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Abstract

Experimental validation and testing of solutions de-
signed for heterogeneous environment is a challenging
issue. Wrekavoc is a tool for performing such validation.
It runs unmodified applications on emulated multisite
heterogeneous platforms. Therefore it downgrades the
performance of the nodes (CPU and memory) and the
interconnection network in a prescribed way. We report
on new strategies to improve the accuracy of the net-
work and memory models. Then, we present an experi-
mental validation of the tool that compares executions of
a variety of application code. The comparison of a real
heterogeneous platform is done against the emulation of
that platform with Wrekavoc. The measurements show
that our approach allows for a close reproduction of
the real measurements in the emulator.

1. Introduction

Distributed computing and distributed systems is a
branch of computer science that has recently gained
very large attention. Grids, clusters of clusters, peer-
to-peer systems, desktop environments, are examples of
successful environments on which applications (scien-
tific, data managements, etc.) are executed routinely.

However, such environments, are composed of differ-
ent elements that make them more and more complex.
The hardware (from the core to the interconnected clus-
ters) is hierarchical and heterogeneous. Programs that
are executed on these infrastructures can be composite
and extremely elaborate. Huge amounts of data, possi-
bly scattered on different sites, are processed. Numerous
protocols are used to interoperate the different parts
of these environments. Networks that interconnect the
different hardware are also heterogeneous and multi-
protocol.

The consequence is that applications (and the algo-
rithms implemented by them) are also very complex
and very hard to validate. However, validation is of key
importance: it helps to assess the correctness and the

efficiency of the proposed solution, and, allows com-
paring a given solution to other already existing ones.
Analytic validation consists in modeling the problem
space, the environment and the solution. Its goal is then
to gather knowledge about the modeled behavior using
mathematics as a tool. Unfortunately, this approach is
intractable in our case due to the complexity and partial
unpredictability of the studied objects.

In our case, it is therefore necessary to switch to
experimental validation. This approach consists in ex-
ecuting the application (or a model of it), observe its
behavior on different cases and compare it with other
solutions. This necessity for experiments truly makes
this field of computer science an experimental science.

As in every experimental science, experiments are
made through the means of tools and instruments.
In computer science one can distinguish three differ-
ent methodologies for performing experiments, namely,
real-scale, simulation and emulation [1].

Emulation will be the concern of this paper: we show
how our emulation tool called Wrekavoc [2] is able to
help in experimentally validating a solution designed
for a distributed environment. The goal of Wrekavoc
is to transform a homogeneous cluster into a multi-site
distributed heterogeneous environment. This is achieved
by degrading the perceived performance of the hardware
by means of software run at user level. Then, using this
emulated environment a real unmodified program can
be executed to test and compare it with other solutions.

The contribution of this paper is twofold. First, we
present two extension of Wrekavoc with respect to
the previous version described in [2], namely degra-
dation of memory and an enhancement of the routing
model. Then, in an intensive experimental campaign we
demonstrate the realism of Wrekavoc. In order to do
that we compare the execution of different applications
on a heterogeneous platform with the execution on a
homogeneous cluster and Wrekavoc. This is done by
using many different parallel programming paradigms
and by executing exactly the same applications on the
real platform and in the emulator.



2. Related work

Here, we review some tools described in the literature
that allow to perform large scale grid experiments. None
of these tools allows to execute an unrestricted and
unmodified application under precise and reproducible
experimental conditions that would correspond to a
given heterogeneous environment.

2.1. Real-scale Experimental Testbeds

GRID5000 [3] and Das-3 [4] (The Distributed ASCI
Supercomputer 3) are distributed testbeds that inter-
conect clusters of different sites. Planet-lab [5] is a
globally distributed platform of about 500 nodes, all
completely virtualized. It allows to deploy services on
a planetary scale. With these platform, the control of
the experimental conditions is often quite limited. In
addition, the management of experimental campaigns is
still a tedious and time-consuming task.

