
Modeling Resubmission in Unreliable Grids: the
Bottom-Up Approach

Vandy Berten1 and Emmanuel Jeannot2

1Université Libre de Bruxelles 2INRIA, LORIA

Abstract. Failure is an ordinary characteristic of large-scale distributed environ-
ments. Resubmission is a general strategy employed to cope with failures in grids.
Here, we analytically and experimentally study resubmission in the case of random
brokering (jobs are dispatched to a computing elements with a probability propor-
tional to its computing power). We compare two cases when jobs are resubmitted to
the broker or to the computing element. Results show that resubmit to the broker is a
better strategy. Our approach is different from most existing race-based one as it is a
bottom-up one: we start from a simple model of a grid and derive its characteristics.

1 Introduction

Computational grids such as EGEE [1] or TeraGrid [2] are routinely used for executing sci-
entific jobs. However, such environment are subject to failures. Indeed, a 9 months study [3]
(from Feb. 2006 to Nov. 2006) of the SEE virtual organization of EGEE shows that only
30% of jobs finished with an OK status at the first try and 10% ultimately failed. Another
study [4] covers the submission of 230 474 jobs in the the EGEE/LCG Grid during 280 days,
among which 23 208 (9.93%) failed.

In order to tackle reliability problem, the main strategy commonly employed is to resub-
mit a failed job [5–7]. There are several ways to resubmit a job. It is possible to resubmit
the job to the scheduler or to the computing element allocated to it.

To the best of our knowledge, comparing these two strategies in the context of compu-
tational grids has never been rigorously conducted. The goal of this work is therefore to
model these strategies and to provide experimental insights on when and how a strategy is
better than the other. We focus on a special kind of a grid environment directly inspired
from EGEE. Jobs are submitted to a resource broker that dispatches them to a computing
element where they are queued and treated according to their arrival date.

In general, scheduling algorithms that allocate jobs to resources assume that the arriving
time and/or the duration of the jobs are known in advance. However, such an assumption is
not always realistic (the duration of the job can only be known after its execution, and the
arrival depends on the clients hence is not always deterministic). To cope with this uncer-
tainty, we use a stochastic model where the job inter-arrival follows a Poisson law and the job
duration follows an exponential law. Therefore, the resource brokering algorithm is a random
one where each job is allocated to a computing element with a probability proportional to
its accumulated speed. Thanks to this approach, very few assumptions are required, which
leads to a general case that could easily be applied to production environments.

Moreover, to model the unreliability of the environment, we assume that each node has
a probability of failure (i.e the probability that a job is not correctly executed on this node).

2

Furthermore, to increase realism, we do not assume that this characteristic is known by the
resource broker.

The contribution of our paper is the following. First, we model the behavior of the
resubmission strategies. Second, we assess the quality of these models by comparing the
predicted values with the real ones. We show that in almost every case our models are very
precise. Last, we compare the strategies with regards to the execution time of a given set of
jobs and we are able to determine when it is better to use a given strategy. It is important to
note that our methodology is bottom-up one while most of the resent studies are top-down.
This means that in this paper we start from a simple model of a grid and try to analytically
compute the model while in the top-down approach, the model is derived from traces.

2 Related work

Modeling a grid system (waiting time, throughput, failure) has already been studied in
the literature. Concerning job duration and submission reference studies are [4] concerning
EGEE, or [8, 9] concerning different traces. Concerning modeling failures [10] covers high
performance computing systems and [11], study the Condor system.

The common methodology of all these approaches is that they tackle the problem using a
top-down approach. The top down-approach (or trace-based approach) consists in deriving
the characteristics through an analysis of the traces. This approach is very useful to derive
accurate understanding of a given setting but is limited when one change the target environ-
ment. In our approach (bottom-up) we start from a very general model of the environment
and compute analytically a model of the behavior of this environment. This study is there-
fore an attempt to bridge the gap between the two approaches (trace-based/top-down vs.
analytical/Bottom-up).

