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Abstract

Quickly transmitting large datasets in the context of dis-
tributed computing on wide area networks can be achieved
by compressing data before transmission. However, such
an approach is not efficient when dealing with higher speed
networks. Indeed, the time to compress a large file and to
send it is greater than the time to send the uncompressed
file. In this paper, we explore and enhance an algorithm that
allows us to overlap communications with compression and
to automatically adapt the compression effort to currently
available network and processor resources.

1 Introduction

Recent developments in the area of grid-computing
have focused on the need to efficiently transfer very large
amounts of data. Indeed, when designing Problem Solv-
ing Environments (PSE) such as NetSolve [3], Ninf [17], or
Scilab ��� [2], data (files, internal objects, etc.) need to be
sent. Performance of PSEs greatly depends on the ability to
transmit the data efficiently. However, a meta-computing
environment is composed of a heterogeneous set of ma-
chines interconnected by heterogeneous networks. Avail-
able computing resources can be old sequential machines as
well as brand new parallel computers. These machines can
be interconnected by slow WANs (Internet), as well as fast
backbones (e.g. 2.5 Gbit/s VTHD1) or 100 Mbit/s LANs,
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etc.
Since no assumptions can be made on the hardware in-

frastructure we need a general transmission algorithm that
is efficient whatever the speed of the network and the speed
of the machines.

When the server is a parallel machine and the data to be
transmitted are distributed among the nodes of the server,
one possibility to transfer these data efficiently is to use
multi-socket techniques. This solution has the advantage of
using the maximum bandwidth of the backbone, but is lim-
ited when a bottleneck exists (such as a client connected to
a slow network). Another solution is to compress data prior
to sending them. However, this solution is inefficient when
the network is so fast that the time needed to compress the
data and send it is greater than the time needed to send the
uncompressed data.

The solution to this problem is to adapt compression to
the currently available CPU and network resources in such a
way as to produce compressed data at the rate it can be sent.
This approach was first explored in [11] and developed into
an algorithm and implemented in [12].

This paper revisits this algorithm in the context of dis-
tributed computing, and explores alternatives in the imple-
mentation strategies to improve performance and portability
of the original algorithm.

This paper presents the AdOC (Adaptive Online Com-
pression) algorithm which is designed to be a general pur-
pose portable application layer algorithm suited not only
for grid computing, but for any application data transfer, re-
gardless of network bandwidths or type of application. We
provide a library with a well-defined API which allows ap-
plications a greater degree of control and input on how the
algorithm is applied to their data.



The rest of the paper is organized as follow. Section 2
presents some background on communication and compres-
sion. The AdOC algorithm is presented in section 3. Sec-
tion 4 presents our experimental results. Section 5 discusses
possible optimizations of the algorithm. Concluding re-
marks are given in Section 6.

2 Analyzing Compression

In this section we discuss some properties and back-
ground on compression and communication that will help
motivate the proposed algorithm.

A popular way to trade one resource for another is com-
pression. By compression, we mean codings that represent
the same information using fewer bits. It is used for many
different purposes in different contexts with different trade-
offs:

� Trade CPU and memory usage for disk space, as seen
in compressed file systems and compressed files on
regular file systems.

� Trade CPU usage for memory space — designs for
conserving memory in systems with memory size con-
straints, such as embedded systems. For example it is
possible to compress the contents of the main mem-
ory and letting the CPU uncompress it on-the-fly as
instructions are executed.

� Trade CPU usage for faster paging — instead of pag-
ing directly to disk, schemes have been devised where
pages are compressed and put into a compressed page-
cache in memory[8]. If not reused, the compressed
pages can be paged out to disk. This will require a
shorter I/O operation than handling the uncompressed
page.

� Trade CPU and memory usage for more bandwidth,
by compressing data before sending them over a com-
munications link, as seen in V.42bis[4] modems and
PPP[16].

When doing compression to reduce bandwidth require-
ments, one of the key observations is that without adapting,
compression cannot be used efficiently across different sys-
tems and networks.

2.1 Trade-offs

Compression uses the CPU and memory to achieve com-
pression, which means that the use of compression always
is a trade-off between the resources used and the reduction
in space.