2.2. Emulators

The main technique of Microgrid [6] is to intercept
major system calls of the application. Unfortunately,
Microgrid is not supported anymore and does not work
with the recent compiler versions. eWAN [7] is a tool
that is designed for the accurate emulation of high
speed networks. It does not take CPU and memory
capacities of the hosts into account. ModelNet [8] also
is a tool that is principally designed to emulate the
network component. Virtualization is complementary to
this work but it does not generate heterogeneity by
itself. The RAMP (Research Accelerator for Multiple
Processors) project [9] aims at emulating low level
characteristics of an architecture (cache, memory bus,
etc.) using FPGA.

2.3. Simulators

Bricks [10], SimGrid [11] and GridSim [12] are
simulators that allow for the experimentation of dis-
tributed algorithms (in particular scheduling) and the
impact of platforms and their topology. GridNet [13],
[14] is specialized on data replication strategies. Oth-
ers, focused on network simulations are NS2 [15],
OPNetModeler [16] and OMNet++ [17]. A general
disadvantage of all these tools is that there are only
few studies concerning their realism.

3. Wrekavoc

Wrekavoc addresses the problem of controlling the
heterogeneity of a cluster. Our objective is to have a
configurable environment that allows for reproducible
experiments of real applications on large sets of con-
figurations. This is achieved without emulating any of
the code of the application but by degrading hardware
characteristics.Four characteristics of a node are de-
graded: CPU speed, memory size, network bandwidth
and network latency.

Wrekavoc’s notion to break a homogeneous cluster
down into an heterogeneous one is called islet. An islet
is a set of nodes that share similar limitations. Two islets
are linked together by a virtual network which can also
be limited. For the details see [2].

3.1. Use case

We describe here a use-case to show what Wrekavoc
can help to achieve.

Suppose, a computer scientists has invented a new
distributed algorithm for solving a computational prob-
lem on a distributed environments. He/she wants to test
this new algorithm and compare it with other existing
solutions. He/she also wants as little experimental bias
as possible and therefore discards simulation. However,
heterogeneous environments (such as Grid’5000 [3],
[1] or Planet Lab [5]) that allow for well defined
experimental conditions are not very common. Also
they have a fixed topology and hardware setting, hence
they do not cover a sufficiently large range of cases.

Now, thanks to Wrekavoc, he/she can take a homo-
geneous cluster (running under Linux) and transform it
into a multi-site heterogeneous environment by defining
and the topology, the interconnections characteristic, the
CPUs speed and the memory capacity, Therefore, while
only one homogeneous cluster is required, the possible
configurations are numerous. The only restriction is that
every emulated node must correspond to a real node of
the cluster. Then, he/she has simply to run an application
implementing the algorithm to test it and compare it
with other existing solutions.

3.2. Design goals

Wrekavoc was designed with the following goals in
mind.

1) Transform a homogeneous cluster into a hetero-
geneous multi-site environment. This means that
we want to be able to define and control the
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heterogeneity at a very low level (CPU, network,
memory) as well as the topology of the intercon-
nected nodes.

2) Ensure reproducibility. Reproducibility is a princi-
pal requirement for any scientific experiment. The
same configuration with the same input must have
the same behavior. Therefore, external disturbance
must be reduced to the minimum or must be moni-
tored so as to be incorporated into the experiment.

3) We want the user to be able to define and control
the heterogeneity of the environment using simple
commands and interfaces.

4) There are two ways for changing a homogeneous
cluster into an heterogeneous one. The first way
consists in partially upgrading (or downgrading)
the hardware (CPU, network, memory). However,
with this approach, the heterogeneity is fixed and
the control is very low. The second approach con-
sists in degrading the performance of the hardware
by means of software. We have chosen this ap-
proach as it ensures a higher flexibility and control
of the heterogeneity.

5) As we are going to degrade the different charac-
teristics of a given node (CPU, memory, network),
we want this degradation to be independent. This
means that, for instance, we want to be able to
degrade CPU without degrading the bandwidth and
vice versa.