3 System, job, and resubmission models

3.1 Grid model

The model of computational grid we propose here is directly inspired from existing ones such
as EGEE [1] and has already been presented in [12]. This system is composed of N sites
(or computing elements) Ci. Each site Ci is assumed to be homogeneous: it is composed
of ci homogeneous computing nodes of speed si. The power of a computing element is the
product of the number of nodes times the speed of its node: ci × si.

A set of jobs (or tasks) is submitted to this grid. All jobs, as most of those submitted to
EGEE, are sequential (i.e. executed by a single processor).

A job is submitted to a resource broker or job dispatcher. The broker uses a random
strategy to dispatch jobs to the computing elements. Computing element Ci has a probabil-
ity γi = ci×si

C to be chosen, where C =
∑N

i=1 ci× si is the total power of the considered grid
system. Therefore, jobs are submitted to a computing element with a probability propor-
tional to its power. The intuition beyond this strategy is that the more powerful a computing
element, the more jobs should be submitted to it. Moreover, it is important to note that
this strategy is very simple to implement and does not require to estimate job duration.

3

We use a stochastic model for the submission date of jobs and their execution duration.
The arrival of jobs to the resource broker follows a poissonian distribution with an inter-
arrival rate λ. In this paper we focus on computational grids and therefore, we only consider
coarse-grain jobs, where the run-time is dominating the whole execution time (i.e. network
latencies and transfer times are neglected and we thus do not take into account the data
localization). Hence, each submitted job l is given a number of operations to perform µ` and
the execution time on computing element Ci is µ` × si. The only assumption made about
µ` is that it follows an exponential distribution of parameter µ. Each computing element is
equipped with a FIFO queue where incoming jobs are stored and wait for a node to become
available for execution.

A grid system is never perfectly reliable: job can fail due to several factors. To model that,
each node of site Ci has a probability pi < 1 to produce a faulty result. As computing this
probability is not always easy or possible, the resource broker does not use this parameter
when dispatching jobs to resources. Finally, we suppose that failures are transient: when a
job is erroneous it is possible to use again the processors that has executed this job.

3.2 Fault-tolerant strategies

In order to cope with failures, we propose 2 fault tolerant strategies. Global resubmis-
sion: when a job has failed, it is resubmitted to the resource broker. The resource broker
then chooses a new computing element using the same strategy as described above. Local
resubmission: when a job has failed on a given computing element, it is resubmitted and
queued to the same computing element.

We will consider two variants. One with a limited number of R submissions, the other
with an unbounded number of resubmissions (R = +∞). The system stops resubmission
when the job is correct or after R submissions. When R is finite, it is not guaranteed that
the job will finally be correctly executed, while when R is unbounded, it can take a very
long time for the job to be correctly executed.

4 Analysis of the strategies

We propose to study 3 metrics. The saturation load which is the load above which the system
cannot treat all the incoming jobs (the queue sizes are growing with time). The average
waiting time which is the time during which a job stays in the system. The last metric is
the failure probability which gives the chance that this job is not correctly executed.

4.1 Unlimited Global Resubmission

In this section, we assume that a job can be resubmitted an unlimited number of times. This
guarantees that, when it exits the system, a job is correct.

Saturation Load. Let ν = λ
µC be the input load (the input rate divided by the compu-

tational rate). Let α = 1
C

∑N
i=1 cipisi =

∑N
i=1 γipi be the probability that a job scheduled

by the Resource Broker fails. Let δi be what exits Ci. A part of this flow is sent back to
the resource broker, and is then added to the input rate λ. We assume that the input flow
plus the resubmitted jobs can be considered as a poissonian flow (this is an approximation,

4

but we assume that if the input flow is (much) larger than the feedback, this assumption is
reasonable). We denote by λE the effective input rate, i.e. λ plus the resubmissions.

