
Modeling, Predicting and Optimizing Redistribution between Clusters on
Low Latency Networks

Emmanuel Jeannot
emmanuel.jeannot@loria.fr

LORIA Université H. Poincaré
Nancy, France

Frédéric Wagner
frederic.wagner@loria.fr

LIA
Avignon, France

Abstract

In this paper we study the problem of scheduling mes-
sages between two parallel machines connected by a low
latency network during a data redistribution. We com-
pare two approaches. In the first approach no schedul-
ing is performed. Since all the messages cannot be
transmitted at the same time, the transport layer has to
manage the congestion. In the second approach we use
two higher-level scheduling algorithms proposed in our
previous work [10] called GGP and OGGP. The contri-
bution of this paper is the following: We show that the
redistribution time with scheduling is always better than
the brute-force approach (up to 30%). As this speedup
depends on the input redistribution pattern, we propose
a modelization of the behavior of both approaches and
show that we are able to accurately predict the redistri-
bution time with or without scheduling and thus able to
choose for each pattern whether or not to schedule the
communications.

Key-words: Code-coupling, cluster computing, mes-
sage scheduling, modelization.

1 Introduction

Code coupling applications (such as multi-physics
simulations) are composed of several parallel codes that
run concurrently on different clusters or parallel ma-
chines. In multi-physics simulations each code has in
charge one part of the simulation. For instance simu-
lating the airflow on an airplane wing requires to simu-
late fluid mechanics phenomena (the air) with solid me-
chanic one (the wing). In order for the simulation to
be realistic each simulation code need to exchange data.
This exchange of data is often called data redistribution.

The data redistribution problem has been extensively
tackled in the literature [1, 2]. However in these works
the redistribution takes place within the same parallel

machine. In the context of code-coupling, several ma-
chines are involved and therefore the redistribution must
take place between two different machines through a
network. In many cases this network is a bottleneck
because the aggregate bandwidth of network cards of
each nodes of each parallel machines exceeds the band-
width of the network that interconnect these two ma-
chines (think for instance of two clusters with 100 nodes
each and 100 MBit cards interconnected by a 1 Gbit net-
work).

In our previous work [5, 10] we have proposed sev-
eral application-level messages scheduling algorithms
(called GGP and OGGP) for the redistribution problem
between clusters when the network is a bottleneck.

In this paper we study the problem in the context of
a low latency network (LLN), such as LAN, where the
transport layer gives very good performances. We pro-
vide a modelization of the behavior of TCP for the data
redistribution problem as well as of (O)GGP. We com-
pare two ways of predicting the data redistribution time
and the performances of (O)GGP and a brute-force ap-
proach where no scheduling is performed.

2 Data Redistribution

2.1 Modeling

Let us consider a redistribution taking place between
two clusters connected by a low latency network. We
suppose that this network can handle at most k commu-
nications at the same time between the two clusters. For
instance if both clusters have 100 Mbit network cards
and are interconnected by a 1 Gbit network there can be
at most k = 10 communications at the same time with-
out contention. When k is smaller than the number of
nodes in each cluster, it is required to schedule the com-
munications in order to avoid contention.

Each redistribution phase is considered separately. A

1

1 1’

2 2’

3 3’

4

7

5

3

2
5

=

1 1’

2 2’

3 3’
5

5

5
∪

1 1’

2 2’

3 3’

4

3 ∪
1 1’

2 2’

3 3’
2 2

Figure 1. Valid schedule (step 1 as a duration of 5, step 2 a duration of 4 and step 3 a duration of 2). If β = 1
the total cost of the schedule is 3+11=14. Note that, thanks to the preemption the communication of duration 7
is decomposed of a communication of duration 5 and a communication of duration 2

redistribution phase is modeled by a redistribution ma-
trix M = mi,j where mi,j is the time for sending the
data from node i of the first cluster to node j of the sec-
ond one. This time is computed by dividing the amount
of data to be sent by the speed of the communication
when no contention occurs. This matrix is given and
computed by an other module of the application.

The redistribution is performed by steps. In order to
optimize the solution we allow preemption. This means
that at the end of a step, communication can be stopped
and resumed in an other step.

We denote by β the time to setup a communication
step (it takes into account the time to open the sockets,
the latency of the network, the preemption, etc.).

Finally we do not allow contention on the network
card. This means that we work in the 1-port model. Dur-
ing one step, a node can receive (resp. send) at most
one communication from (resp. to) an other node. We
provide here a graph formulation for the redistribution
problem. It is called KPBS for K-Preemptive Bipartite
Scheduling. A matrix can be seen as a bipartite graph.
Let M = mi,j a redistribution matrix with n1 lines and
n2 columns (this means that the first cluster has n1 nodes
while the second cluster has n2 nodes). We build a bi-
partite graph with n1 vertices on one side and n2 vertices
on the other. We draw an edge from node i of the first
side to node j of the second side if element mi,j of M
is not zero. We label this edge by mi,j .

