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Abstract. In this paper we study the general problem of parallel data redistribution over a network.
Given a set of communications between two parallel machines interconnected by a backbone, we wish
to minimize the total time required for the completion of all communications assuming that com-
munications can be preempted and that preemption comes with an extra cost. Our problem, called
k-Preemptive bipartite scheduling (KPBS) is proven to be NP-Complete. Moreover we prove that ap-
proximating KPBS problem within a ratio number smaller that 4

3
is impossible unless P = NP. In spite

of this negative result, we study a lower bound on the cost of KPBS problem in terms of its parameters,
and we propose an approximation algorithm with ratio 2 and fast heuristics.

1 Introduction

With the emergence of grid computing many scientific applications use code coupling technologies to
achieve their computations where parts of the code are distributed among parallel resources interconnected
by a network. Code coupling requires data to be redistributed from one parallel machine to another. For
instance the NxM ORNL project [1] has for objective to specify a parallel data redistribution interface and
CUMULVS [2] (which uses MxN) supports interactive and remote visualization of images generated by a
parallel computer. In this paper we concentrate on the scheduling of the messages when a parallel data
redistribution has to be realized on a network, called a backbone. Two parallel machines are involved in the
redistribution : the one that holds the data and the one that will receive the data. If the parallel redistribution
pattern involves a lot of data transfers, the backbone can become a bottleneck. Thus, in order to minimize
the parallel data redistribution time and to avoid the overloading of the backbone it is required to schedule
each data transfer.

In this paper, we revisit the problem of packet switching (in wavelength-division multiplexed (WDM)
optical network [3–7] or in satellite-switched time division multiple access (SS/TDMA) [8–10]) in the context
data redistribution.

Data redistribution has mainly been studied in the context of high performance parallel computing [11–
13]. In this paper we study a generalization of the parallel data redistribution. Indeed, contrary to some
previous works that only deal with block-cyclic redistribution [14, 13], here, no assumption is made on the
redistribution pattern. Moreover, contrary to other works which assume that there is no bottleneck [11, 12],
we suppose that the ratio between the throughput of the backbone and the throughput of each of the n
nodes of the parallel machines is k. Hence, no more than k communications can take place at the same time.
We study the problem for all values of k. We focus on the case k < n (the backbone is a bottleneck) whereas
the case k ≥ n has been tackled in [11, 12].

The contribution of this paper is the following. We prove that the problem of scheduling any parallel data
redistribution pattern is NP-Complete for any value of k (< n) and that approximating our problem (called
KPBS) within a factor smaller that 4

3 is impossible unless P = NP. We exhibit a lower bound for the number
of steps of the redistribution as well as a lower bound for the sum of the duration of each step and prove
that both lower bounds are tight. Next, we propose two algorithms: a pseudo-polynomial approximation
algorithm with ratio 2, and polynomial approximation algorithm with ratio 2. Finally, we study simple and
fast heuristics that achieve a good average performance.
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2 The Problem

2.1 Modelization of the Problem

We consider the following heterogeneous architecture made of two clusters of workstations G1 and G2

connected together by a backbone of throughput D. Let n1 be the number of nodes of G1 and n2 be the
number of nodes of G2. All the nodes of the first cluster have a throughput d1 and the nodes of the second
have a throughput d2.

Let us consider a parallel application that must execute the first part of its computation on G1 and the
second part on G2. This is the case where an application is made of two parallel components such that each
code is only available (for security/license reason) on one cluster.

During the execution of the application parallel data must be redistributed from the first cluster to the
second one.

We assume that the communication pattern of the redistribution is computed by the application. This
pattern is modeled by a traffic matrix T = (ti,j)1≤i≤n1,1≤j≤n2

, where ti,j represents the amount of information
that must be exchanged between node i of cluster G1 and node j of cluster G2.

For a given traffic pattern and for a particular architecture our goal is to minimize the total transmission
time. In order to do this, we need to optimize the scheduling of the messages such that the available bandwidth
is used without generating congestion. In this work, we do not rely completely on the network transport layer
(i.e. TCP). Indeed, due to the control of the flow, TCP tends to use only a fraction of the total available
bandwidth when congestion occurs. Here, thanks to our knowledge of the underlying architecture, a large
part of the congestion control is performed at the application level..