6) The last, but not least, wanted feature is realism.
This means that we want Wrekavoc to provide a
behavior as close as possible to the reality. Ensur-
ing realism is necessary to assess the quality of the
experiments and the confidence in the results.

3.3. Implementation details

The implementation follows the client-server model.
On each node for which we want to degrade the
performance a daemon runs and waits for orders from
the client. The client sends a configuration file that
describes the heterogeneity settings to this daemon.
When a server receives a configuration order it degrades
the node characteristics accordingly. The client can also
order to recover the non-degraded state.

Four characteristics of a node are degraded: CPU
speed, memory size, network bandwidth and network
latency. We now explain briefly here how each of these
degradations is performed. For the details see [2].

CPU Degradation. We have implemented several
methods for degrading CPU performance. The first ap-
proach consists in managing the frequency of the CPU
through the kernel CPU-Freq interface. As this interface

is not always available or has a too coarse granularity,
we propose two other solutions. One is based on CPU
burning. A program that runs under real-time scheduling
policy burns a constant portion of the CPU cycles,
regardless how many processes are currently running.
The drawback of this approach is that burning CPU
cycles degrades also the network performance (pro-
cessing the TCP stack requires some processing) and
thus breaches the independence requirement described
in the above section. The third approach is based on
user-level process scheduling called CPU-lim. A CPU
limiter is a program that supervises processes of a given
user. On Linux, using the /proc pseudo-filesystem, it
suspends the processes (using signal SIGSTOP) when
they have used more than the required fraction of the
CPU. It reactivates processes when necessary to achieve
a precise degradation (using signal SIGCONT).

Network Limitation. Limiting latency and band-
width is done using tc (traffic controller) based on
Iproute2 a program that allows advanced IP routing.
With this tool it is possible to control both incoming
and outgoing traffic. This needs versions of tc 2.6.8.1
or above to allow to control the latency of the network
interface together with the bandwidth.

Memory Limitation. Up to the present version,
memory degradation was done by limiting the largest
malloc a user can make. This is possible through
the security module PAM. Limiting the whole memory
usable by all the processes is a new feature that will be
described in Section 4.

3.4. Configuring and Controlling Nodes and
Links

Wrekavoc’s main notion to break a homogeneous
cluster down into a heterogeneous one is called islet. An
islet is a set of nodes that share similar limitations. Two
islets are linked together by a virtual network which can
also be limited (see Fig. 1).

An islet is defined as a union of IP address intervals
or a list of machine names. All islet configurations are
stored in a configuration file. In a second part of this
file the network connection (bandwidth and latency)
between each pair of islet is specified.

The common characteristics of the nodes in an islet
are described by a random variable. We provide two
types of distributions for describing this random vari-
able: Gaussian or uniform. For instance, we may specify
that each node in a given islet has a network bandwidth
chosen uniformly in the interval [100,500] Mbit/s and
also that the latency is chosen using a Gaussian distri-
bution with a mean of 10 ms and a standard deviation

3
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Islet 1

100 Mbit/s
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Figure 1. Islets logical view

of 5 ms. In order to ensure the reproducibility of a given
setting, it is possible to use a fixed seed for drawing the
random numbers in the configuration of each islet.

4. New Features

In the first version of Wrekavoc [2] there was a
gap between the intended semantic of the configuration
file and the actual implementation. Two main problems
needed to be addressed. First, the memory limitation
was only limited to the per process usage and the
network regulation only worked well between nodes
within the same islet.

We now show how we have addressed these different
points.

4.1. Real memory degradation

The memory limitation was done by restricting the
maximum memory each process can allocate. Therefore,
the total amount of memory on a given host was not
restrained since several processes could allocate the
maximum amount up to the physical memory size.