Time is also a factor — while the system may have
the CPU and memory to spare, it may not be able to wait

while the data is being compressed or subsequently de-
compressed, i.e. time in itself is a tangible resource. For
e.g. storing data on a disk, the CPU and memory used, and
the time to compress and decompress the data, is traded off
against less need for static storage space.

It may seem like a paradox that compression also can be
used to trade for shorter access time. If compressed data
can be produced faster than a communication channel can
transmit it, the time needed to get data to the other end of
the channel is reduced because fewer bits need to be trans-
mitted. This is the scenario we are already familiar with for
modem- and other low bandwidth communication. In these
cases, it may make sense to compress data before sending
it and decompressing it on the other side provided that the
compression speed is greater than the bandwidth.

Compression can also be used to reduce CPU consump-
tion for other data manipulations functions. E.g. if data
will be encrypted, then by reducing the size of the data, the
amount of CPU needed to encrypt it is reduced. Assume
that it takes
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by compressing data before encrypting it.
In summary, the reduction in size of the original data

may translate into a gain in one or more of time, CPU, mem-
ory or static storage. But we see that when the gain is a side
effect of the reduction in size, the system must be very care-
fully tuned to achieve that gain, since it relies on the speed
of compression relative to other factors. If we e.g. misjudge
the bandwidth of a channel or the CPU available, then com-
pression can slow down the transfer instead of speeding it
up because compression cannot keep up with the network.

2.2 Compression algorithms

There exists algorithms that are highly tuned to specific
areas such as images and audio, and there are general al-
gorithms that only exploit that “interesting” data often con-
tains redundancy (as opposed to random data)[13].

A distinction is made between lossless and lossy algo-
rithms, i.e. those algorithms that will preserve the original
data exactly, and those that will discard parts of the data,
reducing the quality. The latter type is typically domain
specific, i.e. knowledge about what type of data is being
compressed is needed to determine what to discard.

The development and analysis of compression algo-
rithms is a research field all in itself, with its own confer-
ences and journals, but the problems of compression algo-
rithms are largely outside the scope of the work presented
here. This paper will only deal with lossless general com-
pression algorithms. Using other compression algorithms
with the schemes presented here should be possible, but this
has so far not been investigated by us.



For general compression three of the most often used al-
gorithms are:
� Run length coding — A simple and fast scheme that

replaces repeating patterns with the patterns and num-
ber of repetitions.

� Huffman[9] coding — Huffman coding analyzes the
frequency of different fixed length symbols in a data
set, and to the symbols assigns codes whose lengths
correspond to the frequency of the respective symbol
in the data set, i.e. frequent symbols get short codes,
infrequent get long codes.

� Lempel-Ziv[21, 22] — These algorithms basically re-
place strings (variable length symbols) found in a dic-
tionary with codes representing those strings. The effi-
ciency of these algorithms is determined by the size of
the dictionary and how much effort is spent searching
in the dictionaries.

The algorithms used in GIF, several PPP[18, 20, 15]
compressors, V.42bis[4], and many popular compression
programs such as UNIX Compress, GZip[6] and others use
general compression algorithms based on the two Lempel-
Ziv algorithms LZ77[21] and LZ78[22] (or Lempel-Ziv-
Welch[19], which is based on LZ78). These algorithms
are sometimes augmented with Huffman[9] coding. Huff-
man coding on its own is typically faster than Lempel-Ziv
based algorithms, although it will typically yield less com-
pression.

Run length encoding is extremely fast, but the gain is
often small compared to Lempel-Ziv or Huffman coding.

2.2.1 CPU

The actual CPU needed to compress data varies with the
algorithms, and in many algorithms it will also vary with
the data fed to the compression algorithm because different
patterns will trigger different cases in the algorithm.

In algorithms that use a static scheme, like run length
encoding or Huffman coding with a static table, the time
needed to compress an arbitrary file can be predicted with
fairly good precision without prior knowledge of the con-
tents of the file. But in algorithms which use the content of
the file to adapt the compression, like Lempel-Ziv, the CPU
needed to compress an arbitrary file cannot be predicted.

