
Experimental Validation of Grid Algorithms: a Comparison of
Methodologies

Emmanuel Jeannot
INRIA Nancy Grand-Est

LORIA, Nancy University, CNRS
Emmanuel.Jeannot@loria.fr

Abstract

The increasing complexity of available infras-
tructures with specific features (caches, hyper-
threading, dual core, etc.) or with complex archi-
tectures (hierarchical, parallel, distributed, etc.)
makes models either extremely difficult to build or
intractable. Hence, it raises the question: how to
validate algorithms if a realistic analytic analysis
is not possible any longer? As for some other sci-
ences (physics, chemistry, biology, etc.), the an-
swer partly falls in experimental validation. Nev-
ertheless, experiment in computer science is a dif-
ficult subject that opens many questions: what
an experiment is able to validate? What is a
“good experiments”? How to build an experi-
mental environment that allows for ”good experi-
ments”? etc. In this paper we will provide some
hints on this subject and show how some tools
can help in performing “good experiments”. More
precisely we will focus on three main experimen-
tal methodologies, namely real-scale experiments
(with an emphasis on PlanetLab and Grid’5000),
Emulation (with an emphasis on Wrekavoc:
http://wrekavoc.gforge.inria.fr) and simu-
lation (with an emphasis on SimGRID and Grid-
Sim). We will provide a comparison of these tools
and methodologies from a quantitative but also
qualitative point of view.

1 Introduction

Computer Science is the science of information.
As stated by Peter J. Denning et al. in [9], “The
discipline of computing is the systematic study of
algorithmic processes that describe and transform
information: their theory, analysis design, effi-
ciency, implementation and application”. There
are several ways to perform such study. A first ap-
proach is to classify knowledge about information

through an analytic work using the mathemat-
ics as a tool. Such an approach as been proved
very efficient but is limited when a studied object
becomes very complex and its understanding is
hard to achieve using models. In the case where
the objects (hardware, program, algorithms, etc.)
are hard to understand analytically, a second ap-
proach, based on experiments allows to gather and
classify some knowledge through observations [6].

Modern systems such as network, computers,
programs, algorithms are more and more com-
plex. Hence, their analytical understanding be-
comes more and more difficult and the exper-
imental approach more and more necessary to
understand, test, validate or compare such ob-
jects. This is even more important in the case of
grids. Indeed, grids are built using computers that
have very advanced features (caches, hypethread-
ing, multi-core, etc.), which use operating systems
that embed state-of-the-art solutions such as pro-
cess scheduling, virtual memory, thread support.
On top of the OS, runtime and middelware envi-
ronments play a very important role in the overall
performance and even different implementations
of the same standard can impact the behavior.
Moreover, the fact that, in a grid, the different
resources can be heterogeneous, hierarchical, dis-
tributed or dynamic makes the picture even more
complex.

If the role of experiments becomes more and
more important in computer science and espe-
cially in grid computing, it is noticeable that the
experimental culture of computer scientists is not
comparable to other scientists in fields such as bi-
ology or physics. For instance, a study led by
Luckovicz et al. [14] in the early 90’s and taken
up again by Tichy [17] shows that among com-
puter science published articles in ACM journals,
between 40% and 50% of those that require an ex-
perimental validation had none. The same study
shows that this ratio falls to 15% for journals

1



in “optical engineering”. A statistic study pub-
lished in 1998 [19] on the experimental validation
of results in computer science on more than 600
articles published by the IEEE concludes simi-
larly that “too many articles have no experimen-
tal validation” even if quantitatively this proposi-
tion tends to decrease with time (the study cov-
ers the years 1985, 1990, 1995). These elements
show that, in computer science, the experimental
culture is not at the same level than in other sci-
ences, even if it is improving with the time (at
least quantitatively). This shows that we lack
methodologies and tools to conduct experiments.