We are here interested by non saturated systems (λE

µC < 1), which means that the in-
put flow is equal to the output flow. Indeed, the system does not saturate when the out-
put rate λE is lower than the computational rate µC. With this approximation, we have
δi(output rate of Ci) = λE

cisi

C (input rate of Ci) and λE = λ+
∑

k δkpk = λ+
∑

k λE
cksk

C pk =
λ + λE

1
C

∑
k ckpksk = λ + λEα = λ

1−α .
Therefore, if the system input flow is ν = λ

µC , we have an effective load of ν
E

= λE

µC =
λ

1−α

µC = ν
1−α . Hence, the system saturates for an input load of ν = λ

µC > 1− α.
Average traversal time of Ci (Fi). For a load of νE , we know [12] that the av-

erage queue size of computing element Ci is Qi(νE
) = E[Qi] = b

ν
E

ci+1·cci
i

ci!(1−ν
E

)2 where b =[∑ci−1
k=0

(ν
E

ci)
k

k! + (ν
E

ci)
ci

ci!
1

1−ν
E

]−1

. On computing element Ci, the average time before the

end of an execution (called Fi), with an effective load of ν
E

on Ci is then Qi(νE
)

µici
+ µ−1

i .

Hence, if the input load is ν, Fi(ν) =
Qi(

ν
1−α)+ci

µici
. Let F be the average traversal time. We

then have F =
∑N

i=1 γiFi, because γi is the probability for a job to be sent on Ci. Hence,

F = 1
C

∑N
i=1 cisiFi = 1

C

∑N
i=1

cisi

µici
(Qi(ν

1−α) + ci) = 1
µC

[∑N
i=1

(
Qi(ν

1−α) + ci

)]
.

Average waiting time. Let W be the average time before a job exits the system,
and wi the average waiting time for a job starting running on Ci (whatever the number of
rounds). We have: W =

∑N
i=1 γiwi because γi is the probability for a job to be sent on Ci,

and wi = Fi +piW because the average waiting time can be split in the average waiting time
on Ci (Fi), plus, if the job failed (with a probability pi), the same waiting time than a job
entering the system (W). We then have W =

∑N
i=1 γiFi +

∑N
i=1 γipiW = F +αW = 1

1−αF .

4.2 Limited Global resubmission

In this section, we add the constraint that a job cannot be executed more times than some
value R given by the system.

Saturation load. We first compute the probability for a job to fail. If a job failed, it
means that it failed at each rounds, included the Rth. We then have: P[failure] = P[failure at
the first round ∧ · · · ∧ failure at the Rth round] =

∏R
i=1 P[failure at the ith round] =∏R

i=1 α = αR. The probability for a job to exit the system at the end of its execution on
Ci is the probability either to succeed (1− pi), or to have already R− 1 failures before the
current round (αR−1pi). The proportion of jobs exiting Ci but sent back to the input is
then pi(1− αR−1). We can now compute the input flow: λE = λ +

∑N
k=1 δkpk(1− αR−1) =

λ + (1− αR−1)
∑N

k=1 λEγkpk = λ + (1− αR−1)λEα = λ
1−(1−αR−1)α

= λ
1−α+αR .

Therefore, we can show that if the input load is ν, we have an effective load ν
E

of ν
1−α+αR .

According to this, the system will then saturate at a load of 1− α + αR.
Average traversal time on Ci (Fi). With the same kind of arguments and notation

as for the limited resubmission, we have Fi = Qi(νE
)

µici
+ µ−1

i . Therefore, if the input load is

ν, Fi(ν) =
Qi

“
ν

1−α+αR

”
µici

+ µ−1
i . We then have F = 1

µC

[∑N
i=1

(
Qi

(
ν

1−α+αR

)
+ ci

)]
.

5

Waiting time. We will use the following notations: Wk is the average time that a job
entering the system takes to exit the system, if it can still be resubmitted k times (W0 is
then the average run-time of a job which exits the system at the end of its execution, even
if it fails). wk,i is the average time a job entering Ci takes to exit the system, if it can still
be resubmitted k times. Hence, when R submissions are allowed WR−1 is the average time
for executing a job.

Lemma 1. WR−1 = 1−αR

1−α F where F is defined in the above section.

Due to lack of space, the proof is not given. Note that we have limk→∞ Wk = W , where
W is the average waiting time for unlimited resubmission.

4.3 Unlimited local resubmission

In this scenario, a failed job is re-submitted in the queue of the computing element where it
was running. We use the same notation (λi = λγi, λ′i and δi) as in Section 4.1.