Parameters to the algorithms will also determine the
amount of CPU needed. In Lempel-Ziv based algorithms,
the size of the dictionary and the depth of searches for
matches in the dictionary can be set. Deeper searches or
bigger dictionaries to search require more CPU, but often
also translates into a better compression ratio. With Huff-
man coding, the width (in bits) of one symbol can be mod-
ified. With longer symbols, more CPU will be spent on
bookkeeping, but the compression ratio will go up.

2.2.2 Memory

The amount of memory needed for compression varies with
the algorithm used.

A run length encoding scheme typically only needs a
counter and a small (couple of bytes) buffer. Huffman cod-
ing requires enough memory to store the symbol translation
table. Lempel-Ziv schemes are more memory hungry since
they compress by “knowing” what patterns have previously
been seen in the data stream, and their efficiency is often a
function of how much memory they are allowed to consume
for buffering previously seen data.

The amount needed for all these algorithms can be pre-
dicted and/or limited in advance. Thus the compression al-
gorithm can be assumed to have a static, predictable, mem-
ory footprint.

As an example of the effect memory constraints have on
compression efficiency, look at telephone modems. The al-
gorithms used (v.42) are efficient, but to keep costs down,
they are not fitted with much memory. This is why com-
pression in e.g. PPP often improve performance over com-
pressing modems.

2.3 The time aspect

In some cases the compression time aspect is of little
importance, e.g. it does not matter much if a file takes five
or fifty seconds to compress, when the only goal is to fit it
into a cramped storage space. In these cases the resources
needed to compress are only relevant if the shortage is per-
manent. If e.g. the CPU is very slow, all we need to do
is wait, eventually the compression will complete. If the
compression algorithm needs more than the total available
memory, i.e. it cannot run, we have to manually intervene
to reduce the memory consumption by choosing parameters
or algorithms that require less memory.

If compression is done on a general purpose computer
which may run multiple applications and communicate at
varying speeds over shared communication media, the pa-
rameters of the trade-off cannot be known beforehand. CPU
speed, memory availability and media bandwidth may vary
during one session.

For most applications, the compression time is essential.
If we e.g. compress data to increase transmission speeds,
and lack of CPU resources make compression so slow that
it would be faster to send it uncompressed, then there is no
point in compressing data in the first place.

We could express the trade-off between compressing by
doing the following definitions:

�
is the type of data we want to send. If we know

�
,

we could choose a compression algorithm designed for
this type of data.



�
is the parameter set controlling the compression algo-
rithm.

����� � � ��� � � � � �
is time to compress one byte, given

the currently available CPU, type of data T and param-
eter set P.

� is the time to send one bit, i.e. 	�
 ������������ ��� .

� ��� � � � � �
is the compression ratio we achieve for the

type of data T and parameter set P.
� � ��� � � � ��� � � � � is time to decompress one byte, given

the currently available CPU and the compression ratio� of the input data.
�

is the amount of data we want to send.

The time we have available to compress data is the reduc-
tion in sending time between the uncompressed and com-
pressed data

� ��� ��� � � ��� � � � .
Thus, if

� � � �!� � 
 � � � �#� $ �!� � , then compressing
data before sending it would lower the total transfer time.

The parameters
� ���

,
�

,
�

and � controls the relation.
Assuming that available CPU resources (

� ���
and

� ��� �
),

bandwidth ( 	�
 � ) and type of data (
�

) are governed by out-
side factors and may change over time, this leaves us with
adapting

�
to ensure that the relation remains true.

If we base
�

on a one-time measurement, and then keep
it constant, we run a very real risk of either increasing the
transfer time compared to not compressing, or losing oppor-
tunities to further reduce the transfer time.

2.4 Summary

Compression can, and is often used, to compensate for
low bandwidth. This can be done by using a scheme like
PPP[16] in which the host systems CPU is utilized to per-
form compression. Unfortunately, this does not take into ac-
count variations in bandwidth and local resources — what
might be a reasonable setting for communicating over 9600
bps GSM on an otherwise idle system with a full battery
charge, will most likely be suboptimal on a busy system
with low batteries communicating over an 11 Mbps wire-
less LAN.