The goal of this article is to discuss and study
the importance of experiments in computer sci-
ence. We focus on large-scale systems and grids
but large part of what is written here is general
enough to be applied to any other fields of com-
puter science. Hence, we will first discuss the
role of experiments and the properties an experi-
ment must fulfill (section 2). In Section 3 we will
then discuss the different possible methodologies
to conduct an experiment. A survey and a com-
parison of the experimental tools in the case of
distributed computing and grid will be done in
Section 4. Finally, we will conclude in Section 5.

2 Role of experiment in computer
science

2.1 Related work

The question of computer science as an exper-
imental science is not new but has recently raised
new concerns.

The question of computer science as a science is
brightly and positively answered in [8]. The point
is that, even if there are some disagreements be-
tween computer scientists on whether computer
science is science (or technology, or engineering,
or hacking, etc.), there is no doubt that a large
part of the discipline is science (which is not con-
tradictory with the fact that computer science is
also engineering). In [6] and [7] Denning discusses
on the importance of experiment in computer sci-
ence. For instance, he highlights that the LRU
paging algorithm has been proved better then the
FIFO strategy experimentally. As stated in the
introduction the lack of experiment in computer
has been emphasized in [14, 17]. In [11], D. G. Fei-
telson shows that experiment in computer science
should not be so different than in other science,
but there is not a real experimental culture in our
discipline. In [10], Johnson discusses the issues of
experimental analysis of algorithms. The author

presents some principles that should govern such
analysis from the novelty of the experiments to
the presentation of the results.

In the following we will discuss and present in
details the above issues.

2.2 Role of experiments

Denning et al. in [9] present three paradigm
of the discipline of computing: theory, abstrac-
tion (modeling) and design. For each of these
paradigms, the authors show that there is a feed-
back loop that allows to iterate the process and
therefore enables progress and improvement of the
object that one seek to construct (i.e. a theory,
a model or a program). These three feedback
loops are also used by Feitelson in [11] and are
shown in Figure 1. We first want to emphasis
that these three methodologies are complemen-
tary. Let us take the example of the design of an
algorithm. The analysis of this algorithm must
use the modeling of the reality that has to be ex-
perimentally validated. With the use of mathe-
matics it is possible to demonstrate some prop-
erty of this algorithm (complexity, approximation
ratio, etc.). Moreover, an implementation of this
algorithm will allow to test on real cases its effi-
ciency.

As shown in this example and in the Fig. 1,
one can remark that it is experiments and tests
that enable progress for the modeling and the de-
sign paradigm. Therefore there are two types of
experiments:

• a first category allows to validate a model in
comparing its prediction with experimental
results;

• a second category allows to validate the de-
sign quantitatively (i.e. by measuring the
performance of design under normal condi-
tions) .

However, it is important to understand that
these two validations can also occur at the same
time. For instance the validation of the imple-
mentation of an algorithm targets that both the
grounding modeling is precise and that the design
is correct.

Experiments have also an other very important
role. In [17] Tichy presents the main advantages
of experiment: in testing hypothesis, algorithms
or programs experiment can help to construct a
database of knowledge on theories, methods and
tools used for such study. Observations can also
lead to unexpected or negative results and there-
fore eliminate some less fruitful field of study, er-
roneous approaches or false hypothesis. Therefore

2



interpretation

TheoremProof

Definition

Results

Observation

Experimental test

Prediction Hypothesis/Model

Idea/Need

Implentation Design

Experimental
validation

Figure 1. The three paradigms of computer science: theory (left), modeling (center), design
(right) [9, 11].

experiments help in orienting research to promis-
ing directions.

2.3 Properties of experiments

Testing an implementation, validating a model
or comparing two algorithms is routinely done in
computer science and especially in research. How-
ever, having a highly meaningful experiment is
difficult and requires meeting some prerequisites.
In [1] we have proposed the four following prop-
erties1 a good experiment should fulfill:

• Reproducibility: experimental conditions
must be designed and described in such a
way that they can be reproduced by other
researchers and must give the same results
with the same input. Such requirement is a
real challenge for the computer science com-
munity as this description is often elusive and
because, from one site to an other, environ-
ments are very different to each other.