In this new version, in order to limit the total size
physical memory to a given target size S now uses
the POSIX system calls mlock and munlock to
pin physical pages to memory. These pages are then
inaccessible to the application and thus constrain the
physical memory.

4.2. Adding gateways for improved network
regulation and routing

The network degradation within an islet has suc-
cessfully been evaluated and validated in [2]. However
between two islets the degradation was not correct
when several communication streams use the same
logical inter-islet link. In this case the degradation was
performed by the sending and receiving node. Hence,
each pair of such nodes were not aware of other
communications between different pairs. The emulation
worked as if there were as many inter-islet links than
pairs of processors between the islets.

To solve this problem, we have dedicated, for each
islet, a node that acts as a gateway. This gateway is
responsible to forward TCP packets from one islet to
another by sending these packets to the corresponding
gateway. Gateways regulate bandwidth and latency us-
ing TC in the same way as for regular nodes. This allows
complex topologies between islets where some islets
are directly connected and some are not. We have im-
plemented a standard routing protocol1 for forwarding
packets between islets.

5. Validation

5.1. The realism issue

An experimental tool such as a simulator, an emulator
or even a large-scale environments always provides an
abstraction of the reality: to some extent, experimental
conditions are always synthetic. Therefore, the question
of realism of the tools and the accuracy of the measure-
ments is of extreme importance. Indeed, the confidence
in the conclusions drawn from the experiments greatly
depends on this realism. Hence, a good precision of the
tools is mandatory to perform high quality experiments,
to be able to compare with other results, for repro-
ducibility, for calibration to a given environment, for
possible extrapolation to larger settings than the given
testbed, etc. However, a brief look at the literature shows
that concerning simulators [11], [12] or emulators [6],
[8], the validation of the proposed tools as a whole is
seldomly addressed. Concerning Wrekavoc, we perform
this validation here.

5.2. Inter-islet network

The test consists in measuring the bandwidth that
is observed for network streams between two nodes

1. We use the RIP (Routing Information Protocol) that sets up
routes by minimizing the number of hops
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Figure 2. Inter-islet aggregated bandwidth when adding streams (shown in different colors). Node
bandwidth: 40 Mbit/s, Inter-islet link: 100 Mbit/s.

of different islets. The expected behavior is that the
aggregated bandwidth should increase linearly until it
reaches the bandwidth of the inter-islet link. Beyond
that point, the inter-islet bandwidth is shared between
the different communicating streams. Thanks to TCP
this sharing must be fair. This means that the amount
of allocated bandwidth must roughly be the same for
every stream. In Fig. 2, we present one such test. Here
each individual node can send data at 40 Mbit/s and the
inter-islet link has a bandwidth of 100 Mbit/s.

We see the difference between the previous ver-
sion of Wrekavoc. In Fig. 2(a), corresponding to the
previous version, each stream behaves independently
without considering the limitation of the inter-islet link
(as described in section 4.2). With the current version
(Fig. 2(b)) the behavior respects the experimental hy-
pothesis with a margin of error less than 10% and thus
we may conclude that Wrekavoc enables a fair sharing
of the bandwidth.

The second set of benchmarks (not shown as a graph)
consists in measuring the bandwidth on a chain of islets.
The goal is to see what happens in the presence of a
bottleneck. To evaluate that, we have linked 4 islets in a
chain. Within each islet one node can send data at 100
Mbit/s. The link between Islets 1 and 2 has a bandwidth
of 20 Mbit/s the other links have higher bandwidth. We
have measured the bandwidth used on each link when
a node communicates from Islet 1 to Islet 4. We have
seen that on each link the bandwidth does not exceed 20

Mbit/s with less than 5% of error. Here again, Wrekavoc
behaves as desired.

The last set of benchmarks we have performed con-
sists in measuring what happen if streams originating
from different islets arrive at the same islet. Here again
we observe that independently from the number of
incoming streams the sum of the bandwidths for each
stream never exceeds the configured bandwidth of the
middle islet.