Saturation load. In order to evaluate the saturation load, we assume that the feedback
flow (δipi) is poissonian. We have λ′i = δi (the flow coming in the queue equals the flow

going out), and λi + δipi = δi. Therefore, λ′i = δi =
λi

1− pi
. The saturation load of Ci is

then 1− pi. And the saturation load of the system is then min(1− pi) = 1−max pi.
Average traversal time on Ci (Fi). With the same argument as for the global resub-

mission, we get Fi(ν) =
Qi(

ν
1−pi

)+ci

µici
.

We can see that the traversal time of the queue i is only influenced by its own failure
probability, while in the global case, this traversal time depends upon every pk (in α).

Average waiting time. We use the W and wi definition from global resubmission. We
have W =

∑N
i=1 γiwi and wi = Fi + piwi = Fi

1−pi
.

Therefore, W =
∑N

i=1 γi
Fi

1−pi
=

∑N
i=1

cisi

C

Qi(
ν

1−pi
)+ci

µsici(1−pi)
= 1

µC

∑N
i=1

1
1−pi

(
Qi(ν

1−pi
) + ci

)
.

4.4 Limited local resubmission

We can use the same argument as in the global case: the failure probability on Ci is pi
R.

The failure probability for a job entering the system is
∑N

i=1 γipi
R.

Effective load. The probability that a job exits the system is the probability that it was
correct, or had already too many rounds: P[resubmission] = 1 − P[exit] = 1 − P[succeed ∨
final failure] = 1− ((1− pi) + pi

R) = pi(1− pi
R−1).

Then the input flow of Ci is λ′i = λi +δipi(1−pi
R−1) = λi +λ′ipi(1−pi

R−1) = λi

1−pi+pi
R .

Saturation load. We can then get that the saturation load on Ci is 1− pi + pi
R. Then,

the system one is min(1− pi + pi
R) = 1−max(pi − pR

i).

For the Average traversal time of Ci (Fi), it is straightforward that Fi(ν) =
Qi

„
ν

1−pi+pi
R

«
+ci

µici
.

Average waiting time.

Lemma 2. Using the same notation as for the global resubmission we have: WR−1 =
1

µC

∑N
i=1

1−pi
R

1−pi

(
Qi

(
ν

1−pi+pi
R

)
+ ci

)
.

Due to lack of space, the proof is not given. Here again we have limk→∞ Wk = W , where
W is the average waiting time for unlimited local resubmission.

6

5 Experimental validation

5.1 Experimental settings

We have used the SimGRID simulator [13] to perform a set of experiments for measuring
the different metrics proposed in the above sections as well as the total running time for
the execution of a given number of jobs. For these simulations, the unit of time is set as
the average job run-time and hence µ = 1. We have designed 6 platforms where we have
executed 1000, 4000, 7000 and 10000 jobs. A sum-up of the six platforms is shown in Table 1.
Platforms characteristics vary in number of clusters, number of nodes per cluster, speed of
the nodes and failure probability of each nodes. The load submitted to each platform (λ)
is set such as saturated and non-saturated modes are both observed. For each platform we
use three failure probability factors of 1, 0.1 and 0.01. This is a multiplication factor that
is applied to the pi value given in Table 1. The goal of these factors to obtain 3 different
variants from low reliability (probability factor set to 0.1) to high reliability (probability
factor set to 1). For instance, with a probability factor of 0.1 the probability failure of the
4 computing elements of platform 4 switches from (0.7,0.5,0.3,0.1) to (0.07,0.05,0.03,0.01)).

Platform Nb Nodes per cluster Node speed Node proba λ
id clusters ci si of failure: pi min:inc:max

1 3 (3,2,5) (1,3,2) (0.5,0.5,0.5) 1:0.5:15

2 6 (20,30,10,30,3,50) (0.1,0.1,0.2,0.1,2,0.05) (0.5,0.4,0.5,0.2,0.9,0.1) 1:0.5:25