Let us consider the constraints relative to the communications. A transmitter (resp. receiver) cannot
transmit (resp. receive) more than one message at a time (1-port model). However, we allow several mes-
sages between different transmitters and receivers to be transmitted simultaneously as long as the backbone
is not saturated. A parallel transmission step is a communication phase in which there can be simultaneous
transmissions between several transmitters and receivers. We denote by k the maximum number of simulta-
neous transmissions that can take place during one step. This number depends on the number of nodes (n1

and n2) of each cluster as well as on the bandwidth of the network card of each node (d1 and d2) and on the
bandwidth of the backbone (D). We denote by d the speed of each communication.

For instance let us assume that n1 = 200, n2 = 100, d1 = 10Mbit/s, d2 = 100Mbit/s and D =
1GBbit/s(D = 1000Mbit/s). In that case, k = 100 because G1 can send 100 outgoing communications
at 10 Mbit/s generating a total of 1 Gbit/s aggregated bandwidth (which is supported by the backbone) and
each network card of G2 can receive the data at d =10 Mbit/s.

A common approach to minimize the overall transmission time is to allow preemption, i.e. the possibility
to interrupt the transmission of a message and complete it later. In practice, this involves a non-negligible
cost, called set-up delay and denoted here by β, which is the time necessary to start a new step.

2.2 Formulation of the Problem

Let T be a traffic matrix, k be the maximum number of communications at each step, β be the startup
delay and d be the speed of each communication.

We can normalize the problem by d and β as follows: (1) The traffic matrix T , can be replaced by the
matrix Q = (qi,j) = (

ti,j

d )1≤i≤n1,1≤j≤n2
that represents the communication times for each messages . (2)

The matrix Q can be replaced by the matrix M = (mi,j) = (
qi,j

β )1≤i≤n1,1≤j≤n2
that represents the fraction

of setup delay required for sending each messages.
In the following we will always consider the normalized problem (β = 1).
The matrix M can be represented by a bipartite graph G = (V1, V2, E) and a positive edge-weight function

w : E → Q. Each node of cluster G1 (resp. G2) is represented by a node of V1 (resp. V2). Hence, |V1| = n1

and |V2| = n2. The weight of an edge between node i and j is equal to mi,j .
We use the 1-port model for the communication and at most k communications can occur during one

step. Hence, a communication step is a weighted matching of G with at most k edges. The weights refer to
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preemption. We denote the matching corresponding to a communication step by a valid weighted matching
(for the remainding, a valid weighted matching contains at most k edges).

We call this problem k-Preemptive bipartite scheduling (KPBS), formally defined as follows:
Given a weighted bipartite graph G = (V1, V2, E, w) where w : E → Q , an integer4 k ≥ 2 find a collection

{(M1, W1), (M2, W2), . . . , (Ms, Ws)} of valid weighted matchings such that:

1. Let wi be the edge weight function of each matching Mi. It must respect the following inequalities: for
any e ∈ E,

∑s
i=1 wi(e) ≥ w(e). If e 6∈ Mi then wi(e) = 0.

2. For any 1 ≤ i ≤ s, matching Mi has at most k edges (|Mi| ≤ k) and its cost is equal to the rational
number Wi = maxe∈Mi

wi(e).
3. (

∑s
i=1 Wi) + s is minimized. In the normalized form of the problem, each step has a cost equal to Wi

plus 1 for the setup cost.

In the remainder of this paper, note that for any solution S of KPBS, if the cost of S is α + s, the
number of steps is s and the useful transmission cost equals α. See Figure 1 for an example.
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Fig. 1. An example for KPPS problem (k = 2). The cost of the solution is 8 + 3 = 11

3 Complexity Results

This problem has already been proven NP-complete for the particular case where k ≥ min(n1, n2) [15,
10]. We prove that it remains NP-complete for any fixed k ≥ 2 (with a different reduction than in [15, 10]).