• Extensibility: when targeting performance
of an implementation or an algorithm, a sci-
entific experiment report is of little inter-
est if it simply describes the environment
where the experiments have been conducted.
Therefore, an experiment must target com-
parison with past and future results, exten-
sion with more or different processors, larger
data set, or different architectures. Several
dimensions must be taken into account such
as scalability, portability, prediction or real-
ism.

• Applicability: performance evaluation is
only one aspect of experiment. The predic-

1we focus here to the case of distributed/parallel com-
puting but this approach can easily be extended to the
general case

tion of the behavior of an algorithm or a pro-
gram in the real world is an other goal of
experiments. However, the set of possible
parameters and conditions is potentially in-
finite. A good experimental campaign must
then be executed on realistic and representa-
tive set of entry parameters, input data, and
usage. It must also allow a good calibration.

• Revisability: when experimental hypothe-
sis are not met, a good experiment must help
in identifying the reasons, may these reasons
be caused by the modeling, the algorithm,
the design, it implementation or the experi-
mental environment. Methodologies must be
developed to allow to explain errors and to
find ways of improvements.

3 Experimental methodologies

3.1 Properties of methodologies

In the case of distributed computing, the exper-
imental validation of models, algorithms or pro-
grams is a difficult challenge. Indeed, in this case,
the environments are very complex, at large scale,
dynamic, and shared. Naives experiments on real
platforms are often not reproducible, whereas, ex-
tensibility, applicability and revisability are hard
to achieve. Such problems require to proceed by
step as shown in figure 1 but also require tools
that help to perform good experiments. In or-
der to realize a good experiment we distinguish
three methodologies, namely, simulation, emula-
tion and in-situ. For each of these methodolo-
gies, correspond a class of tools: simulator, em-
ulator and real-scale environments respectively.
Whereas these tools are of different nature they
need to share some common characteristics:

3



• Control: controlling experimental condi-
tions is essential in order to know which
part of the model or the implementation
are evaluated. Moreover, the control allows
testing and evaluating each part indepen-
dently. Hence, in testing, several scenarios,
experimental condition control helps in eval-
uating limits of models and proposed solu-
tions. Controlling experimental condition re-
quires being able to configure the environ-
ment which is a challenge by itself.

• Reproducibility: reproducibility is the
base of the experimental protocol. The role
of the experimental environment is to ensure
the reproducibility. Hence an environment
that ensures a good reproducibility must be
considered better than an environment that
ensures a lower one.

• Realism: Experimental conditions are al-
ways, in one way or an other, synthetic con-
ditions. This means that they are an abstrac-
tion of the reality as they cannot take into ac-
count all the parameters. However, the level
of abstraction depends on the chosen exper-
imental environment: some are more realists
than others. Therefore, when using an envi-
ronment, it is important to know its level of
realism in order to deduce what confidence
can be put in the results. One can distin-
guishes three levels of realism:

1. Qualitative. An experimental tool
makes a qualitative comparison if, for
instance, it says that Algorithm 1 is bet-
ter than Algorithm 2 and in reality we
have the same result

2. Quantitative. An experimental tool
makes a quantitative comparison if, for
instance, it says that Algorithm 1 is 10
times better than Algorithm 2 and in
reality we have the same result

3. Predictive. An experimental tool makes
a prediction if it says, for instance, that
a program will last a given amount of
time and in the reality we obtain the
same result.

It is important to note that predictive real-
ism implies a quantitative one that implies a
qualitative one.

3.2 Simulation

Simulators are the first kind of experimental
tools. They focus on a given part of the envi-

ronment and abstract the remaining of the sys-
tem. Simulation allows performing highly repro-
ducible experiments with a large set of platforms
and experimental conditions. In a simulator only
a model of the application is executed and not the
application itself. Designing a simulator therefore
requires a lot of modeling work and is therefore a
very difficult scientific challenge.