3 4 (6,6,6,6) (0.1,0.3,0.5,0.7) (0.1,0.3,0.5,0.7) 1:0.5:25

4 4 (6,6,6,6) (0.1,0.3,0.5,0.7) (0.7,0.5,0.3,0.1) 1:0.5:25

5 4 (6,6,6,6) (0.1,0.3,0.5,0.7) (0.9,0.9,0.01,0.01) 1:0.5:25

6 4 (6,6,6,6) (0.4,0.4,0.4,0.4) (0.99,0.99,0.01,0.01) 1:0.5:25
Table 1. Description of the different platforms used for the experiments

We have set R, the maximum number of submission from 1 (no resubmission) to 10 and
to infinity. The experiments were done by executing each setting (number of jobs, platform
id, different load and 3 probability factors) 50 times to obtain relevant average values. At
the end, a total of more than 5 millions experiments have been run.

5.2 Model validation

For each experiments, We have measured the different metrics. Here, we compare our models
with the experimental measures to assess their quality.

Saturation. When a system is not saturated, the measured average waiting time of job
does not depend on the number of submitted jobs. However, when a system is saturated,
the input load exceeds its treatment capacities, therefore, the average waiting time increases
with the number of submitted job.

For each tuple (probability factor, heuristic, platform, number of copies/maximum re-
submission, λ) we have measured how the average queue size varies when the number of job
increases from 1000 to 10000. This increase is measured by the slope of a linear interpolation.
When this slope is smaller than a threshold, there is no saturation and when this slope is
greater than a threshold there is saturation. By binary search we have found that the best

7

discriminating threshold is about 0.001 (for instance the average waiting time is 10 for a
1000 jobs and 19 for 10000 jobs). A good news is that this value does not depend on the
considered heuristic (local resubmission or global resubmission). More precisely, for global
resubmission, only 0.14% of the cases have a slope greater than 0.001 while considered by
the model as non saturated cases and 0.7% have a slope lower than 0.001 while considered by
the model as saturated cases. For local resubmission the percentage of error are respectively
0.6% and 3.9%.

From the above results, we see that models for resubmission are very accurate (local
resubmission being a little bit less accurate due to some simplification hypothesis made).

Probability of failure. The accuracy of our model for determining the probability
of failure is shown in Figure 1(a). For each case and each heuristic, we have compared
the probability of failure given by the model (pf1) and the fraction of failure we have
measured during our simulation (pf2). The error e of the model is computed as follows
e = 100 |pf2−pf1|

pf2 . In the graph of Fig. 1(a), we plot an error threshold on the x-axis and
the fraction of cases that have an error lower than this threshold on the y-axis. Hence, such
graph is similar to a cumulative distribution function (CDF) as for any value on the x-axis,
we plot the fraction of experiments that have an error lower than a given value.

Note that unlimited resubmission is not shown here as the failure probability is 0. From
this figure we see that more than 80% of the cases have an error lower than 5%. We see that
the model for global resubmission is the least accurate though still very good (more than
90% of the cases have an error lower than 15%).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40

Fr
ac

tio
n

of
 e

xp
er

im
en

ts
 u

nd
er

 th
e

er
ro

r t
hr

es
ho

ld

Error threshold (in percent)

Proba of failure error comparison

Global finite resubmission
Local finite resubmission

(a) Failure probability

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Fr
ac

tio
n

of
 e

xp
er

im
en

ts
 u

nd
er

 th
e

er
ro

r t
hr

es
ho

ld

Error threshold (in percent)

Average wait time error comparison

Global infinite resubmission
Global finite resubmission

Local infinite resubmission
Local finite resubmission

(b) Average wait time

Fig. 1. Accuracy of the model

Average waiting time. To show the accuracy of the model concerning average waiting
time, we show the same kind of graph as above: in Fig. 1(b), we plot the error threshold on
the x-axis and, on the y-axis, the fraction of experiments that have an average waiting time
error lower than this fraction. The error being computed as e = 100 |wt2−wt1|

wt2 , where wt1 is
the model prediction and wt2 is the measured value.

We see that the global resubmission model (both for the unlimited or limited case) is
very accurate, almost 90% of the experiments have an error lower than 10%. The local
resubmission model is less accurate but the unlimited case is still very good. The model for

8

the local limited resubmission is acceptable with half of the cases having an error lower than
5% and 80% of the cases having an error lower than 40%.

