
Grid’5000: a large scale and highly reconfig

Franck Cappello, Eddy Caron, Michel Dayde, Frederic Desprez,

Stephane Lanteri, Julien Leduc, Nouredine Melab, Guillaume Mornet

INRIA, LRI, LIP, IRISA, LORIA, L

www.grid5000.org Emai

Abstract

Large scale distributed systems like Grids are difficult to
study only from theoretical models and simulators. Most
Grids deployed at large scale are production platforms that
are inappropriate research tools because of their limited re-
configuration, control and monitoring capabilities. In this
paper, we present Grid’5000, a 5000 CPUs nation-wide in-
frastructure for research in Grid computing. Grid’5000 is
designed to provide a scientific tool for computer scientists
similar to the large-scale instruments used by physicists, as-
tronomers and biologists. We describe the motivations, de-
sign, architecture, configuration examples of Grid’5000 and
performance results for the reconfiguration subsystem.

1 Introduction

Grid is well established as a research domain and pro-
poses technologies that are mature enough to be used for
real-life applications. Projects like e-Science [1], TeraGrid
[2], Grid3 [3], DEISA [4] and NAREGI [5], to cite a few,
demonstrate that large scale infrastructures can be deployed
to provide scientists fairly easy access to geographically
distributed resources belonging to different administration
domains. Despite its establishment as a viable computing
infrastructure, there are still many issues to be solved and
mechanisms to optimize in performance, fault tolerance,
QoS, security and fairness.

As large scale distributed systems, Grid software and ar-
chitecture gather several characteristics making them diffi-
cult to study only following a theoretical approach. As a
matter of fact, most of the research conducted in Grids is
currently performed using simulators, emulators or produc-
tion platforms. As discussed in the next section, all these
tools present limitations making the study of new software
and optimizations difficult.

Given the complexity of Grids, there is a strong need
for highly configurable real-life experimental platforms that
can be controlled and monitored directly.

Such tools already exist in other contexts. The closest ex-

F
s

amp
to th
tem
dist

I
der
tiva
form
tion
wer
The
Sec
ing
we
syst

2

L
ing
ure
sear

I
be c
mak
emu

S
the
The

0-7803-9493-3/05/$20.00 2005 IEEE 99
urable Grid experimental testbed

Yvon Jegou, Pascale Primet, Emmanuel Jeannot,

, Raymond Namyst, Benjamin Quetier, Olivier Richard,

IFL, LABRI, IMAG

l fci@lri.fr

igure 1. Methodologies used in distributed
ystem studies.

le is PlanetLab [6]. It consists in a set of PCs connected
e internet and forming an experimental distributed sys-

. PlanetLab is used for network studies as well as for
ributed systems research.
n this paper we present the Grid’5000 project, still un-
construction but already in use in France. We first mo-
te the need for a large scale, real-life experimental plat-

by discussing the limitations of existing tools. In Sec-
3, we present the design principles of Grid’5000 which

e based on the results of Grid researchers interviews.
implementation of Grid’5000 is described in Section 4.

tion 5 gives some configuration examples, demonstrat-
the high reconfigurability of the platform. In Section 6
present evaluation results for the deployment and reboot
em, a key component of Grid’5000.

Motivations and related work

ike other scientific domains, research in Grid comput-
is based on a variety of methodologies and tools. Fig-
1 presents the spectrum of methodologies used by re-
chers to study research issues in distributed systems.
n large distributed systems, numerous parameters must
onsidered and complex interactions between resources
e analytical modelling impractical. Thus simulators,
lators and real platforms are preferred.
imulators focus on a specific behavior or mechanism of
distributed system and abstract the rest of the system.
ir fundamental advantage is their independence of the

Grid Computing Workshop 2005

execution platform. For example, Bricks [7] was proposed
for studies and comparisons of scheduling algorithms and
frameworks. Researchers can specify network topologies,
server architectures, communication models and scheduling
framework components to study multi-client, multi-server
Grid scenarios. Some Bricks components are replaceable
by real software, allowing validation of external sofware.
SimGrid [8] is used to study single-client multi-servers
scheduling in the context of complex, distributed, dynamic
and heterogeneous environments. SimGrid is based on
event driven simulation, providing a set of abstractions and
functionalities to build a simulator corresponding to the ap-
plications and infrastructures. Resources latency and ser-
vice rate may be set as constants or evolve according to
traces. The topology is fully configurable. GangSim [9]
considers a context where hundreds of institutions and thou-
sands of individuals collectively use tens or hundreds thou-
sands of computers and the associated storage systems. It
models usage policies at the levels of site and VO (Virtual
Organization) and can combine simulated components with
instances of a VO Ganglia Monitoring toolkit running on
real resources.