Theorem 1 Let k ≥ 2 be a fixed integer. KPBS is NP-complete.

Moreover, we improve the result in [12]. We prove that one cannot approximate the problem KPBS within
a factor smaller than 4/3 if P 6= NP.

Theorem 2 If P 6= NP, there is no polynomial time approximation algorithm for the problem KPBS with
an approximation ratio smaller than 4/3.

Proof. Theorem 1 and 2 are proven in [16].

4 Lower Bounds

Before giving a lower bound for the optimal solution, we give some graph notations. We define the weight
w(v) of a node v of G to be the sum of weights of all edges incident to vertex v. We denote the maximum of
w(v) over all vertices by W (G). Let P (G) be the sum of the weights of all edges of graph G. We denote the
maximum degree of the bipartite graph G by ∆(G), its number of edges by m(G) and its number of vertices
by n(G).

4 the case k = 1 is not interesting: the backbone is saturated by one communication
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Proposition 1 Let G = (V1, V2, E, w) be a weighted bipartite graph. Let k be an integer. The cost of the
optimal solution for the instance 〈G, k, β〉 of KPBS is at least η(G) = ηd(G) + ηs(G) where

ηd(G) = max

(

W (G),

⌈

P (G)

k

⌉)

and ηs(G) = max

(

∆(G),

⌈

m(G)

k

⌉)

Proof. ηs(G) is a lower bound for the number of steps. The first term of the maximum accounts for the fact
that two edges incident to the same node cannot appear in the same step and the second term for the fact
that a step contains at most k edges. ηd(G) is a lower bound for the useful transmission cost and is obtained
similarly. The total cost is therefore minimized by ηd(G) + ηs(G). ut

Next, we study the quality of these lower bounds. The remainder of this section is to prove that there are
polynomial time algorithms to optimize the number of steps (see Proposition 3) or the useful transmission
cost (see Proposition 2).

Proposition 2 Let G be a weighted bipartite multigraph. Then G can be decomposed such that the total
transmission cost is ηd(G).

Proposition 3 Let G be a weighted bipartite multigraph. Then G can be decomposed in ηs(G) valid weighted
matchings in polynomial time.

Propositions 3 and 2 are equivalent. Indeed by setting all the weights to 1, Proposition 2 minimizes the
number of steps because, in that case it is equal to the total transmission cost. On the contrary, by splitting
all the edges into edges of weight 1, Proposition 3 gives a solution that minimizes the total transmission cost.
We present a similar polynomial-time algorithm for Proposition 3 that will be used later.

The previous propositions can be seen as a consequence (see [17]) of a coloration theorem (given in [18]
pages 132–133). Moreover, a proof of proposition 3 can be found in [9]. However, an other proof can be found
in [16].

The decomposition is achieved in O(n(G)3/2 × m(G)3). The authors of article [8] provide a polynomial
time algorithm that proves Proposition 2 for matrices, and shows that the number of steps is bounded by a
polynomial in n(G). We use it in section 5.

We separately studied ηs and ηd, what about η? There are quite simple graphs [17] (with all the edges
having the same weight) such that η is not reached, and we can exhibit class of graphs (for instance graphs
with edges having the same weight and with k|m(G)) for which it is.

5 Algorithms

The following algorithm approximates KPBS with a constant ratio.

Algorithm 1

Input: A weighted bipartite graph G = (V1, V2, E, w) and an integer k
a rational number α

Output:A set of valid weighted matchings.

1. Split every edge e of G into dw(e)
α e edges having each a weight

equal to α, which leads to a multigraph H .
2. Find ηs(H) valid weighted matchings whose union is H .
3. Every matching represents a communication step of length α.
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In each matching of the solution the edges have the same weight, and in order to evaluate the solution,
we decide that all steps have the same length α, where α is a constant that will be fixed to 1. The algorithm
splits each edge in edges of weight α (it is an idea used in [11]) to make a multigraph H , then we find a
solution such that the number of matchings is minimum (thanks to Proposition 3).

Its complexity is O
(

n(H)3/2 × m(H)3
)

= O
(

n(G)3/2 × m(G)3 × W (G)3
)

and therefore pseudo-polyno-
mial since the running time of Algorithm 1 depends linearly on the weights of G.