To use compression to improve perceived communica-
tions performance in an environment where resource avail-
ability and bandwidth can vary unpredictably, a system that
will constantly monitor and adjust compression parameters
to match the current situation, possibly turning compression
off if it would lower performance, will be needed.

Such a monitoring system must be designed to respond
fast to changes, but must also be cheap in terms of re-
sources, since all resources dedicated to monitoring and
controlling compression are resource that could have been
used to improve compression.

2.5 Examples

oilpann.hb bin.tar
level c. time ratio d. time c. time ratio d. time

1 10.2 4.88 9.6 16.9 2.23 12
2 11 5.13 9.3 17.2 2.27 12
3 11.3 5.52 8.9 18.3 2.31 13.4
4 11.9 5.83 9 21.7 2.38 13.7
5 13.6 6.32 8.7 23.6 2.43 13.6
6 16.7 6.64 8.3 28.3 2.44 13.7
7 20.4 6.75 8.7 32.1 2.45 13.14
8 47.6 6.99 7.7 44 2.45 13.1
9 76 7.02 7.8 65.8 2.46 12.3

Table 1. Compression timings on bench files using
gzip

To illustrate how different parameter sets and charac-
teristics can affect the achieved compression ratio, exam-
ine Table 1. Here two different files, oilpann.hb, a
sparse matrix in the Harwell/Boeing format (ASCII) and an
archive of binaries, (bin.tar) are compared2. The files
are compressed with the popular gzip program.

As can be seen, the latter file does not compress nearly
as well as the former, given the same compression level3.

We see that with increasing compression level, compres-
sion time and ratio increase, but not linearly, whereas the
decompression time is roughly constant. After level 6, we
see low increases in compression ratio while compression
time increases very fast.

3 AdOC Algorithm

3.1 Overview

1. For each data block to be sent.
2. Update the compression level according to the

size of the output queue.
3. Compress data at current compression level.
4. Add compressed data to the output queue.

Figure 1. Original Basic Algorithm

2From traces taken on a Pentium III 500MHz running LINUX kernel
2.4.7-10

3The compression level of gzip can be seen as an abstraction of the
compression parameter set discussed previously



The AdOC algorithm is based on the adaptive compres-
sion algorithm presented in [11, 12]. The core of this al-
gorithm is illustrated in Figure 1. This basic algorithm au-
tomatically adapts the level of compression to the speed of
the network — higher compression levels are only used if
we have tried lower levels, and still managed to produce
data faster than the network can send it. The existing queue
also serves as a safety margin — if the increased compres-
sion level causes compression to take too long, packets will
drain from the queue, but it will not go empty.

The original implementation was put into the transport
layer (TCP), in order to be transparent to applications, and
utilized functions in TCP and networking stack internal data
for adaptation, and was implemented inside the Linux 2.0
kernel.

The advantages of an application level implementation
were recognized both at the time, and in later work by one
of the original authors [10], but to our knowledge, AdOC
is the first attempt to implement it at the application level.
The observation that placement inside the kernel was not
ideal was also made in contemporary work[14], but with the
processors available at the time, less options were available.

Being an in-kernel modification, the original implemen-
tation was not very portable. In fact, if needed even for
a more modern Linux kernel, it would have to be re-
implemented from scratch, since the kernel internals have
changed.

The user level implementation described in this paper is
based on TCP sockets and is written in C. Hence, it pro-
vides a portable set of functions that can be integrated into
a library without modifying the kernel. It uses the following
two features:

1. Multi-threading. The sender is made up of two threads.
One thread (called the compression thread) is in charge
of reading the file and compressing data when useful.
Another thread (called the communication thread) is in
charge of sending data. Such an architecture allows for
compression/communication overlap.

2. FIFO. A FIFO data structure is used to store the data
to be sent. The compression thread writes data to the
FIFO. The communication thread reads the FIFO.

The most important parameter of the AdOC algorithm is
the size of the FIFO, like the queue length of the original al-
gorithm. However, the FIFO size is monitored for changes
instead of absolute size. If it is shrinking, this means that
the sending thread consumes data faster than it is produced
by the compression thread, and the compression level is re-
duced. Conversely, if the FIFO is growing, this means that
we can increase the compression level. The logic and mo-
tivation is thus the same as the original algorithm, but the
mechanism differs.