A step S is modeled by a bipartite graph too. In order
for this step to be valid it has to model at most k commu-
nications and no node can perform more than one com-
munication (1-port model). This means that the bipartite
graph has to be a matching with at most k edges. The
duration of a step is the startup time plus the duration
of its longest communication (m = max(si,j)) where
si,j is the duration of the communication between node
i and node j for this step.

A valid schedule of the redistribution is a set of
s valid steps Si such that M = ∪s

i=1Si. The cost
of the schedule is the sum of the cost of each step :∑s

i=1(β + mi), where mi is the length of step i (see
Figure 1).

2.2 Related works

The KPBS problem generalizes several well-known
problems of the literature: The problem of redistribut-
ing data inside a cluster has been studied in the field
of parallel computing for years [6, 12]. In this case
the modelization and the formulation is the same ex-
cept that the number of messages that can be send during
one step is only bounded by the number of nodes (k =
min(n1, n2)). The problem has been partially stud-
ied in the context of Satellite-Switched Time-Division
Multiple Access systems (SS/TDMA) [3, 8, 9]. The
problem with β = 0 is studied in [3]. Finding the
minimum number of steps is given in [8].The prob-
lem when no preemption is allowed is studied in [9].
Packet switching in communication systems for optical
network problem also called wavelength-division multi-
plexed (WDM) broadcast falls in KPBS [4, 7, 11, 13, 8].
In [7, 8], minimizing the number of steps is studied.
In [4] and in [11], a special case the KPBS problem is
studied when k = n2.

The problem of finding an optimal valid schedule has
been shown NP-complete in [5].

In [10] we have proposed two approximations
scheduling algorithms (the found schedule is never twice
as long as the optimal one) for KPBS. These algorithms
are called GGP (Generic Graph Peeling) and OGGP
(Optimized GGP). It is out of the scope of this paper to
describe them in details as they have already been pre-
sented in other publications, and due to space constraints
(see [5, 10] for more information).

2.3 Other Notations

We note G = (V1, V2, E, w) the bipartite graph, with
V1 and V2 the sets of senders and receivers, E the set
of edges, and w the edges weight function, P (G) =∑

e∈E w(e), W (G) = maxs∈V1∪V2(w(s)) with w(s)
the sum of the weigths of all edges adjacent to s and ηo:
the estimated redistribution time for when no scheduling
is performed.

2

3 Predicting redistribution time

We present here how we predict the redistribution
time. Two approaches are studied. One, called the
brute-force approach, is used when no scheduling is per-
formed at the application level and when the transport
layer manage the contention by itself. In this case all
the messages are sent at the same time. In the other ap-
proach, called the scheduling approach we use (O)GGP
to schedule the messages and the contention is managed
at the application level.

3.1 Brute-force approach

As the time needed by (O)GGP to compute and issue
a schedule of all communications is not negligible, it is
useful to develop a quick algorithm to estimate the time
needed by the brute force approach. This could enable
a quick decision algorithm as whether or not to use a
scheduling approach.

We assume that the application is running on a dedi-
cated platform and there is therefore no random pertur-
bation on the network. In our modelization, we do not
take into consideration the cost of network congestion.

We recall that ηo is the estimated redistribution time
of the brute-force approach.

If more than k communications occur at the same
time the network is assumed to be fairly shared.

Lower bound-based prediction

Several possibilities present themselves for comput-
ing ηo. The easiest method is to take the maximal time
between P (G)

k and W (G). In other words ηo depends
either from the bottleneck generated by the bandwidth
of the network, or from the bottleneck generated on a
local link by the sender or the receiver who has the most
data to send. While this gives a lower bound of ηo, quick
to compute, we can show that such an estimation of ηo

is not always tight. For example consider the graph of
Figure 2.

With k = 2 we can see that P (G)
k = 4

2 = 2 and
W (G) = 2. So we know it needs at least 2 seconds to
issue the redistribution.

1 1’

2 2’

3 3’

1

1

2

Figure 2. Simple redistribution pattern, k = 2

However the brute force redistribution takes place in
two steps: At first, every node is sending data. As we

assume that the network is fairly shared, the speed of
the 3 communications is slowed-down by a factor of 3

k .
Therefore It takes 1 × 3

2 = 1.5 seconds to send the
data between nodes 1 and 1′ and 2 and 2′ because k = 2.
After that time there is only one communication remain-
ing (between node 3 and 3′). It takes 1 second to send
the remaining data. Therefore, the total time taken by
the brute force redistribution is here of 2.5 seconds, that
is 25% higher than the estimation.

