work, we have analyzed how to schedule independent tasks
on uniform processors for optimizing both makespan and reliability. It has been
proven that the problem cannot be approximated within a constant factor by a
single solution. We designed the CMLT algorithm and proved that it is a <Q, 1>—
approximation. Finally, we derived a (2 + ¢, 1)-approximation of the Pareto set

of the problem. This bound is very good and will be hard to improve. Some
previous work could have been used. However, it will have lead to a far worse
complexity.

The natural continuation of this work is to address the problem of the relia-
bility with precedence constraints. However, this problem is much more difficult.
Firstly, no constant approximation algorithm for the makespan is known. Sec-
ondly, the reliability model is much more complex in presence of idle times.

References

1. Bouteiller, A., Herault, T., Krawezik, G., Lemarinier, P., Cappello, F.: Mpich-
v: a multiprotocol fault tolerant mpi. International Journal of High Performance
Computing and Applications (2005)

2. Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman, San Francisco
(1979)

3. Graham, R., Lawler, E., Lenstra, J., Kan, A.R.: Optimization and approximation
in deterministic sequencing and scheduling : a survey. ann. Discrete Math. 5 (1979)
287-326

4. Gonzalez, T., Ibarra, O., Sahni, S.: Bounds for LPT schedules on uniform proces-
sors. STAM Journal of Computing 6 (1977) 155-166

5. Hochbaum, D.S.; Shmoys, D.B.: A polynomial approximation scheme for schedul-
ing on uniform processors: Using the dual approximation approach. STAM Journal
on Computing 17(3) (1988) 539 — 551

6. Dongarra, J.J., Jeannot, E., Saule, E., Shi, Z.: Bi-objective scheduling algorithms
for optimizing makespan and reliability on heterogeneous systems. In: Proc. of
SPAA. (2007) 280288

7. Dogan, A., Ozgiiner, F.: Matching and Scheduling Algorithms for Minimizing Exe-
cution Time and Failure Probability of Applications in Heterogeneous Computing.
IEEE Trans. Parallel Distrib. Syst. 13(3) (2002) 308-323

8. Dogan, A., Ozgiiner, F.: Bi-objective Scheduling Algorithms for Execution Time-
Reliability Trade-off in Heterogeneous Computing Systems. Comput. J. 48(3)
(2005) 300-314

9. Shmoys, D.B., Tardos, E.: Scheduling unrelated machines with costs. In: Pro-
ceedings of the Fourth Annual ACM/SIGACT-SIAM Symposium on Discrete Al-
gorithms. (1993) 448-454

10. Albers, S., Fujiwara, H.: Energy-efficient algorithms for flow time minimization.
In: Proc. of STACS. LNCS 3884 (2006) 621-633

11. Ho, K.: Dual criteria optimization problems for imprecise computation tasks. In
Leung, J.Y.T., ed.: Handbook of Scheduling. (2004)

12. Voorneveld, M.: Characterization of pareto dominance. Operations Research Let-
ters 31 (2003) 7-11

13. Agnetis, A., Mirchandani, P.B., Pacciarelli, D., Pacifici, A.: Scheduling problems
with two competing agents. 52(2) (2004) 229-242

14. Papadimitriou, C., Yannakakis, M.: On the approximability of trade-offs and op-
timal access of web sources. In: Proc. of FOCS. (2000) 86-92

15. Angel, E., Bampis, E., Gourves, L.: Approximation results for a bicriteria job
scheduling problem on a single machine without preemption. Information process-
ing letters 94 (2005)