5.3. Validation with real applications

We validate the realism of Wrekavoc by comparing
the behavior of the execution of a real application
on a real heterogeneous environments and the same
application using Wrekavoc. Such validation uses all
the features of Wrekavoc (Network, CPU and memory
degradation).

The heterogeneous platform we used was composed
of 12 PC linked together by a Gbit switch. The char-
acteristics of the nodes are described in Table 1. All
nodes have the same Linux distribution and kernel
version and the same version of MPI (OpenMPI 1.2.2).
We have huge heterogeneity in terms of RAM, MIPS,
clock frequency, network card, type and architecture of
processors.

Unfortunately, it has not been possible to perform
experiments on a larger heterogeneous cluster. To the
best of our knowledge, a heterogeneous environment
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ID Proc RAM System Freq HDD HDD Network card MIPS
(MiB) (MHz) type (GiB) (Mbit/s)

1 P. IV 256 Debian 2.6.18-4-686 1695 IDE 20 100 3393
2 P. IV 512 Debian 2.6.18-4-686 2794 IDE 40 1000 5590
3 P. IV 512 Debian 2.6.18-4-686 2794 IDE 40 1000 5590
4 P. III 512 Debian 2.6.18-4-686 864 IDE 12 100 1729
5 P. III 128 Debian 2.6.18-4-686 996 IDE 20 100 1995
6 P. III 1024 Debian 2.6.18-4-686 498 SCSI 8 1000 997
7 P. II 128 Debian 2.6.18-4-686 299 SCSI 4 1000 599
8 P. II 128 Debian 2.6.18-4-686 299 SCSI 4 100 599
9 P. II 128 Debian 2.6.18-4-686 298 SCSI 4 100 596
10 P. II 64 Debian 2.6.18-4-686 398 IDE 20 100 798
11 P. IV 512 Debian 2.6.18-4-686 2593 IDE 40 1000 5191
12 Dual 2048 Debian 2.6.18-4-amd64 1604 IDE 22 1000 3211

Opteron 240 and 3207

Table 1. Description of the heterogeneous environment

with the desired characteristics (heterogeneity, scale,
reproducible experimental conditions) that could be
used to calibrate Wrekavoc against it is not available.
For instance experiments on Planet-Lab are usually
not reproducible and Grid’5000 is not heterogeneous
enough.

We have compared the execution of different applica-
tions on the heterogeneous cluster described above and
on Grid’5000 clusters heterogeneized with Wrekavoc.

5.3.1. Calibration. Due to the fact that the modeling
of CPU in Wrekavoc uses frequency scaling (with a
small set of possible frequencies), it has not always been
easy to calibrate Wrekavoc to obtain a behavior similar
to the above heterogeneous environment. Sometimes
it has required some fine tuning of the configuration
depending of the tested application. The calibration
issue is a well known problem of emulation. We think
that despite the good results presented here that we can
improve this aspect of Wrekavoc. However, since the
goal of this paper is to asses the realism of Wrekavoc,
calibration problems are left for future work.

5.3.2. Fine grain without load balancing. The first
set of experiment we performed aims at showing what
happen when no load balancing is achieved on a hetero-
geneous cluster. In this case, on the real environment,
faster nodes will finish their computation earlier and
will be idle during some part of the computation. We
wanted to see how Wrekavoc is able to reproduce this
behavior.

The application we used is a parallel sort algorithm
implemented within the parXXL [18] library. The al-
gorithm used is based on Gerbessiotis’ and Valiant’s
sample sort algorithm [19].

Fig. 3 shows the wall-time of each node for the
heterogeneous cluster and two configurations.

In order to see the difference we performed 5 sorts of
20,000,000 doubles (64 bits) in a row. Results show
that Wrekavoc is able to reproduce the reality with a
good accuracy as both configurations are close upper (or
under) approximation. In the worst case, the Wrekavoc
configuration results have a difference of 8% from the
real platform.