Surprisingly, very few studies have provided validation
for these simulators. The validation of Bricks [7] was per-
formed by incorporating NWS in Bricks and comparing the
NWS results measured on a real Grid with the ones obtained
on a Grid simulated by Bricks. SimGrid [8] validation con-
sisted in comparing the simulator results with the ones ob-
tained analytically on a mathematically tractable problem.

In some situations, complex behaviors and interactions
of the distributed system nodes cannot be simulated, be-
cause of the difficulty to capture and extract the factors in-
fluencing the distributed systems. Emulators can address
this limitation by executing the actual software part of the
distributed system, in its whole complexity. Emulators are
generally run on rather ideal infrastructures (i. e. controlled
clusters). MicroGrid [10] allows researchers running Grid
applications on virtual Grid resources. Resource virtual-
ization is done by intercepting all direct use of resources.
The emulation coordination essentially controls the simula-
tion rate, which is determined by the virtualization ratio for
all resources. The emulation time base is controlled by a
virtualization library returning adjusted times to the system
routines. Accurate processor virtualization relies on spe-
cific schedulers and the network virtualization [10] uses the
MaSSF system for a scalable online network simulation.

Authors of MicroGrid have conducted a thorough valida-
tion [10]. The internal timing of MicroGrid was validated
using the AutoPilot system. The capacity of the emulator to
enforce memory limitation and to maintain the processing
model under CPU and I/O competition was validated us-
ing microbenchmark. Emulations results were compared to
experimentation ones on real platforms for the NAS bench-

mar
tion
CAC
Fish
obta

E
netw
anis
con

B
scal
betw
ject
gen
plex
form
real
sica
Inte
war
issu
ily
and
pari
ing.
form
scal
Grid
bein

T
ime
cap
mec
Grid

3

T
of 1
real
con
to p
figu
a str

3.1

D
rese
will
plat
diff
the
100

100
k, in order to validate the full emulation engine. Valida-
with real applications compared the execution times of
TUS problem solving environment, Jacobi, Scalapack,

, Game of life and Fasta on real platforms with the ones
ined by MicroGrid.
mulab [11] is another emulator, originally designed for
ork emulation. It provides advanced controlling mech-

ms for the user, allowing to reboot nodes in specific OS
figurations and to control the network topology.
ecause Emulators use the real software, they cannot

e as well as simulators. Furthermore, there is still a gap
een emulators and the reality: even traffic and fault in-

ion techniques, generally based on traces or synthetic
erators cannot capture all the dynamic, variety and com-
ity of real life conditions. Real life experimental plat-
s solve this problem by running the real software on

istic hardware. DAS2 (http://www.cs.vu.nl/das2/) is ba-
lly an idealized Grid, all sites being connected on the
rnet. Experiments are run on top of a Grid middle-
e managing the classical security and runtime interfaces
es related to Grid platforms. The nodes are voluntar-
homogeneous, providing a much simpler management
helping a better environment for performance com-

son (speed up of parallel applications) and understand-
PlanetLab [6] is another real life experimental plat-

, connecting real machines by the Internet, at the planet
e. Some production Grids (TeraGrid, eScience, Data-
) have also been used as experimental platforms, before
g opened to actual users or during dedicated time slots.
wo strong limitations of real life platforms as exper-
ntation tools are 1) their low software reconfiguration
ability and 2) the lack of deep control and monitoring
hanisms for the users. The next section highlights how
’5000 addresses these limitations.

Designing Grid’5000

he design of Grid’5000 derives from the combination
) the limitations observed in simulators, emulators and
platforms and 2) an investigation on the research topics

ducted by the Grid community. These two elements lead
ropose a large scale experimental tool, with deep recon-
ration capability, a controlled level of heterogeneity and
ong control and monitoring infrastructure.

Experiment diversity

uring the preparation of the project (2003), we asked
archers in Grid computing the experiment they were
ing to conduct on a large scale real life experimental
form. The members of 10 teams in France, involved in
erent aspects of Grid Computing and well connected to
international Grid community, proposed a set of about
experiments. It was surprising to discover that almost

all teams require different infrastructure settings for their
experiments. The experiment diversity nearly covers all lay-
ers of the software stack used in Grid computing: network-
ing protocols (improving point to point and multipoints pro-
tocols in the Grid context, etc.), operating systems mecha-
nisms (virtual machines, single system image, etc.), Grid
middleware, application runtimes (object oriented, desktop
oriented, etc.), applications (life science, physics, engineer-
ing, etc.), problem solving environments. Research in these
layers concerns scalability (up to thousands of CPUs), per-
formance, fault tolerance, QoS, security.