5.3 Comparison of the heuristics

Local vs. Global Unlimited Resubmission. Here we compare the unlimited resubmis-
sion heuristics (jobs are resubmitted to the system until they are successfully executed).
Therefore, the probability of success is 1.

In Fig. 2(a) we show the average run-time of both heuristic for the 6 different considered
platforms. We see that the local strategy never outperforms the global one. The two strategies
provide similar results when no computing element is highly unreliable (platform 1 and to
a less extent platforms 3 and 4). When the highest unreliable computing element has a
probability of failure close to 0.9 (platform 2 and 5) the global strategy is better than the
local one. When a platform has a highly unreliable computing element (such as in platform
6) the global heuristic greatly outperforms the local one.

 100

 1000

 10000

 100000

 1 2 3 4 5 6

Av
g

ex
ec

ut
io

n
tim

e

Platform ID

Local vs. global infinite resubmission comparison

Global resubmission
Local resubmission

(a) Platform view

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

0.01 0.1 1

Av
g

ex
ec

ut
io

n
tim

e

Probability factor

Local vs. global infinite resubmission comparison

Global resubmission
Local resubmission

(b) Probability factor view

Fig. 2. Comparison of the unlimited local vs. global resubmission

In Fig. 2(b) we show the average run-time of both strategies when varying the probability
factor, which is multiplicative factor of the given probability of failure of each computing
element of the platform. From that figure, we see that when the probability factor is low
(i.e. platforms are reliable), the local strategy matches the global one. However, when the
probability of failure increases (probability factor of 1), the local strategy is outperformed
by an average factor of 10.

We see that the local resubmission outperforms the global resubmission in 2.6% of the
cases when the probability factor is 1 (platform are highly unreliable), in 36.6% of the cases
when the probability factor is 0.1 and 49.1% of the cases when the probability factor is 0.01
(the platform is fairly reliable). This confirms that the less reliable the platform the less
efficient the local resubmission. In any cases, the local resubmission never outperforms the
global resubmission with a ratio better than 1.08. This means that when local resubmission
is better than global resubmission this is only by a very small margin.

Global resubmission is better than the local resubmission is explained by the fact that,
if a job fails, this means that the processor that has executed this job is not reliable and

9

therefore it is better to not reuse it for further execution and hence, it is better to resubmit
the job globally to the system.

Local vs. Global limited Resubmission. Here, we compare both approaches when
only limited resubmission is possible. When the maximum number of resubmission is al-
lowed, the probability of success is lower than 1 and is different if one use the local or global
submission. We already know that when probability of success is one (unlimited resubmis-
sion), the global strategy is better than the local strategy. Hence, here, we fix the maximum
probability of failure and see if the local strategy can, sometimes outperform the global
one. To do so, for each possible combination (platform, input load, and probability factor),
we have fixed the success threshold to the one obtained by the global strategy when one
resubmission is allowed (i.e. R = 2 and the exact success probability is α2). From Table 2,
we see that, in more than 90% of the cases the local resubmission needs more than 2 resub-
missions to exceed this success threshold of the global resubmission when R = 2. Hence, the
local resubmission needs more resubmission to achieve the same reliability. Moreover, when
the success threshold is exceeded by the local strategy, it leads to a better throughput in
only 31% of the cases. But, in these cases, when we compare the throughput of the local
strategy to the one of the global strategy we see that the improvement is only marginal (at
most 4.3%) (detailed results for all platforms are given in table 2). This means that the
local strategy sometimes requires a lot of resubmissions to match the reliability of the global
strategy. When it does so, it is at the cost of a lower throughput in general and in any case,
the local strategy is almost never able to outperform both the reliability and the throughput
of the global strategy. Our explanation comes from the fact that, when a job has failed, it
requires, on the average, a lot more local resubmissions than global ones to be successfully
executed.