Proposition 4 Let cost(G, α) be the cost of the solution given by Algorithm 1. cost(G, 1) ≤ 2 × η(G).
Therefore, Algorithm 1 is a 2-approximation algorithm.

Let us first consider a particular class of graphs such that the parameter ηs is equal to 1. Let G be a graph
such that ηs(G) = 1. By definition, we have ∆(G) = 1 and m(G) ≤ k. Thus, the scheduling is composed of
1 step and the cost of this scheduling corresponds to the lower bound. For the remainder of the proof, we
only consider graphs G such that ηs(G) ≥ 2.

Proof of Proposition 4: Assume first, that the weights of the edges of G are multiple of α. The definitions of
ηs and ηd imply α × ηs(H) ≤ ηd(G) + α and therefore:

cost(G, α) = α × ηs(H) + ηs(H) ≤ ηd(G) +
1

α
× ηd(G) + α + 1 (1)

Since only graphs G such that ηs(G) ≥ 2 are considered, we have η(G) ≥ ηd(G) + 2. From equation 1,
we get

cost(G, 1) ≤ 2ηd(G) + 2 ≤ 2η(G) − 2 (2)

Therefore, the approximation ratio is 2 with α = 1.
When the weights are not multiple of α, they are rounded up to the first multiple of α, to make a graph

G
′

, then the previous algorithm is applied to G
′

. So, from equation 1, we get

cost(G, α) = cost(G′, α) ≤ ηd(G
′) +

1

α
× ηd(G

′) + α + 1 (3)

We compare η(G) to η(G
′

). We have ηs(G
′

) = ηs(G), but ηd(G
′

) differs:

ηd(G
′

) = max

 

W (G
′

),

&

P (G
′

)

k

’!

(4)

≤ max

„

W (G) + (α − 1)∆(G),

‰

P (G) + (α − 1)m(G)

k

ı«

≤ ηd(G) + (α − 1) × ηs(G) (5)

Hence, from in-equations 3 and 5 we get:

cost(G, 1) ≤ ηd(G′)(1 +
1

α
) + α + 1 ≤ 2η(G) + 2(1 − ηs(G)) (6)

Since we only consider graphs G such that ηs(G) ≥ 2, Algorithm 1 is a pseudo-polynomial time algorithm for
KPBS with an approximation ratio 2. ut

We use now this algorithm to describe a polynomial-time algorithm for KPBS with an approximation ratio 2.
Given a graph G, we evaluate an expression depending on P (G) that represents roughly the average cost of a step
(expressed in the number of set-up delays), then depending on the result of its comparison with the number of set-up
delays, we branch on the previous algorithm or on another one.

When γ ≤ 1 all the weights of G are bounded, therefore Algorithm 1 is polynomial. Indeed W (G) ≤ P (G) ≤

k(n2(G) + n(G) + 1). This yields to a complexity of O(kn15/2(G) × m3(G))
We need to determine the approximation ratio in the second case (when executing line 3). The paper [8] gives

(with a matrix formulation) a polynomial algorithm for optimizing the useful transmission cost with in the worst
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Algorithm 2

Input: A bipartite graph G.
Output:A set of valid weighted matchings.

1. Calculate γ = P (G)

k×(n(G)2+n(G)+1)

2. If γ ≤ 1, branch on Algorithm 1 with G and α = 1 as input
3. Otherwise, branch on the algorithm which find the valid weighted

matchings such that the useful transmission cost is minimized

case a number of steps lower than (n(G)2 + n(G) + 1). For this algorithm, we have: (cost(G) being the cost of the
solution given by Algorithm 2, when executing line 3).

cost(G) ≤ ηd(G) + (n(G)2 + n(G) + 1) ≤ ηd(G) +
P (G)

k
≤ 2 × η(G)

Therefore, we can deduce that:

Theorem 3 There is a polynomial-time 2-approximation algorithm for KPBS.

6 Heuristics

Algorithm 2 has a large complexity. In this section, we concentrate on fast heuristics that we have studied in
practice.