3.2 Deep reconfiguration

For researchers involved in network protocols, OS and
Grid middleware research, the software setting for their
experiments often requires specific OS. Some researchers
need Linux, while others are interested by Solaris10 or Win-
dows. For networking researches, FreeBSD is preferred be-
cause network emulators like Dummynet and Modelnet run
only on FreeBSD. Some researchers also need to test and
improve protocol performance (for example changing the
size of the TCP window or testing alternative protocols).
Some researches on virtual machine, process checkpoint-
ing and migration need the installation of specific OS ver-
sions or OS patches that may not be compatible between
each others. Even for experiment over the OS layers, re-
searchers have some preferences: for example some pre-
fer Linux kernel 2.4 or 2.6 because their scheduler differ.
Researchers needs are quite different in Grid Middleware:
some require Globus (in different versions: 3.2, 4, Data-
Grid version) while others need Unicore, Desktop Grid or
P2P middleware. Some other researchers need to make ex-
periments without any Grid middleware and test applica-
tions and mechanisms in a multi-sites, multi-clusters envi-
ronment before evaluating the Middleware overhead. Ac-
cording to this inquiry on researchers needs, Grid’5000
should provide a deep reconfiguration mechanism allow-
ing researchers to deploy, install, boot and run their spe-
cific software images, possibly including all the layers of
the software stack. In a typical experiment sequence, a re-
searcher reserves a partition of Grid’5000, deploys its soft-
ware image, reboots all the machines of the partition, runs
the experiment, collects results and relieves the machines.
This reconfiguration capability allows all researchers to run
their experiments in the software environment exactly cor-
responding to their needs.

3.3 A two levels security approach

Because researchers will be able to boot and run their
specific software stack on Grid’5000 sites and machines, we
cannot make any assumption on the correct configuration
of the security mechanisms. As a consequence, we should

con
othe
all t
net,
any
peri
a tw
Grid
and
twe
will
atta

T
clus
whe
auth
log

3.4

P
Spe
hard
com
tem
dire
mai
cide
How
imp
reas
chin

3.5

G
fair
toco
be a
and
ing
prod
to 1
sam
the
4) i
syn
tion
late
nex
tool
eral
mea

101
sider that Grid’5000 machines are not protected. Two
r constraints increase the security issue complexity: 1)
he sites hosting the machines are connected by the Inter-
2) basically inter-site communication should not suffer
platform security restriction and overhead during ex-

ments. From this set of constraints, we decided to use
o levels security design with the following rules: a)
’5000 sites are not directly connected to the Internet
b) all communication packets fly without limitation be-
en Grid’5000 sites. The first rule ensures that Grid’5000
resist to hacker attacks and will not be used as basis of

cks (i. e. massive DoS or other more restricted attacks).
his design rules lead to build a large scale confined
ter of clusters. Users connect to Grid’5000 from the lab
re the machines are hosted. Strong authentication and
orization check is done first to enter the lab and then to
in Grid’5000 nodes from the lab.

Two thirds of homogeneous nodes

erformance evaluation in Grid is a complex issue.
edup evaluation is hard to evaluate with heterogeneous
ware. In addition, the hardware diversity increases the
plexity of the deployment, reboot and control subsys-
. Moreover, multiplying the hardware configurations
ctly leads to increase the every day management and
ntenance cost. Considering these 3 parameters, we de-
d that 2/3 of the total machines should be homogeneous.
ever Grid are heterogeneous by nature and this is an

ortant dimension in the experiment diversity. That’s the
on why we choose to keep 1/3 of heterogeneous ma-
es.

Precise control and measurement

rid’5000 will be used for Grid software evaluation and
comparisons of alternative algorithms, software, pro-
ls, etc. This implies two elements: first, users should
ble to steer their experiments in a reproducible way
second, they should be able to access probes provid-
precise measurements during the experiments. The re-
ucibility of experiment steering includes the capability
) reserve the same set of nodes, 2) deploy and run the
e piece of software on the same nodes, 3) synchronize
experiment execution on the all the involved machines,
f needed, repeat sequence of operations in a timely and
chronous way, 5) inject the same experimental condi-
s (synthetic or trace based: fault injection, packet loss,
ncy increase, bandwidth reduction). As described in the
t section, Grid’5000 software set provides a reservation
(OAR [12]), a deployment tool (Kadeploy2) and a sev-
experimental condition injectors. Precise and extensive
surement is a fundamental aspect of experimental eval-

Figure 2. Overview of Grid’5000.
uation on real life platforms. Grid’5000 provides users sev-
eral sets of probes for measuring network activity during
experiments. A first set of probes collects the packet header
of all packets crossing the access routers of all sites. These
headers are stored in a database during the experiment. A
second set of network probes measures the traffic in every
tunnel connecting the sites. Local observation of processor
memory, disk and network is difficult at the hardware level
and since the users may use their proper software config-
uration, there is no way to provide a built-in and trustable
monitoring system for CPU, Memory and Disc. Hence, it
is the responsibility of the users to proper install, configure
and manage the software observation tools they need for
their experiments.