The original implementation had to work for arbitrary
applications, so it was designed to be conservative and work
for arbitrary networks and sending patterns. AdOC, on the
other hand, can afford to pursue optimizations more aggres-
sively, since running it is an active choice by the application.
Since AdOC was designed for distributed systems exchang-
ing large data sets, this means that AdOC can assume that
the application can tell it how much data is being sent at the
outset, and that the application will send data continuously,
and optimize for this case.

3.2 Compression/Communication Overlap

When a process/thread is doing some IO on a device
(such as writing data to a file on a disk or to a socket on
a network), it may be blocked waiting for the device to
become ready. This is especially common when writing
data to a socket because memory is faster than the network.
When the sending process/thread is blocked, it yields the
processor to other processes/threads. The idea in AdOC is
to use this “free” CPU to compress data about to be sent.

The original algorithm did not divide compres-
sion/sending explicitly, but relied on the TCP implemen-
tation for this. In fact, modifications to the kernel were
needed to keep the OS from completely suspending the sys-
tem under some conditions. In AdOC, the separation is
clean and explicit, and completely avoids the risk of acci-
dentally blocking the compression and allows compression
and sending to completely overlap. It also reduces the risk
that the network goes idle because compressed data has not
been produced fast enough.

Since the FIFO is a shared object between two threads
we use a mutex and a semaphore to access it.

3.3 Compression Thread

The compression thread is in charge of reading the file
and of compressing data if possible. As in the original im-
plementation, we use the zlib [7] library, which is a com-
pression library that implement the same algorithm as gzip,
discussed above, and the same compression level abstrac-
tion of compression parameters.

Where the original adaptation algorithm treated the data
being sent as a single stream, AdOC compresses data into
independent chunks. This difference is significant for a
number of reasons. First, because it completely eliminates
the overhead of going through the compression algorithm
when data cannot be compressed. The original algorithm
always imposed a small processing and data size overhead,
even when not compressing. Second, because where the
original algorithm would change compression levels fre-
quently, AdOC changes it only per chunk. On the one
hand, this makes AdOC less reactive to short term changes



in bandwidth, but keeping the same compression level for
long runs of data also improves the compression ratio. For
the typical environment AdOC was designed to be used, this
is an optimization that increases performance compared to
the original algorithm.

Each chunk is then fed to the compression algorithm,
but with a limited output (“packet”) buffer. This means
that whenever the compression algorithm has produced a
packet, the compression algorithm will wake up and return
control to AdOC that can now put this packet on the out-
put FIFO and then it resumes the compression of the chuck.
This means that even though the compression function is
processing a large chunk of data, the output queue will be
continuously replenished with data, keeping it from going
empty.

The algorithm of the compression thread is given in Fig-
ure 2. fifo size is a global object that contains the num-
ber of non-empty packets in the FIFO. packet size is a
constant giving the maximum size of packets stored in the
FIFO. When level = 0 (no compression is used), we read
a packet from the file and store it directly into the FIFO.
buffer size is the (also constant) size of the chunk
buffers to be compressed (level

��
0). As outlined above, a

chunk is given to the compression library that produces the
packets. The function compress, returns the next com-
pressed packet and its actual size. We add delimiters in the
FIFO to tell when a chunk buffer is completely compressed
or when the file is completely read.

At the beginning of each step we save the size of the
FIFO in prev fifo size . At the end of each step we
update the level of compression using the difference be-
tween the current size of the FIFO and the size of the FIFO
at the beginning of the chunk.

1 level=0;
2 while there is still data in the file
3 prev fifo size=fifo size;
4 if (level=0)
5 packet=readfile(packet size);
6 add fifo(packet,packet size,level);
7 add fifo(NULL,0,0);
8 else
9 buffer=readfile(buffer size);
10 while buffer is not fully compressed
11 (packet,size)=compress(buffer,packet size,level);
12 add fifo(packet,size,level);
13 add fifo(NULL,0,0);
14 level=update level(level,fifo size-prev fifo size);
15 add fifo(NULL,0,0);

Figure 2. Compression Thread Algorithm

3.4 Updating Level of Compression

As shown in Table 1, increasing the compression level
decreases the size of the compressed file but increases the
compression time. At the outset, we set the level to 0 (no
compression) and we slowly increase this level if we believe
that we have enough time to compress buffers.