3.3 Emulation

A second kind of experimental tools are em-
ulators. An emulator targets to build a set of
synthetic experimental conditions for executing a
real application. Hence, contrary to the simula-
tion, only the environment is modeled. We can
distinguish two types of emulator. A first one is
based on virtual machines that execute, in a con-
fined way (a sandbox), the program. Each vir-
tual machine can be executed on the same real
machine and the network and CPU capabilities
modified according to the targeted environment.
This is for instance the approach taken by Micro-
grid [18]. A second approach consists in having
the application executed directly on the hardware
(without a virtual machine). In this case, the con-
trol of the environment (CPU or network speed)
is done by degrading the performance. This is
the approach taken by Wrekavoc [4] and will be
discussed in the next section.

3.4 In-situ

In situ experiment is the last methodology. It
is the one that offers the most realism as a real
application is executed at a real scale using a
real hardware. Such methodology is necessary
because some complex behavior and interaction
cannot always be easily captured and then simu-
lated or emulated. This is the case, for instance
for some operating system features (such as the
process scheduling strategy, the paging algorithm,
etc.); some hardware characteristics such as hy-
perthreading, cache management, multicore pro-
cessors; runtime performance: two different im-
plementation of the same standard (for instance
MPI) can have different performances. However,
using real machines may hinder the reproducibil-
ity as it is difficult to control the network traffic
or the CPU usage (in case of shared machines).
In order to tackle this problem, it is possible to
design and build real scale environments dedi-
cated to experiments. Among these environments
we have: Das-3 [5], Grid’5000 [12, 2] or Planet-
Lab [15]. We will discuss the respective merits of
these tools in the next section.

4



Methodology Simulation Emulation Emulation In-Situ
(Virt. mach.) (Degradation) (Homogeneous env.)

Real application No Yes Yes Yes
Abstraction Very High High Low No
Execution time Speed-up Slow-down Same Same
Proc. folding Mandatory Possible No No
Heterogeneity Controllable Controllable Controllable No

Table 1. Comparison of different experimental methodologies

3.5 Comparison of these methodologies

We can compare the three above methodologies
based on different criterion (see table 1):

• the ability to execute or not a real applica-
tion. For emulation and in-situ a real appli-
cation is executed, while for simulation only
a model of these application is executed;

• the level of abstraction of the environment.
The less abstraction, the more realism and
the greater the confidence in the obtained re-
sults. This is related to the ability to exe-
cute the application and the underlying mod-
els used;

• the execution speed. Emulation tends to
slowdown execution while simulation tends to
speed it up (SimGRID as a speed-up factor of
106 on certain applications on standard PC);

• the possibility to fold several CPUs on one.
It allows to execute a parallel application on
less (maybe one) processor(s) than in the re-
ality. Simulators require only one CPU, while
emulating or executing a parallel application
is, most of time, done on several processors;

• the heterogeneity management. Is it possi-
ble to have heterogeneity? If yes, is this het-
erogeneity controllable? In-situ provides a
fix hardware setting with little heterogene-
ity while emulator and even more simulator
provide a way to manage and control a very
high heterogeneity.

What clearly shows table 1 is that each
methodology has advantages and drawbacks. This
means that depending of the experimental goal it
is important to carefully choose the corresponding
methodology and the tool.

4 Example of experimental tools

Several tools have been developed in the recent
years to implement the above methodologies. We

describe (and eventually compare some of them)
here in the context of grid and distributed com-
puting.