4 Grid’5000 Architecture

The Grid’5000 architecture implements the principles
described in the previous section. Based on the researchers
requirements, the scalability needs and the number of re-
searchers, we decided to build a platform of 5000 CPUs
distributed over 9 sites in France. Figure 2 presents an
overview of Grid’5000. Every site hosts a cluster and all
sites are connected by high speed network (all links will
provide 10Gbps by the end of 2005).

Numbers in the figure give the number of CPUs for every
cluster. 2/3 of the nodes are dual CPU 1U racks equipped
with 2 AMD Opteron running at 2 Ghz, 2 Go of mem-
ory and two 1Gpbs Ethernet Adapter. Clusters are also
equipped with high speed networks (Myrinet, Infiniband,
etc.). In the rest of this section we present the key architec-
tural elements of Grid’5000.

4.1 A confined system

As discussed earlier, the Grid’5000 architecture should
provide an isolated domain where communication fly with-
out restriction between sites and are not possible directly
with outside world. Mechanisms based on state-of-the-art
technology like public key infrastructures and X509 certifi-

cate
sou
GSI
hea
stud
cate
the
to b
cho
Serv
serv
avai
and
use
whi
vide
adv
form
NR
avo
Diff
The
gua
tion
Grid
ena
base
arch

U
cho
with
usin
tech

4.2

A
min

102
Figure 3. Communication architecture.
s, produced by the Grid community to secure all re-
rce accessed are not suitable for the Grid’5000. The

high level security approach imposes an heavy over-
d and impacts the performances, biasing the results of
y not directly related to security. Then a private dedi-
d network (PN) or a virtual private network (VPN) are
only solutions to compose a secure grid backbone and
uild such a confined infrastructure. In Grid’5000, we
ose to interconnect the sites with a combination of Diff-

and MPLS technology provided by RENATER (our
ice provider). Many VPN implementation solutions are
lable but they do not provide simultaneously security
QoS guarantees. For security, network layer VPNs may
tunneling or network layer encryption (layer 3 VPN),
le at link layer VPNs like MPLS, VPNs are directly pro-
d by network service providers (layer 2-3 VPN). The

antage of the MPLS VPN over IP VPN (Ipsec) is per-
ance. As Grid’5000 sites are connected to the same

EN, the multi-domain issue of the MPLS technology is
ided here. For performance guarantee, a combination of
Serv and MPLS will be configured for Grid’5000 links.
Premium service will be used for delay and bandwidth

rantees required for reproducible experimental condi-
s and performance measurements. This MPLS based

architecture allows creating a trust context that even
bles to experiment new security solutions for IP VPN-
d Grids. Figure 3 presents the resulting communication
itecture.
sing MPLS in Grid architecture is not an isolated

ice. Recently, a Grid VPN research group has born
in the GGF, attesting a real interest in developing and
g MPLS, G-MPLS or lower level optical switching
nologies for the Grid.

User view and data management

s previously mentioned, communications are done with
imal authentication between Grid’5000 machines. The

logical consequence is that a user has a single account
across the whole platform. However, each Grid’5000 site
manages its own user accounts. Reliability of the authenti-
cation system is also critical. A local network outage should
not break the authentication process on other sites. These
two requirements have been fulfilled by the installation of
an LDAP directory. Every site runs an LDAP server con-
taining the same tree : under a common root, a branch is
defined for each site. On a given site, the local administra-
tor has read-write access to the branch and can manage its
user accounts. The other branches are periodically synchro-
nized from remote servers and are read-only.

From the user point of view, this design is transparent,
once the account is created, the user can access any of the
Grid’5000 sites or services (monitoring tools, wiki, deploy-
ment, etc.). His data, however, are local to every site. They
are shared on any given cluster through NFS, but distribu-
tion to another remote site is done by the user through clas-
sical file transfer tools (rsync, scp, sftp, etc.). Data transfers
with the outside of Grid’5000 are restricted to secure tools
to prevent identity spoofing and public key authentication is
used to prevent brute-force attacks.