Platform Total Percentage of cases requiring more Percentage of Overall best
id cases than 2 resubmissions to exceed cases with throughput

the reliability of the global strategy better throughput ratio

1 87 48.3% 48% 0.5%

2 147 93.9% 35% 4.3%

3 147 91.2% 54% 2.1%

4 147 93.2% 11% 0.7%

5 147 99.3% 16% 1.2%

6 147 100% 22% 0.5%

Overall 822 90.5% 31% 4.3%

Table 2. Performance of the local strategy when asking to exceed the reliability obtained by the
global strategy when R = 2

6 Conclusion

Failure is an ordinary characteristic of large-scale distributed environments. In this paper
we have studied the problem of random brokering on unreliable platforms directly inspired
from existing grids such as EGEE. We propose a different approach from the usual trace-
based (top-down) where the model is analytically computed from a general model of the
environment and the submission strategy.

10

Here, our bottom-up approach is based on a simple model where incoming jobs are
randomly dispatched to computational elements with a probability proportional to the ac-
cumulated speed of this element. As we assume that job execution can fail, we study two
strategies to improve the reliability (namely local resubmission and global resubmission).
For each heuristic we are able to model the saturation ratio (when the incoming load exceed
the maximum throughput of the environment), the average waiting time of the jobs and
the probability of success of each job. Our experiments show that the proposed models are
very realistic. For each of the above metric the models usually predict a very precise value.
Furthermore, experiments show that, on the average, the global resubmission is the best
strategy as it outperforms, in almost every case, the local resubmission.

Future works are directed towards the evaluation of more metrics such as resource usage,
load balance, etc. An other direction of future research is to improve the submission model
by adding new laws for inter-arrival or duration or by mixing laws (i.e.. some job durations
follow an exponential law while others follow a Weibull). The ultimate goal is to be able to
come-up with analytical model that would match real traces using this approach.

References

1. Enabling Grids for E-sciencE (EGEE), URL http://www.eu-egee.org/.
2. TeraGrid, URL http://www.teragrid.org/.
3. G. D. Costa, M. Dikaiakos, and S. Orlando, Analyzing the workload of the south-east federation

of the egee grid infrastructure, Tech. Rep. TR-0063, Institute on Knowledge and Data Man-
agement, CoreGRID - Network of Excellence, URL http://www.coregrid.net/mambo/images/

stories/TechnicalReports/tr-0063.pdf (2007).
4. E. Medernach, Workload analysis of a cluster in a grid environment, Job scheduling strategies

for parallel processing , pp. 36–61 (2005).
5. A. Bouteiller, T. Herault, G. Krawezik, P. Lemarinier, and F. Cappello, Mpich-v: a multiprotocol

fault tolerant mpi, International Journal of High Performance Computing and Applications
(2005).

6. T. Angskun, G. Fagg, G. Bosilca, J. Pjesivac-Grbovic, and J. Dongarra, Scalable Fault Tolerant
Protocol for Parallel Runtime Environments, Euro PVM/MPI (Bonn, Germany, 2006).

7. H. T. Jensen and J. R. Leth, Automatic Job Resubmission in the Nordugrid Middleware , Tech.
rep., Aalborg University, URL www.nordugrid.org/documents/jensen leth.pdf (2004).

8. A. Iosup, C. Dumitrescu, H. L. Dick H. J. Epema, and L. Wolters, How are real grids used?
the analysis of four grid traces and its implications, GRID 2006 , pp. 262–269.

9. H. Li, R. Heusdens, M. Muskulus, and L. Wolters, Analysis and synthesis of pseudo-periodic
job arrivals in grids: A matching pursuit approach, CCGRID 2007 , pp. 183–196.

10. B. Schroeder and G. A. Gibson, A large-scale study of failures in high-performance computing
systems, DSN 2006 (249–258).

11. B. Rood and M. J. Lewis, Multi-state grid resource availability characterization, GRID 2007 ,
pp. 42–49.

12. V. Berten, J. Goossens, and E. Jeannot, On the Distribution of Sequential Jobs in Random Bro-
kering For Heterogeneous Computational Grids, IEEE Transactions on Parallel and Distributed
Systems, 17(2), 113–124 (2006).

13. H. Casanova, A. Legrand, and M. Quinson, SimGrid: a Generic Framework for Large-Scale Dis-
tributed Experiments, 10th IEEE International Conference on Computer Modeling and Simu-
lation (2008).