4.1 Tools for simulation

There exists tremendous number of simulators
that model CPU or network behavior (see [16] for
a taxonomy). However in the context of grid com-
puting there are two very lively projects respec-
tively GridSim2 [3] and SimGRID3 [13]. They
both share the same goal: simulating a paral-
lel application on a grid/distributed environment.
It allows to create a distributed environment (re-
sources connected by network links) and simulate
tasks and communications onto these resources.
In terms of functionality these two simulators pro-
pose different approaches. In terms of realism,
the network GridSim model uses a packet frag-
mentation method where each packet is sent with
the corresponding delay. This means that the
simulation time is proportional to the size of the
messages as for packet-level simulator such as the
well-known GTNets4. However, contrary to such
low level simulator, GridSim does not provide a
fine modeling (it is not possible to set the TCP
congestion window size for instance) which hin-
der the quality of the simulation. On the other
hand, SimGRID provides a fast method to sim-
ulate the network, where the simulation time is
propositional to the number of events (start or
end of a network stream) while providing at least
the same realism than GridSIM. If a greater real-
ism is required, it is possible to use GTNets within
SimGRID at the cost of a higher simulation time
but without changing the code.

4.2 Emulators

When simulation does not provide enough ac-
curacy, emulation (by executing the real applica-

2http://www.buyya.com/gridsim
3http://simgrid.gforge.inria.fr
4http://www.ece.gatech.edu/research/labs/MANIACS/

GTNetS

5



tion) can help in having more realism.
The first grid emulator was Microgrid [18]. It

allows to emulate the parallel execution of grid ap-
plication using some (possibly one) processor(s).
Each, emulated resource and executes, in a con-
fined way, part of the applications. Some system
calls (such as IO) are intercepted by the Micro-
grid library and emulated according to the mod-
eled environment. Experimental validation show
that Microgrid is able to emulate tens of thou-
sands resources. The main problem with Micro-
grid is that the project is not evolving anymore
and it does not compile on recent systems.

We have designed a tool called Wrekavoc5 [4] to
tackle the problem of emulating a heterogeneous
environment. Wrekavoc addresses the problem of
controlling the heterogeneity of a cluster. The ob-
jective is to have a configurable environment that
allows for reproducible experiments on large set of
configurations using real applications with no sim-
ulation of the code. Given an homogeneous clus-
ter Wrekavoc degrades the performance of nodes
and network links independently in order to build
a new heterogeneous cluster. Then, any appli-
cation can be run on this new cluster without
modifications. However, contrary to Microgrid,
Wrekavoc needs one real CPU per emulated CPU.

We have implemented several methods for de-
grading CPU performance. The first approach
consists in managing the frequency of the CPU
through the kernel CPU-Freq interface. We pro-
pose two other solutions in case CPU-Freq is not
available. One is based on CPU burning. A pro-
gram that runs under real-time scheduling pol-
icy burns a constant portion of the CPU, what-
ever the number of processes currently running.
The other is based on user-level process schedul-
ing called CPU-lim. A CPU limiter is a program
that supervises processes of a given user. Us-
ing the /proc pseudo-filesystem, it suspends the
processes when they have used more than the re-
quired fraction of the CPU.

Limiting latency and bandwidth is done us-
ing tc (traffic controller) based on Iproute2 a pro-
gram that allows advanced IP routing. With these
tools it is possible to control both incoming and
outgoing traffic. Furthermore, the latest versions
(above 2.6.8.1) allow to control the latency of the
network interface.

Wrekavoc is able to limit the amount of mem-
ory available by the processes thanks to the use
of mlock and munlock system call that pins some
memory pages into the physical memory.

The configuration of an homogeneous cluster is

5http://wrekavoc.gforge.inria.fr

made through the notion of islet. An islet is a set
of nodes that share similar limitation. Two islets
can be linked together by a virtual network which
can also be limited or by an intermediate islet (in
this case packets are routed from islet to islet).
The notion of islets then provides a simple way to
describe a virtual topology that emulates a given
heterogeneous environment (possibly a grid) using
an homogeneous cluster.