4.3 Experiment scheduling

Experiment scheduling and resource allocation is man-
aged by a resource management system called OAR [12]
at cluster level and by a simple broker at the grid level.
OAR architecture is built from a relational database en-
gine MySql. All large-scale operations like parallel tasks
launching, nodes probing or monitoring are performed us-
ing a specialized parallel launching tool named Taktuk
[13]. OAR provides most of the important features imple-
mented by other batch schedulers such as priority schedul-
ing by queues, advance reservations, backfilling and re-
source match making.

At grid level, a simple broker allows co-allocating set of
nodes on every selected cluster. The co-allocation process
works as following: 1) user submits an experiment which
needs several set of nodes on different clusters, 2) in round-
robin sequence, the broker submits a reservation to each lo-
cal batch scheduler. If one reservation is refused, all pre-
viously accepted reservations are canceled. When all lo-
cal reservations are accepted, the user receives an identifier
from the broker, allowing the user to retrieve information of
allocated set of nodes.

In Grid’5000, resource management system is coupled
with node reconfiguration operation at different points.
First, a specific queue is defined where users can submit ex-
periments requesting node reconfiguration. Second, there
is a dynamic control of deployment rights in the prologue
script is executed before starting the experiment. This gives
user the capability to deploy system images on the allocated

nod
afte
peri
boo
prov
reco

4.4

N
tool
thei
lect
men
nee

A
data
The
nod
dep
nod
nel
ated

S
ing
sket
initi
nam
data
regi
min
syst
titio
step
uses
age
don
ant
auth
sup
sists
netw

5

T
ease
larg
exa
netw
ronm

103
e partition. Rights are revoked in the epilogue script
r the experiment. Third, after the completion of ex-
ments involving node reconfiguration, all nodes are re-
ted in a default environment. This default environment
ides libraries and middleware for experiments without
nfiguration.

Node reconfiguration

ode reconfiguration operation is based on a deployment
called Kadeploy2. This tool allows users deploying

r own software environment on a disk partition of se-
ed nodes. As previously mentioned, software environ-
t contains all software layers from OS to application

ded by users for theirs experiments.
rchitecture of Kadeploy2 is also designed around a

base and a set of specialized operating components.
database is used to manage different aspects of the

e configuration (disk partition schemes, environment
loyed on every partitions), user rights to deploy on
es, environment description (kernel, initrd, custom ker-
parameters, desired filesystem for environment, associ-
postinstallation) and logging of deployment operations.
everal deployment procedures are available, depend-
mainly on OS type and filesystem specificity. We only
ch the usual deployment procedure. First, when user
ates a deploy operation, he provides an environment
e allowing to retrieve associated information from the
base. The user provides this information at environment
stration. Deployment begins by rebooting all nodes on a
imal system through a network booting sequence. This
em prepares the targeted disk for deployment (disk par-
nning, partition formatting and mounting). The next
in the deployment is the environment broadcast which
a pipelined transfer between nodes with on the fly im-

decompression At this point, some adjustments must be
e on the broadcasted environment in order to be compli-
with node and site policies (mounting tables, keys for
entication, information for specific services that cannot

port auto-configuration). The last deployment step con-
in rebooting the nodes on the deployed system from a
ork loaded bootloader.

Grid’5000 configuration examples

he main objective of Grid’5000 set of software is to
the deployment, execution and result collection of

e scale Grid experiments. In this section, we present 3
mples for Grid’5000 reconfiguration for experiments in

orking protocols, Grid middleware and GridRPC envi-
ent.

5.1 Testing recent P2P protocols in Grid context

BitTorrent is a popular file distribution system outper-
forming FTP performance when delivering large and highly
demanded files. The key idea of BitTorrent is the coop-
eration of the downloaders of the same file by uploading
chunks of the file to each other. As such, BitTorrent is a
nice broadcast protocol for large files in data and computa-
tional Grids. BitTorent uses TCP as the transport protocol.