AdOC was designed for large file transfers and to re-
duce the number of changes in compression level, and thus
needs to use a different approach than the original algorithm
for changing compression levels — it monitors changes in
queue length instead of absolute queue length.

input : level : current compression level
D : FIFO variation size

output : new compression level.
1 if(FIFO size � 10)
2 if(D � 0)
3 level=level/2;
4 else if(FIFO size � 20)
5 if(D � 0)
6 level++;
7 else if (D � 0)
8 level--;
9 else if(FIFO size � 30)
10 if(D � 0)
11 level+=2;
12 else if(D � 0)
13 level--;
14 else if(D � 0)
15 level+=2;
16 if (level � 9)
17 level=9;
18 else if (level � 0)
19 level=0;

Figure 3. Updating the compression level

The first approach we tried was to modify the compres-
sion level in a slow–start fashion. We used � , the differ-
ence between the size of the FIFO at the end of a com-
pression step and the size of the FIFO at the beginning of
the step. This approach was conservative in the sense that
when ����� the compression level was increased by one
and when � $ � we divided the compression level by 2.
We gave up with this approach because it reduced compres-
sion too aggressively and required too much memory when
it overestimated the network bandwidth. Indeed, the size of
the FIFO often became very large, which implies that we
could have used higher compression levels.

Figure 3 describes the new algorithm we settled on. It
monitors the FIFO size and how the FIFO size changes.



When the FIFO is small (
$ 	 � ), it will aggressively de-

crease the compression level if the FIFO is shrinking, and
will not increase the compression level at all. For moderate
FIFO sizes ( 	 � � � � � ), it will slowly adjust the compression
level up or down in response to FIFO size changes. When
the FIFO size increases (

� � ����� � ), it will begin to increase
the compression level more aggressively in response to in-
creases in FIFO size. For large FIFO sizes ( � � � ), the com-
pression level will no longer be decreased in response to
FIFO size decreases.

Since there is a limited range of valid compression lev-
els, it cannot exceed compression level 9, and since com-
pression level 0 means no compression, the level cannot de-
crease below this level.

3.5 Tuning AdOC

AdOC is designed to be tunable, to make it more flexible
and allow users of it to fit it to different needs. Two factors
that influence the way the algorithm works is the size of the
chunk buffers and the size of the packets.

3.5.1 Determining the Chunk Buffer Size

Our algorithm splits the file into buffers and compresses
them independently. Due to the compression algorithm,
the obtained compression ratio depends on the size of the
given buffer (the larger the buffer, the better the compres-
sion ratio). However, since the compression level cannot be
changed while compressing a buffer, too large buffers have
a bad impact on the reactivity of our algorithm. Hence,
we need to find a trade-off for this value. Figure 4 shows
the evolution of the compression ratio when increasing the
buffer size for the level 6 compression of oilpann.hb.
We see that the compression ratio rapidly increases at the
beginning and converges on a limit which is the compres-
sion ratio when treating the entire file as one buffer. We
obtain similar results for other compression levels as well
as other files, e.g. bin.tar.

For our experiments, we have chosen a chunk buffer size
of 204 800 bytes because in most of the cases, with this size
we obtain a difference less than 5% between the compressed
file and the optimal compressed file size. Moreover, our
experiments show that compressing 200Kb on our system
(Pentium III 500 MHz) takes about 0.1 seconds. Hence, the
reactivity of the algorithm with such a chunk buffer size is
acceptable.