To validate Wrekavoc, we have compared the
results of our tool on a cluster composed of homo-
geneous nodes with the results obtained on a real
heterogeneous cluster composed by twelve work-
stations (from Pentium II to Pentium IV). We
used several software like Povray, parXXL, some
matrix multiplications algorithm and others par-
allel software to make some comparisons. Results
show that Wrekavoc is very realistic both quanti-
tatively and qualitatively. For instance, concern-
ing parallel image rendering we have used an MPI
program that decomposes a Povray image model
and sends each part of the model to a processor. It
then reassembles the parts of the image when the
processors send them back to it. We have run this
program on our heterogeneous cluster and on the
same emulated cluster using Wrekavoc. Results
show that the amount of work done by each pro-
cessor is the same in both cases. A movie showing
this realism is available at http://wrekavoc.gforge.
inria.fr/html/demo-wrekavoc.avi and a screenshot
of this movie is shown in Fig. 2.

4.3 Real scale experimental tools

There are very few environments that are de-
signed for performing experiments at real-scale in
the domain of grid and distributed computing.
Among these tools we can cite Grid’5000 [12, 2],
Das-3 [5] or PlanetLab [15].

The purpose of Grid’5000 is to serve as an ex-
perimental testbed for research in grid comput-
ing and large-scale systems. In addition to the-
ory, simulators and emulators, there is a strong
need for large scale testbeds where real life ex-
perimental conditions hold. Grid’5000 aims at
building a highly reconfigurable, controllable and
monitorable experimental Grid platform gather-
ing nine sites geographically distributed in France.
Each site hosts from one to 3 clusters that can be
reserved to conduct large-scale experiments. Each
site is connected to the other using a dedicated
network with link of either 1 or 10 Gbit/s band-
width (see Figure 3 for the topology). Grid’5000
features a total of more than three thousands
CPUs and four thousands cores. Each node of

6



Figure 2. Screenshot of the movie show-
ing the parallel rendering of an image
using Povray. The lower part shows the
rendering using a real heterogeneous
cluster. The upper part shows the
same rendering using Wrekavoc that
emulates the heterogeneous cluster.
On the left of each part is the rendered
image. On the right is the processor
repartition. The full movie is available
at http://wrekavoc.gforge.inria.fr/
html/demo-wrekavoc.avi

each cluster is configurable using the Kadeploy6

tool. Kadeploy allows to set-up, custom and
boot the own system of the experimentalist on
all the reserved nodes of a given cluster. The user
can then install desired software, configure and
parametrized the system, and save and retrieve
this environment when needed. Hence for each ex-
periment the user can reconfigure the whole soft-
ware stack from the network protocol to the ap-
plication.

The Dutch project DAS-3 targets the same goal
as Grid’5000 but at a smaller scale (Four clusters
and 270 dual CPUs node). Contrary to Grid’5000
where users can install and configure their own
system, DAS-3 does not provide such configurable
environment. However, Das-3 has been designed
to allow the reconfiguration of the optical network
that interconnects the 4 sites. An on-going project
is two connect these two testbeds at the European
level.

Lastly, PlanetLab is a planet-wide testbed.
The goal of PlanetLab is to enable large-scale
experiments under real world conditions. It has

6http://kadeploy.imag.fr/

Figure 3. Grid’5000 sites interconnection

fewer nodes than Grid’5000 (825) but a larger
number of sites (406). Hence, projects under-
gone on PlanetLab are more oriented to peer-to-
peer, network or distributed algorithms while on
Grid’5000 the focus is more on “cluster of clus-
ters” issues. Each PlanetLab node embeds a soft-
ware package in order to support distributed vir-
tualization. Thanks to this virtualization, differ-
ent experiments, using different but possibly over-
lapping set of nodes (called slices) can be per-
formed concurrently.

5 Conclusion

Computer science is an experimental science.
This is particularly true for grid and distributed
computing where the environments are very hard
to model analytically. A solution to this problem
is to experimentally test, validate or compare the
proposed solutions. However, defining and con-
ducting a good experiment is a difficult task espe-
cially in the context of large-scale systems. In this
paper, we have presented the role and the prop-
erties of experiments in this context. We have
then described three complementary methodolo-
gies (namely simulation, emulation and real-scale)
that allows to perform good experiments. Lastly
we have described and compared several tools that
implement these methodologies. Such tools al-
low researchers to perform experiments in order
to test, validate or compare their proposed solu-

7



tions.