In this part, we describe how we can deploy, run and
collect experiment results, when performing simple BitTor-
rent performance evaluation for a variation of TPC protocol,
on homogeneous nodes of Grid’5000. The modification of
the TCP stack involves the compilation and deployment of a
specific OS kernel. The experiment requires 9 steps: Step 1)
BitTorrent code is instrumented to log reception and emis-
sion events (type of communication, sender identifier, re-
ceiver identifier, time and chunk identifier). BitTorrent has
been instrumented to replay the logged sequence of events.
Step 2) the software image is prepared (installing specific
libraries and software - Python for BitTorrent), based on a
minimal image certified to work on the experimental nodes.
The kernel is patched and compiled with alternative TCP
versions. The local root file system is then archived and
registered on the deploying software database on all sites.
Step 3) nodes are reserved possibly from the same selec-
tion file, using OAR. Step 4) the archived file system im-
age is deployed on a user specified partition of all nodes,
using Kadeploy. Step 5) Kadeploy reboots all the reserved
nodes and checks that the machine is responding to ping and
ssh. 6) The BitTorrent file to be broadcasted, is stored on
the user home directory where the BitTorrent master node
(the seeder) will run. The list of nodes provided by OAR
is stored on the BitTorrent master node. 7) Node clocks
are synchronized using NTPdate. 8) A distributed launcher
program controls the start of the experiment script on all the
nodes. The BitTorrent tracker is started first, then the Tor-
rent file created is registered in the tracker, then the seeder
is started on the master and finally, the clients (leechers) are
started on all the other nodes. The BitTorrent events are
recorded locally on all the nodes. 9) all log files are col-
lected and stored in the user home directory of the user site
gateway. Reserved nodes are released.

5.2 Deploying a Globus Toolkit

Globus is an open source grid middleware toolkit used
for building grid systems and applications. This part de-
scribes how we can map a Globus (Toolkit 2) virtual grid
on Grid’5000, deploy Globus and run experiments.

The topology we choose for our virtual Globus grid is
to have one Globus installation on each Grid’5000 site. We
consider each site to be a separate cluster that provides ser-
vices through the Globus Toolkit. Since we are emulat-
ing a grid, each cluster manages their own user accounts

(i.e.
ters
Eac
thei
side
that
cert
Glo
requ
then
clie
deli
user
ecu
run
and

G
that
ime
thin
nel)
nod
nod
GSI
ploy
ther
as t
runn
driv
Kad
age

5.3

T
para
It is
Mas
app
the
invo
load
the
The
nec
(in a
proj
acce
ing
as w
the
righ
solv
is u

104
no grid wide user directory). Job execution on clus-
is managed by a batch job scheduler (e.g.: OAR, PBS).
h cluster manages user accounts and job scheduling with
r software of choice, as we only need homogeneity in-
clusters. Each site runs a certification authority (CA)
delivers user certificates for their users, as well as host

ificates. We pick a front node on each site, and install
bus services on this front node. These services accept
ests from other sites, authenticate and authorize them,
perform an action (e.g.: submit a job) on behalf of the

nt. Clients authenticate services with a host certificate
vered by the site services run on. The Gatekeeper maps
certificates to the user accounts of each cluster, and ex-

tes them with the local job scheduler. Front nodes also
the MDS (Monitoring and Discovery System) service,
GSIFTP (data transfer).
lobus toolkit is deployed by creating a system image
contains a Globus installation tailored for the exper-

nt (since we deploy the whole system image, every-
g can be customized up to the operating system ker-
. We create for each site an image for cluster compute
es with a batch scheduler, and an image for the front
e with the Globus Toolkit services (Gatekeeper, MDS,
FTP, and certificates). The virtual Globus grid is de-
ed on Grid’5000 machines using the Kadeploy tools,
eby turning Grid’5000 into a virtual Globus grid as long
he Kadeploy reservation lasts. While Globus users are
ing their experiments, log files are saved to the local

es of each node. As soon as the experiment is done,
eploy reboots the nodes with their default system im-

, and users can retrieve their log files and process them.

A Corba based Grid running DIET and TLSE

he DIET [14] middleware follows the GridRPC
digm [15] for client-server computing over the Grid.
designed as a set of hierarchical components (Client,
ter and Local Agents, and Server Daemons). It finds an

ropriate server according to the information involved in
client request (problem to be solved, size of the data
lved), the performance of the target platform (server
, available memory, communication performance), and

availability of data stored during previous computations.
scheduler is distributed using several hierarchies con-

ted either statically (in a Corba fashion) or dynamically
peer-to-peer fashion). The main goal of the Grid-TLSE

ect [16] is to design an expert site that provides an easy
ss to a number of sparse matrix solver packages allow-
their comparative analysis on user-submitted problems,
ell as on matrices from collections also available on

site. The site provides user assistance in choosing the
t solver for its problems and appropriate values for the
er parameters. A computational Grid managed by DIET
sed to deal with all the runs related to user requests.

Our goal in the Grid5000 project is twofold. First we want
to validate the scalability of our distributed scheduling ar-
chitecture at a large scale (using thousands of servers and
clients) and then to test some deployments of the TLSE ar-
chitecture for future production use.