In Fig. 4, we show the wall-time for the first
node when varying the problem size from 500,000 to
20,000,000 of doubles. We see here, that Wrekavoc
has some difficulties in correctly emulating the reality
for small size problem. However, for large sizes, when
the running time is above 20 seconds, the estimation is
very realistic with an error margin below 10%.

5.3.3. Static load balancing. Here we have tested
applications that perform a static load balancing at the
beginning of the application according to the speed of
the processors and the amount of work to perform. We
have implemented two algorithms that perform parallel
matrix multiplication on heterogeneous environments.
The first algorithm from Beaumont et al. [20] is based
on a geometric partition of the columns on the proces-
sors. The second from Lastovetsky et al. [21] uses a
data partitioning based on a performance model of the
environment.

In Fig. 5(a), we show the comparison between the
CPU, communication and synchronization time for
the Beaumont et al. algorithm for matrix sizes of
1000. Nodes are sorted by CPU time. We see that
the Wrekavoc behavior is very close to the behav-
ior when using the heterogeneous cluster. Also, the
proportions of the timings (CPU, communication and
synchronization) are conserved. In order to discuss
the differences between the two graphs of Fig. 5(a)
quantitatively, we plot the relative error in Fig. 7(a).
More precisely, in this graph we show the sum of the
relative errors of all the timings (CPU, communication
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Figure 3. Execution walltime for the sort application on the real and emulated heterogeneous cluster.
Averages over 10 runs.

and synchronization) of the graphs of Fig. 5(a): for
each x value i and each timing (CPU, communication
and synchronization) we compute the relative error
100×abs(ch(i)−cw(i))/Ch(i) where ch(i) (resp. cw(i))
is the value of the timing for the heterogeneous (resp.
Wrekavoc) case and Ch(i) is the sum of the value of all
the timings on the heterogeneous cluster. In the figure,
the different colors then represent the contributions of
the three resources.

We see that the overall relative error is always below
10%. The worst case is for processor 5 for which the
error is mainly due to the synchronization time while
in absolute, this timing is the very small (less than 0.6
seconds).

In Fig. 5(b), we show the comparison between the
CPU, communication and synchronization time for the
Beaumont et al. algorithm for varying matrix size on
a fixed node. We see that the Wrekavoc behavior is
very close to the behavior when using the heteroge-
neous cluster. The only problem concerns an increasing
shift of the timings when matrix size increases. More
precisely, in Fig 7(b), we stack the contribution of the
relative error between Wrekavoc and the heterogeneous
cluster of all the timings (CPU, communication and
synchronization) of the graphs of Fig. 5(b). We see
that the overall relative error is always lower than 10%.
Moreover, we see that the communication contribution
to the error is marginal (less than 0.6 %). This means
that here, Wrekavoc was able to emulate the communi-
cation with a great precision.

In Fig. 6(a) and 6(b), we present the same measure-
ments as in Fig. 5(a) and 5(b) but for the Lastovetsky et
al. algorithm. Here again we see that the Wrekavoc is
very realistic with again a small shift in execution time
when the matrix size increases. In Fig 7(c) we stack
the contribution of the relative error between Wrekavoc
and the heterogeneous cluster of all the timings (CPU,
communication and synchronization) of the graphs of
Fig. 6(a). From this figure, we can see that the relative
error is very low in general (lower than 6%). There is
one exception for processor 5 where the error is a little
bit larger than 10%. The relative error of the graphs
of Fig. 6(b) are shown in Fig. 7(d). Results show that
these errors are always lower than 8% and that the CPU
and communication time do not contribute a lot to these
errors showing that Wrekavoc is doing a good job for
emulating the heterogeneous hardware.

In conclusion to this section, we see that Wrekavoc
precisely emulates the heterogeneous cluster (within
10%) in the general case. Moreover, most of the relative
error is caused by synchronization. The problem might
lay in the emulation of the idle times of processes. This
is linked to the way they are scheduled by Wrekavoc.