6 Acknowledgement

We would like to thank Martin Quinson for
fruitful discussions on this subject and Olivier
Dubuisson for his work on the validation of
Wrekavock.

References

[1] Algorille Team, Algorithms for the Grid. IN-
RIA Research proposal, July 2006. Avail-
able at http://www.loria.fr/equipes/algorille/
algorille2.pdf.

[2] R. Bolze, F. Cappello, E. Caron, M. Daydé,
F. Desprez, E. Jeannot, Y. Jégou, S. Lanteri,
J. Leduc, N. Melab, G. Mornet, R. Namyst,
P. Primet, B. Quetier, O. Richard, E.-G.
Talbi, and I. Touche. Grid’5000: A Large
Scale And Highly Reconfigurable Experimen-
tal Grid Testbed. International Journal of
High Performance Computing Applications,
20(4):481–494, November 2006.

[3] Rajkumar Buyya and M. Manzur Murshed.
GridSim: A Toolkit for the Modeling and
Simulation of Distributed Resource Manage-
ment and Scheduling for Grid Computing.
CoRR, cs.DC/0203019, 2002.

[4] L.-C. Canon and E. Jeannot. Wrekavoc a
Tool for Emulating Heterogeneity. In 15th
IEEE Heterogeneous Computing Workshop
(HCW’06), Island of Rhodes, Greece, April
2006.

[5] The DAS-3 project: http://www.starplane.
org/das3/.

[6] Peter J. Denning. ACM President’s Let-
ter: What is experimental computer science?
Commun. ACM, 23(10):543–544, 1980.

[7] Peter J. Denning. ACM president’s letter:
performance analysis: experimental com-
puter science as its best. Commun. ACM,
24(11):725–727, 1981.

[8] Peter J. Denning. Is computer science sci-
ence? Commun. ACM, 48(4):27–31, 2005.

[9] Peter J. Denning, D. E. Comer, David Gries,
Michael C. Mulder, Allen Tucker, A. Joe
Turner, and Paul R. Young. Computing as a
discipline. Commun. ACM, 32(1):9–23, 1989.

[10] D. D.Johnson. A theoretician’s guide to
the experimental analysis of algorithms,
2001. AT&T Labs Research. Avail-
able from http://www.research.att.com/∼dsj/
papers/experguide.ps.

[11] Dror G. Feitelson. Experimental Computer
Science: The Need for a Cultural Change.
Internet version: http://www.cs.huji.ac.il/
∼feit/papers/exp05.pdf, December 2006.

[12] The Grid 5000 project: http://www.grid5000.
org/.

[13] Arnaud Legrand, Loris Marchal, and Henri
Casanova. Scheduling Distributed Applica-
tions: the SimGrid Simulation Framework.
In CCGRID, pages 138–145, 2003.

[14] Paul Luckowicz, Walter F. Tichy, Ernst A.
Heinz, and Lutz Prechelet. Experimental
evaluation in computer science: a quantita-
tive study. Technical Report iratr-1994-17,
University of Karlshrue, Germany, 1994.

[15] Planet lab: http://www.planet-lab.org/.

[16] Anthony Sulistio, Chee Shin Yeo, and Rajku-
mar Buyya. A taxonomy of computer-based
simulations and its mapping to parallel and
distributed systems simulation tools. Softw.,
Pract. Exper., 34(7):653–673, 2004.

[17] Walter F. Tichy. Should Computer Scientists
Experiment More? Computer, 31(5):32–40,
1998.

[18] Huaxia Xia, Holly Dail, Henri Casanova, and
Andrew A. Chien. The MicroGrid: Us-
ing Online Simulation to Predict Application
Performance in Diverse Grid Network Envi-
ronments. In CLADE, page 52, 2004.

[19] M.V. Zelkowitz and D.R. Wallace. Ex-
perimental models for validating technology.
Computer, 31(5):23–31, May 1998.

8