Heuristic on weights

Input: A bipartite graph G.
Output:A set of valid weighted matchings.

1. Find a maximal matching.
2. Keep only the k (or less if there are less than k edges) edges

whose weights are the biggest.
3. Set all the weights of the matching equal to the lowest one.
4. Subtract the matching from G.
5. Loop until there is no more edge left in G.

Here are two heuristics that appear to work well in practice (a heuristic on weighs and a heuristic on degrees).
The heuristic on degrees is the same as the heuristic on weights except that line 2. is changed into “2. Keep only the
k (or less if there are less than k edges) edges with highest degrees.”.

Complexity: We use the Hungarian method of complexity O(m(G) × n(G)1/2) for finding a maximum cardinality
matching in a bipartite graph. For both heuristics, at each step, at least one edge is removed from G. Therefore, the
complexity of both heuristics is O(m(G)2 × n(G)1/2) which is better than the complexity of algorithm 2.

Experiments: We have tested each heuristic (with k fixed) on a sample of 100 000 random graphs (the number of
edges, the edges, and finally the weights were chosen randomly with a uniform distribution). We made a difference
between lightly and heavily weighted graphs. Small weights were taken between 1 and 20, whereas large weights were
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taken between 1 and 100 000. The result of a heuristic is calculated as the solution cost divided by the lower bound
η. The plots show the average and the maximum calculated over the samples.

For these tests, the maximum is always below 2.5, even 1.8 for small weights, and the average is always below 2,
and even 1.3 in case of large weights. Unfortunately, we didn’t succeed into giving an approximation ratio for these
two heuristics.

We explain the convex shape of the plots as follows:

– when k = 1 the two heuristics obtain the optimal solution which consists in one communication per steps;

– when k is greater than 2 and lower than a certain value (close to n/2), the quality of the solution degrades
(compared to the lower bound); We believe that this is due to the fact that, at each step, the number of valid
matchings increases;

– When k is greater than n/2 the quality of the solution tends to improve. At each stage of the two heuristics the
choice of valid matchings decreases, therefore the heuristics are less likely to select bad valid matchings.
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7 Related Work

Up to our knowledge, there is no work on the KPBS problem in its generality (n1 6= n2 and k can have any value,
etc.).

This problem partially falls in a field originated by packet switching in communication systems for optical network
called wavelength-division multiplexed (WDM) broadcast network [3–7].

The problem of minimizing the number of steps is studied in [9, 4], and the problem of minimizing the total cost
is studied in [5].

In [3] and in [6], the author consider a version of the KPBS problem where the number of receivers is equal to the
number of messages that can be transmitted at the same time (k = n2) and where the set-up delay can be overlapped
by the communication time (In [6] authors also assume that the size of all messages are the same). In that case, a
list-scheduling algorithm is proven to be a 2-approximation algorithm in [3].

The case where the backbone is not a constraint (k ≥ min(n1, n2)) has been studied in [11, 12] and it is known
as the preemptive bipartite scheduling (PBS). PBS was proven to be NP-complete in [15, 10]. In [12], two different
polynomial time 2-approximation algorithms for PBS have been proposed and in [11], an improvement of this result
is given.

In the context of block cyclic redistribution several works exist [13, 14]. In this case the communication pattern
is not arbitrary and and the backbone is not a constraint.
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8 Conclusions

In this paper we have formalized and studied the problem (called KPBS ) of redistributing parallel data over a
backbone. Our contribution is the following. We have shown that KPBS remains NP-Complete when k is constant.
We have shown that approximating the KPBS problem within a ratio number smaller that 4

3
is impossible unless

P = NP. We have studied lower bounds related to KPBS. We have proposed a polynomial time approximation
algorithm with ratio 2. We have studied two fast and simple heuristics that have good properties in practice.

Our future work is directed towards studying the problem when the throughput of the backbone varies dynamically,
when the redistribution pattern is not completely known in advance or when the network cards on each cluster are
not all identical. We would also like to perform real tests on real architectures in order to compute a realistic value
of the startup time and to be able to build a library for parallel redistribution.
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