3.5.2 Determining the Packet Size

When not compressing the file (e.g. at the beginning of
file or when dealing with a fast network), the file is split
into packets which are sent uncompressed. If we have too
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large packets, the reactivity of our algorithm at the begin-
ning will be affected. However if we have small packets,
we will have a lot of elements added in the FIFO which
implies more overhead for managing the FIFO and send-
ing the packet. When in compressing state, a buffer is
read and compressed. The compression of the buffer stops
each time a packet is generated. This packet is put in the
FIFO and the compression resumes. Hence, dealing with
too small packets implies too many overhead for manag-
ing the FIFO, whereas dealing with too large packets limits
the compression/communication overlap. We need to find a
trade-off. In order to have an idea of what is a good packet
size we have performed the following computation which
is inspired from optimizing the packet size for computa-
tion/communication overlap [5].

Let � be the packet size. Let � be the size of the buffer
to be compressed. Let � be the compression ratio (hence
we obtain a compressed buffer size � � � � 
 � ). Let

�
be the time to compress one byte (the buffer is compressed
in time

�
� ), and

� �
the time to uncompress one byte (the

buffer is uncompressed in time
� � � ). Let � � be the constant

overhead to store a packet in the FIFO. Let
� ���

�
	 be the
number of packets generated by the compression thread.



Hence the time to generate one packet is
� � � � � � � �� � 	 � � � � � � � � � � , whereas the time to uncompress one

packet is
� � � � � � � � � � � � .

For modelling the network we use a simplistic model that
assumes a constant throughput and latency. Let � � be the
constant overhead to extract a packet from the FIFO. Let �
be the time to transmit one byte and

�
the network latency.

Hence the time to send one packet is
��� � � � � � � � � � � � .

This is an old and simplistic model but, as shown in the
following, it will give us an idea of the order of the packet
size.

We have a pipeline scheme, hence, the time to transmit
the whole buffer is :

� 	�� � � � � � � � � � � � � � � ��� � � � � � � � � � � �
� � � � � � � � �� �

� � � � � � � � � � � � � �
� � � � � � � � � � �� �

� � � � � � � � � � � ����
We want to minimize

� 	 � � � � � . We have:� � 	�
�
� � � � � � � � � � � � � � � � � 	�	�

and � � � 	�
� � � � � � � � � � � � 	��
 �

Since, � $ �� � � we have �������� 	 � � � . Hence
� 	�� � � � �

is concave and is minimum if� � 	�
�
�
� �

This is true when

� � � � � � � � � � � � � � � � 	���
or when

�
�
�
� � � � � � �� � � � � � � � �

Our experiments show that

	�� � ���
	 � � 	 ��������� � � � � 	 ��� 
 �

� �"! � 	 � �#� �
	 � $ 	 � �#%'& 
)(+*+,.-/� � � 	 � 0 	 � �#�1& 
�(2*+,�-
	 � � 	 �	�#% & 
�(2*+,�-3� � � � 04� 0 	 ����% & 
)(2*5,.-

Since �
� � � 056 � � bytes we have � � �7� �8� 	)� � �5� � . This

interval is very large and just tells us that � must be on the
order of a few kilobytes. Moreover, we want our algorithm

to be very reactive at the beginning when the compression
level is zero. Hence we do not want a large value for � . In
order to optimize memory and disk accesses, the value of
� should be greater than the page size (4096 bytes in our
case), so we finally settled on 8192 bytes — the BUFSIZ
constant of stdio.h, also used by e.g. FTP.

4 Experimental Results

In this section, results on the behaviour of the AdOC
algorithms are described. We have conducted our experi-
ments on several UNIX versions (Linux, Solaris, FreeBSD).
Performance depends only on the speed of the processor
and the network, hence we only show the results gathered
for Linux.

We have built a sender and a receiver that implements the
AdOC algorithm. The current implementation uses POSIX
threads, mutex and semaphore. Communication is done us-
ing TCP sockets.

4.1 Compression Level and FIFO Size Variation

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35

C
om

pr
es

si
on

 le
ve

l o
r 

F
IF

O
 s

iz
e

Time

oilpann.hb compression level and FIFO size evolution

compression level
FIFO size

Average FIFO size

Figure 5. Evolution of the FIFO size and the com-
pression level vs. time

In figure 5 we show the evolution of the FIFO size and



the compression level when sending oilpann.hb over
the Internet between Nancy University and Rutgers Univer-
sity. Our goal is to maintain the compression level as high
as possible and the FIFO size between 10 and 30.