In the current availability of Grid’5000 platform, the de-
ployment of DIET with TLSE server works in three phases.
The first step consists in sending one OAR requests at each
site, to reserve a maximum of available nodes. The second
phase consists in receiving OAR information to know which
nodes are given by reservation. The third phase generates an
XML file with the dynamic information as well as names of
nodes at each site. These files will be used by GoDIET
to deploy DIET. Our main goal during this first experience
is to corroborate a theoretical study of the deployment with
the hardware capability of Grid’5000 platform (CPU perfor-
mance, bandwidth, etc.) to design a hierarchy that achieves
a good scalability and a good efficiency for DIET. From this
XML file, GoDIET deploys agents (or schedulers), servers
and services bound to DIET as Corba services (i.e. naming
service) along with a distributed log tool designed for the
visualization tools (VizDIET).

6 Deployment system evaluation

In this section, we present the evaluation of the deploy-
ment and reboot system of Grid’5000. Evaluation of other
parts of Grid’5000 will be presented in future articles. The
deployment and reboot system is certainly the most impor-
tant mechanism of Grid’5000, enabling a rapid turnaround
of experiments on the platform. Typical deployment and re-
boot mechanisms for cluster cannot be coupled to a batch
scheduler. Moreover, they are not designed to concurrently
install different systems on separate cluster partitions. Our
objective is to provide a reconfiguration time (boot to boot:
B2B) lower than 10 minutes for the 5000 CPUs of the plat-
form. This means: 1) deploying the software image on all
the nodes of every site (a site may contain up to 500 nodes),
2) issuing the reboot order on all Grid’5000 nodes and 3)
the reboot of all nodes from the deployed software image.
As previously mentioned, Kadeploy uses more steps, boot-
ing a light kernel to prepare the user partition to boot from
for the experiment.

The B2B time depends not only on the performance of
Kadeploy but also on the OS to be booted (OS have different
configurations and run different set of services). Figure 4
presents the BTB time according to the number of nodes, in
a single site, for a simple kernel without service, on a cluster
of 200 nodes.

The figure presents the completion time of every step in-
cluded in the B2B time (as a cumulated graph): 1) the time
to boot the preparation OS launching a light kernel (first
check), 2) the time the prepare the disk partitions before the
installation of the user environment (preinstall), 3) the time

 1

 1

 2

 2

 3

tim
e

(s
ec

)

F
b

 1

 1

 2

 2

 3

no

de
s

F
a

to tr
time
that
is b
con
tion
the
dom
figu
num
eval
the

F
rebo
nod
vert
men

105
 0

 50

00

50

00

50

00

 0 20 40 60 80 100 120 140 160 180

nodes

first check
preinstall

transfer
last check

igure 4. Time (in seconds) to deploy and
oot a new OS on a cluster with Kadeploy.

 0

 50

00

50

00

50

00

 0 200 400 600 800 1000 1200

time (sec)

deploying
deployed

deploying_site1

deployed_site1
deploying_site2
deployed_site2

igure 5. Time diagram for the deployment
nd reboot of a user environment on 2 sites.

ansfer the user environment archive (transfer) and 4) the
to boot the user OS (lastcheck). First, the figure shows
the boot time depends on the number of nodes. This

ecause the boot time is different for all machine and we
sider only the slowest one. In contrary, the disk prepara-
and environment transfer times increase negligibly with
number of nodes. The time to reboot the 2 OS largely
inates the environment transfer time. Altogether, the
re clearly shows a B2B time evolving linearly with the
ber of nodes following an affine function that could be
uated as B2Btime = 200ms + (0.33 × X), X being
number of nodes.

igure 5 presents the time diagram of a deployment and
ot phase involving 2 Grid’5000 sites for a total of 260

es (180 nodes in site 1 and 80 nodes in site 2). The
ical axis corresponds to the number of nodes in deploy-
t and reboot state. At t = 0s, all the nodes are running

an OS. At t = 30s, a deployment sequence is issued. At
t = 50s, all nodes are rebooting the deployment kernel. At
t = 160s all nodes have rebooted and are preparing the user
partition. The clusters start the second reboot at t = 200s

for site 2 and t = 340s for site 1. Site 2 nodes are rebooted
with the user OS at t = 320s. All nodes are rebooted with
the user OS (including Site 1) at t = 450s. At t = 800s,
the user experiment is completed and a reboot order is is-
sued making all nodes rebooting default environment. This
figure demonstrates that the current B2B time at the Grid
level (450 seconds) is well below the 10 minutes mark. The
deployment and reboot system is still in Alpha version. It is
not tuned and there are many optimization opportunities.