Prediction algorithm

Computing ηo is done using a discrete event simula-
tion of the redistribution. It is based on the same prin-
ciple that leads to compute the brute-force redistribution
time of the graph fig. 2 above: as the fraction of band-
width available for an edge only depends on the redis-
tribution pattern, we compute the fraction of bandwidth
available for each communication. We then compute the
time needed to finish each communication. We take the
first communication to finish, remove it from the graph
and add its time to ηo. At this point the redistribution
pattern changed, so the amount of bandwidth available
for everyone changes and we need to start again the sim-
ulation.

3.2 Scheduling approach

1 1’

2 2’

3 3’

1

1

∪
1 1’

2 2’

3 3’

1

1

Figure 3. Schedule of the pattern of Fig. 2 in two
steps

We can see on Fig. 3 that the scheduled redistribution
of the graph Fig. 2 takes 2 second to execute, reaching
the optimal time (without taking into account the time
needed to establish the communications). This means
that the brute-force approach is not optimal and gives
inaccurate prediction of schedule redistribution.

Thankfully, estimating the time needed for a schedule
redistribution is straightforward. We compute the cost
of the schedule using the formula given in Section 2.1:∑s

i=1(β + mi)

4 LAN Experiments

In order to prove both the accuracy of the evaluation
of ηo and the existence of redistribution patterns giving

3

a suboptimal performance we conducted experiments on
a real local area network.

The platform running the tests is composed of two
clusters of 10 1.5Ghz PC running Linux and intercon-
nected by two switches. All links, switches and Ethernet
adapters have a speed of 100Mbits, but we limited the
available incoming and outgoing bandwidth of each net-
work card using the rshaper Linux kernel module. We
conducted experiments for k = 5. All tests were con-
ducted without interferences from other network users.

All communications routines have been implemented
by hand using standard POSIX sockets and threads to
get maximal performance and a complete control over
communications.

We implemented a brute force redistribution algo-
rithm. All communications are issued simultaneously,
and the TCP is handling the network congestion. We
also implemented a scheduled redistribution algorithm
consisting of several redistribution steps synchronized
using barriers. The scheduled has been obtained using
our GGP algorithm [10].

The first tests are executed on some random re-
distribution patterns. The input data always has the
same number of communications, however of random
weights, and between random senders and receivers.
The weights are generated uniformly between 10MB
and xMB. All further plots are obtained as x increases
from 10MB to 80MB. The first estimation for the brute
force time is done computing the lower bound of the
communication time and the second one using the dis-
crete simulation. We executed the redistribution and
computed the accuracy of the two estimations as the size
of the data increases. We also compared the time esti-
mated for the scheduled redistribution with the real time
obtained. We can see in Figure 4 that all methods are
giving a reasonable estimation of the real redistribution
time, with ηo being slightly more precise for the brute
force redistribution.

 92

 94

 96

 98

 100

 102

 104

 106

 10 20 30 40 50 60 70 80 90 100

ac
cu

ra
cy

data size (MB)

efficiency of time approximation

eta
opt bound

scheduled estimation

Figure 4. Accuracy of redistribution prediction
time on random patterns

We then tested the redistribution on redistribution

pattern where the lower bound is not tight (as in Fig 2).
The results displayed in Figure 5 show that the exper-
iments confirm the theory. The lower bound is far un-
der the real time observed, whereas the ηo estimation is
close from it. Furthermore, the time computed for the
scheduled reditribution is close from the real time ob-
served.

 70

 75

 80

 85

 90

 95

 100

 105

 10 20 30 40 50 60 70 80 90 100

ac
cu

ra
cy

data size (MB)

optimal results

eta
opt bound

scheduled estimation

Figure 5. Accuracy of redistribution prediction
time on special patterns

Brute-force vs. (O)GGP

We compared the efficiency of (O)GGP over a brute
force redistribution: The results shown in Figure 6 con-
firm again the theory. The scheduled redistribution is on
average 30% faster than the brute force redistribution.
We can also see that as the redistribution pattern is kept
the same with only increasing weights, the times scale
linearly with the data size.

 0

 20

 40

 60

 80

 100

 120

 140

 10 20 30 40 50 60 70 80 90 100

tim
e

(s
)

data size (MB)

optimal results

brute force
GGP

Figure 6. GGP vs. Brute-force (socket implemen-
tation)

While all the previous experiments have been done
using POSIX socket, we have also implemented both al-
gorithms using MPI. The use of MPI is justified by its
portability and ease of programming. For this case, we
have performed a all-to-all redistribution and compare
the redistribution time in Fig. 7. In this case we see that
(O)GGP outperforms the brute-force appraoch by a fac-
tor of 20%.