Results show that most of the time the FIFO size is be-
tween the two values. The average size is 18.44. We see that
when the FIFO size becomes small the compression level is
reduced (e.g. at time 26) until the size regain an acceptable
value.

4.2 File Transmission Timings

Figure 6. Average Timings Ratio for oilpann.hb

Figure 7. Average Timings Ratio for bin.tar

We have transmitted our two bench files on various net-
works. Results for oilpann.hb (resp bin.tar) are
shown in Figure 6 (resp. Figure 7).

Results are the average of 10 timings of the transmission
of the file. Results from the Internet measurements (be-
tween Nancy and Rutgers) are obviously not easily repro-
ducible. However, repeated experiments show that regard-
less of when we run the experiment, AdOC outperforms any
other method we have tried, since the ability to adapt is the
core of the algorithm. This is the expected result.

We compare AdOC to a number of other ways of sending
the data. An uncompressed FTP session will serve as the
baseline for comparison. One obvious comparison would be
to first compress the file and then send it. We have done this
using gzip with compression levels 1 and 9. We have also
compared to using the SSH network file copy command,
scp, both with (-C) and without compression.

Figure 6 and 7 are bar graphs that show the relative per-
formance of these methods against AdOC. For each kind of
network we have divided the average timing of the method
(Tm) by the average timing of AdOC (Tadoc). Hence if
Tm/Tadoc is greater than 1, AdOC outperforms the consid-
ered method for the given network. For instance in Figure 7
one can see that for the Internet, FTP transfer is more than
6 times slower than AdOC.

These results show that our algorithm outperforms any
other method for all kinds of networks we have tested.

The fact that AdOC outperfoms FTP transfers for
100Mbps network is possible only because when not com-
pressing data, AdOC does not go through the zlib library.
Rather, AdOC directly moves the uncompressed data to the
FIFO. If we were to always go through the zlib library, as
the original algorithm did, AdOC would take twice as long
(11 seconds compared to 5.5 seconds) to send oilpann.hb
over a 100Mbps network.

It should be noted that the utility of compressing in-
creases with increasing CPU power, and with processing
power doubling every 18 months (Moore’s Law), this means
that what may not be realistic today will be so in a few years.

The original algorithm was tested on 133 MHz Pentium
processors that could just barely outperform sending un-
compressed on a 10 Mbps Ethernet, and our results here
show a noticeable improvement on 100 Mbps networks.
Compression at gigabit speeds should only be a few years
away with the existing algorithms, never mind future im-
provements.

5 Future Improvements

We could improve the performance of the receiver by de-
composing it into two threads : one for reading the network
and one for decompressing the packets. This would allow
for an increase of network throughput in some cases, since
network throughput will no longer depend on the speed of
the receiver decompression.



Another improvement would be to have a faster com-
pression method that would be between level 0 and level
1. This could allow compression to work even on networks
so fast that they today would have to switch compression
off, and would allow a smoother transition from the non-
compressing state to the compressing state. The original
paper tried using some special modes of zlib for this, but
the results were not conclusive and were still relatively ex-
pensive.

Another extension would be to add better compression
algorithms. Unless a leap in compression algorithms hap-
pens, this will typically mean one that either uses more
memory, or more CPU, or both. One such candidate is
the algorithm used in bzip2 and the corresponding lib-
bzip2 library, which also have the advantage of having an
API similar to that of zlib.

6 Concluding Remarks

This paper has revisited the adaptive algorithm proposed
in earlier work by a subset of the authors of this paper.
While the basics of the algorithm have not changed, the
algorithm presented in this paper have explored new direc-
tions that allow the algorithm to be implemented without in-
teraction with kernel-internal data and is significantly more
portable. Other changes include measures that should make
it more suitable for the transfers of large amounts of data
often seen in distributed systems.

The paper also presents an analysis of compression,
specifically in the domain of online or “on-the-fly” com-
pression.

Future work is directed toward improving the perfor-
mance of AdOC and integrating this algorithm in PSE envi-
ronments such as NetSolve [3] or DIET [1].

We are currently developing a freely available AdOC
library, more information is available at the web page
http://www.loria.fr/˜ejeannot .
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