7 Conclusion

Grid’5000 belongs to a novel category of research tools
for Grid research: a large scale distributed platform that can
be easily controlled, reconfigured and monitored. We have
presented the motivations, design and architecture of this
platform. The main difference between Grid’5000 and pre-
vious real life experimental platforms is its degree of re-
configurability, allowing researchers to deploy and install
the exact software environment they need for each exper-
iment. This capability raises a security difficulty, solved
in Grid’5000 by establishing a virtual domain spanning
several sites, strongly controlling the communications at
the domain boundaries and relaxing restrictions for intra-
domain communications. The platform provides users with
many network probes capturing the network traffic during
experiments. We have described some configuration exam-
ples, illustrating the variety of experiments that can bene-
fit from Grid’5000. We also presented the performance of
the reconfiguration system which provides a ”boot to boot”
time of less than 10 minutes on the full platform.

Ongoing work focuses on several areas: 1) ease software
image construction for the users, 2) provide automatic vali-
dation of software images, 3) support and coordinate exper-
iments and 4) tune and validate network performance.

8 Acknowledgments

We would like to thank the French Ministry of research
and the ACI Grid and ACI Data Mass incentives, espe-
cially Thierry Priol (Director of the ACI GRID) and Brigitte
Plateau (Head of the Scientific Committee of the ACI Grid)
for their support. We also thank Dany Vandromme, Director
of RENATER.

References

[1] e Science project. In http://www.nesc.ac.uk.

[2] TeraGrid project. In http://www.teragrid.org.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

106
Grid3 project. In http://www.ivdlg.org/grid2003.

DEISA project. In http://www.deisa.org.

NAREGI project. In http://www.naregi.org/index e.html/.

Brent Chun, David Culler, Timothy Roscoe, Andy Bavier,
Larry Peterson, Mike Wawrzoniak, and Mic Bowman.
PlanetLab: An Overlay Testbed for Broad-Coverage Ser-
vices. ACM SIGCOMM Computer Communication Review,
33(3):00–00, July 2003.

Atsuko Takefusa, Satoshi Matsuoka, Kento Aida, Hidemoto
Nakada, and Umpei Nagashima. Overview of a perfor-
mance evaluation system for global computing scheduling
algorithms. In HPDC ’99: Proceedings of the The Eighth
IEEE International Symposium on High Performance Dis-
tributed Computing, page 11, Washington, DC, USA, 1999.
IEEE Computer Society.

Henri Casanova, Arnaud Legrand, and Loris Marchal.
Scheduling distributed applications: the simgrid simulation
framework. In Proceedings of the third IEEE Interna-
tional Symposium on Cluster Computing and the Grid (CC-
Grid’03), may 2003.

C. Dumitrescu and I. Foster. Gangsim: A simulator for grid
scheduling studies. In Proceedings of the IEEE Interna-
tional Symposium on Cluster Computing and the Grid (CC-
Grid’05), Cardiff, UK, may 2005.

Xin Liu, Huaxia Xia, and Andrew Chien. Validating and
scaling the microgrid: A scientific instrument for grid dy-
namics. The Journal of Grid Computing, Volume 2(2):141 –
161, 2004.

Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci,
Shashi Guruprasad, Mac Newbold, Mike Hibler, Chad Barb,
and Abhijeet Joglekar. An integrated experimental environ-
ment for distributed systems and networks. In OSDI02 =
”Proc. of the Fifth Symposium on Operating Systems De-
sign and Implementation”, pages 255–270, Boston, MA, dec
2002.

Y. Georgiou, O. Richard, P. Neyron, G. Huard, and C. Mar-
tin. A batch scheduler with high level components. In Pro-
ceedings of CCGRID’2005. IEEE Computer Society, 2005.

P. Augerat, C. Martin, and B. Stein. Scalable monitoring and
configuration tools for grids and clusters. In Proceedings of
the 10th Euromicro Workshop on Parallel, Distributed and
Network-based Processing. IEEE Computer Society, 2002.

E. Caron and F. Desprez. DIET: A Scalable Toolbox to Build
Network Enabled Servers on the Grid. International Journal
of High Performance Computing Applications, 2005.

K. Seymour, C. Lee, F. Desprez, H. Nakada, and Y. Tanaka.
The End-User and Middleware APIs for GridRPC. In Work-
shop on Grid Application Programming Interfaces, In con-
junction with GGF12, Brussels, Belgium, September 2004.

M. Daydé, L. Giraud, M. Hernandez, J.-Y. L’Excellent,
M. Pantel, and C. Puglisi. An Overview of the GRID-TLSE
Project. In Proceedings of 6th International Meeting VEC-
PAR 04, Valencia, Spain, June 2004.

	Welcome Page
	Hub Page
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Also by Franck Cappello
	Also by Pascale Vicat-Blanc Primet