4

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 10 20 30 40 50 60 70 80
tim

e
(s

)

data size (MB)

test for k=7

brute force
GGP or OGGP

Figure 7. Brute-Force vs. GGP or OGGP (MPI
implementation)

5 Conclusion

Data redistribution is a critical phase for many
distributed-cluster computing applications such as code
coupling or computational steering ones. Scheduling the
messages that have to be transmitted between the nodes
can be performed by the transport layer of the network
(TCP) or by the application (using the knowledge of the
redistribution pattern).

In this paper we have studied the redistribution phase
in the context of a low latency network (LLN), such as
LAN. In this case, the reactivity of TCP is nearly per-
fect and the transport layer should give very good per-
formance. This is the best-case scenario for the use of a
brute force redistribution.

We have experimentally compared the performance
of (O)GGP against the brute-force approach that con-
sist in letting the transport layer manage the congestion
alone on LLN. Suprisingly, results show that even if the
reactivity of transport-layer is nearly perfect, (O)GGP
always outperforms the brute-force approach.

In order to estimate whether or not a scheduled re-
distribution is necessary, we have provided a modeliza-
tion of the behavior of TCP for the data redistribution
problem as well as of scheduling algorithms proposed
in early works and called GGP and OGGP. We have
compared two ways of predicting the data redistribu-
tion time. One is based on an inferior bound easily de-
rived from the redistribution pattern, the other is based
on the analysis of the pattern and our modelization of
the platform. Whereas the first way is shown to be ac-
curate only for certain redistribution pattern, the second
approach gives very accurate predictions for any redis-
tribution pattern. Whatever the scheduling is performed
at the application level or at the transport level, we are
able to accurately predict the redistribution time.

In future works we want to incorporate this modeling
into simulators in order to help the design of schedul-
ing parallel tasks. Indeed, in this case communication

between parallel tasks are often redistribution.

References

[1] F. Afrati, T. Aslanidis, E. Bampis, and I. Milis. Schedul-
ing in switching networks with set-up delays. In AlgoTel
2002, Mèze, France, May 2002.

[2] P.B. Bhat, V.K. Prasanna, and C.S. Raghavendra. Block
Cyclic Redistribution over Heterogeneous Networks. In
11th Int. Conf. on Parallel and Distributed Computing
Systems (PDCS 1998), 1998.

[3] G. Bongiovanni, D. Coppersmith, and C. K. Wong.
An Optimum Time Slot Assignment Algorithm for
an SS/TDMA System with Variable Number of
Transponders. IEEE Transactions on Communications,
29(5):721–726, 1981.

[4] H. Choi, H.-A. Choi, and M. Azizoglu. Effi-
cient Scheduling of Transmissions in Optical Broad-
cast Networks. IEEE/ACM Transaction on Networking,
4(6):913–920, December 1996.

[5] Johanne Cohen, Emmanuel Jeannot, and Nicolas Padoy.
Messages Scheduling for Data Redistribution between
Clusters. In Algorithms, models and tools for parallel
computing on heterogeneous networks (HeteroPar’03)
workshop of SIAM PPAM 2003, LNCS 3019, pages 896–
906, Czestochowa, Poland, September 2003.

[6] F. Desprez, J. Dongarra, A. Petitet, C. Randriamaro, and
Y. Robert. Scheduling Block-Cyclic Array Redistribu-
tion. IEEE Transaction on Parallel and Distributed Sys-
tems, 9(2):192–205, 1998.

[7] A. Ganz and Y. Gao. A Time-Wavelength Assignment
Algorithm for WDM Star Network. In IEEE INFO-
COM’92, pages 2144–2150, 1992.

[8] I.S. Gopal, G. Bongiovanni, M.A. Bonuccelli, D.T. Tang,
and C.K. Wong. An Optimal Switching Algorithm for
Multibean Satellite Systems with Variable Bandwidth
Beams. IEEE Transactions on Communications, COM-
30(11):2475–2481, November 1982.

[9] I.S. Gopal and C.K. Wong. Minimizing the number of
switching in an ss/tdma system. IEEE Trans. on Com-
munications, 33:497–501, 1885.

[10] E. Jeannot and F. Wagner. Two Fast and Efficient
Message Scheduling Algorithms for Data Redistribution
through a Backbone. In 18th International Parallel and
Distributed Processing Symposium, page 3, April 2004.

[11] G.R. Pieris and Sasaki G.H. Scheduling Transmission
in WDM Broadcast-and-Select Networks. IEEE/ACM
Transaction on Networking, 2(2), April 1994.

[12] L. Prylli and B Tourancheau. Efficient Block-Cyclic Data
Redistribution. In Europar’96, LNCS 1123, pages 155–
164, 1996.

[13] N. Rouskas and V. Sivaraman. On the Design of Opti-
mal TDM Schedules for Broadcast WDM Networks with
Arbitrary Transceiver Tuning Latencies. In IEEE INFO-
COM’96, pages 1217–1224, 1996.

5