5.3.4. Dynamic load balancing for iterative com-
putation. Here, the dynamic load balancing strategy
consists in exchanging some workload at execution time
in function of the progress in the previous iteration. The
program we have used solves an advection-diffusion
problem (kinetic chemistry) described in [22]. Here, the
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Figure 4. Comparison of node runtime (CPU, communication and synchronization) for the static load
balancing application (matrix multiplication – Beaumont et al. algorithm). For each subfigure, Wrekavoc
is on the left and the heterogeneous cluster is on the right

load corresponds to the number of lines of the input
matrix that is given to a particular process.

In Fig. 8 we show the evolution of the load balancing
of this application. At each iteration, we have monitored
the number of lines hold by each processor. We plot this
number during the whole execution of the application
for a problem on a surface of 300 columns and 400
lines. There are 40 iterations. The results show that the
evolution of the load balancing using Wrekavoc (right)
or the heterogeneous cluster (left) are extremely similar.
Processor 1 (the fastest), holds an increasing amount of
load in both situation. More interestingly, processor 2
starts to have a very low load and then its load increases.

Moreover, processor 7, the slowest one, is the least
loaded at the end.

In Fig. 9, we show the relative error between the two
graphs of Fig. 8. More precisely, for the eight processors
involved in these experiments we computed the relative
error as:

100× abs(nw(i)− nh(i))/nh(i) for i ∈ [1, 40]

(where nh(i) (resp. nw(i))is the number of lines treated
by the processor for the heterogeneous cluster (resp.
Wrekavoc case) at iteration i. Then, for each iteration,
we plot the maximum the maximum, minimum and
average value. We see that the error never exceeds 15%
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Figure 5. Comparison of node runtime (CPU, communication and synchronization) for the static load
balancing application (matrix multiplication – Lastovetsky et al/ algorithm). For each subfigure, Wrekavoc is
on the left and the heterogeneous cluster is on the right

on maximum and 7% on average. Moreover the average
error relatively stable after 30 iterations.

In summary, the predictability of the behavior of the
emulated application is very high.

6. Conclusion

Nowadays computing environments are more and
more complex. Analytic validation of solutions for these
environments are not always possible or not always
sufficient.

In this paper, we present the enhancement and the val-
idation of Wrekavoc, a tool for performing experimental
test, benchmarks and comparison of solutions designed
for distributed and heterogeneous environments.

Other than parts of our community, we take validation
and calibration of models and tools as real scientific
challenge. We are convinced that the confidence in
the results that are found by means of such tools
(simulators, emulators or real-scale platforms), is very
low without an extensive study of their realism.

We have validated Wrekavoc using micro-
benchmarks (for inter-site communication) and by
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Figure 6. Relative errors. Contribution of each of the timings (CPU, communication and synchronization.)

comparing the execution of several real applications
on a real environments to a cluster running Wrekavoc.
The results obtained in the experiments concern
all the features of Wrekavoc (network regulation,
memory limitation and CPU degradation). Results
show that Wrekavoc is realistic and has a very good
reproducibility. Moreover, the tool provides emulations
that are not tied to the real host platform: at the
application/user level, different architectural features
(e.g.processor architecture, memory bandwidth, cache,
instruction sets, etc.) are correctly emulated. But
evidently, still it could be improved.

Furthermore, despite the fact that the experiment

has been done on an average-scale environment we
are confident that the similar results would have been
possible on a larger setting. Unfortunately, to the best
of our knowledge, such large-scale heterogeneous envi-
ronments with reproducible experimental conditions do
not exist.

For us it was extremely important to first be able
to emulate a static heterogeneous platform accurately,
before even trying to emulate dynamic features. Future
work is directed towards the ease of the calibration of
the environment, a better emulation of multi-threaded
programs and to new modeling features such as node
volatility and dynamic load.
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Figure 7. Comparison of the evolution of the load-balancing for executing the advection diffusion application
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