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ABSTRACT
The Resource and Job Management System (RJMS) is a cru-
cial system software part of the HPC stack. It is responsible
for efficiently delivering computing power to applications in
supercomputing environments. Its main intelligence relies
on resource selection techniques to find the most adapted
resources to schedule the users’ jobs. Improper resource se-
lection operations may lead to poor performance executions
and global system utilization along with an increase of the
system fragmentation and jobs starvation. These phenom-
ena play a role in the increase of the platforms’ total cost of
ownership and should be minimized. This paper introduces
a new method that takes into account the topology of the
machine and the application characteristics to determine the
best choice among the available nodes of the platform based
upon their position within the network and taking into ac-
count the applications communication pattern. To validate
our approach, we integrate this algorithm as a plugin for
Slurm, a popular and widespread HPC resource and job
management system (RJMS). We assess our plugin with dif-
ferent optimization schemes by comparing with the default
topology-aware Slurm algorithm using both emulation and
simulation of a large-scale platform, and by carrying out
experiments in a real cluster. We show that transparently
taking into account the job communication pattern and the
topology allows for relevant performance gains.
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1. INTRODUCTION
Computer science is more than ever a cornerstone of sci-

entific development, as more and more scientific fields resort
to simulations in order to help refine the theories or conduct
experiments that cannot be carried out in reality because
their scale or their cost are prohibitive. Currently, such
computing power can be delivered only by parallel archi-
tectures. Larger and larger machines are being built around
the world, and being able to display such a machine has be-
come a challenge for states and nations, scientifically as well
as politically.

However, harnessing the power of a large parallel com-
puter is no easy task, due to several factors. First, this
type of computer features usually a huge amount of com-
puting nodes and this scale has to be taken into account
when developing applications. Then, the nodes architecture
has become more and more complex, as the number of cores
per node is in constant increase from one generation of CPU
to the next. The memory hierarchy becomes also more com-
plex, as various levels of cache are now available and the rise
of MCDRAM or NVRAM will make things even more com-
plicated in the future. Indeed, an efficient exploitation of all
these types of memories is possible only if the application
developer takes it into account.

One way of dealing with such complexity would be to
consider the application behavior (e.g. its communication
pattern, or its memory accesses pattern) and to deploy it on
the computer accordingly. To this end, the most widespread
technique is to determine the list of cores on which the ap-
plication has to be run on, and then to bind the processes
on these cores so as to minimize/maximize a predetermined
criterion (a.k.a. a metric). Such a technique has already
been used and investigated to improve the performance of
parallel applications [14].

However, a large parallel machine is often shared by many
users running their applications concurrently. In such a case,
an application execution will depend on its nodes allocation,
as determined by the Resource and Job Management Sys-
tem (RJMS). Most of the time RJMS work in a best-effort
fashion, which can lead to suboptimal allocations. That is,
such allocations might be able to fulfill an application re-
quirements in sheer terms of resources (number of CPUs,
amount of memory) but might also fail to provide an envi-
ronment tailored for an optimized execution. For instance, if



the application processes communicate a lot between them-
selves, a set of nodes physically allocated apart from the rest
might degrade performance severely. Furthermore, even if
the given allocation is contiguous, taking into account pro-
cess affinity leads to even better performance.

As a consequence, our goal is to apply to resource man-
agement the same technique that has proved its efficiency
for applications deployment and execution, that is, taking
into account an application’s behaviour in the process of
reserving and allocating the needed resources (computing
nodes). This means more criteria to be used and considered
by the RJMS when a user submits its request to the system.
Actually, taking in account an application behaviour when
allocating nodes pushes even further the idea of using an
application information to improve its execution.

In this paper, we shall detail the improvements we made
to an existing RJMS in order to enable it to select the most
suitable set of nodes for a given parallel application. To this
end, we extend our TreeMatch algorithm and integrate
it in the Slurm software to improve its ability to match
the resources to the actual application communication pat-
tern. This paper is organized as follows: Section 2 gives an
overview of the context and background of this work. Sec-
tion 3 introduces all the software leveraged by this work be-
fore giving more technical insights about our topology-aware
job allocation policy. Then Section 4 shows and discusses the
results obtained while related work are listed in Section 5.
Finally, Section 6 concludes this paper.

2. ISSUES OF RESOURCE ALLOCATION
IN PARALLEL COMPUTERS

2.1 The Sharing of Resources
A large parallel computer is to some extent a tool that has

to be exploited and used. A reason as why these comput-
ers increase in size and scale stems from the fact that some
applications grow accordingly. Therefore, an adequate plat-
form has to match these needs. However, a substantial part
of the time, this large platform not only works in a time-
sharing mode, but also in a space-sharing mode. Indeed, in
order to exploit the hardware in a satisfactory way, several
users share it, leading to a potentially very large number
of users. An interactive access is therefore out of the ques-
tion. To this end, the users have to submit their requests
in terms of resources to a system called the Resource and
Job Manager System (sometimes called a Batch Scheduler
for short). This system’s goals are threefold: 1. to central-
ize and analyze all the received requests, 2. to allocate the
most relevant type of resources (CPU, memory or network
switches for instance) able to fulfill these demands and 3. to
execute the application (a.k.a. the job) submitted by a user
on the set of selected resources.

There are many and sometimes conflicting criteria that
should be optimized by the RJMS. Then the question that
pertains to this selection and allocation of resources is to
choose one. For instance, one metric could be the system
throughput, that is, the amount of jobs executed during
a defined time step, whilst another could be the use (CPU
load) of the system. All these metrics are relevant and which
to use/optimize depends on a given point of view. That
is, an administrator’s point of view might diverge from a
user’s point of view. Indeed the users hardly possess a global

view of the system (in most of cases) as opposed to the
administrators, hence the discrepancy.

2.2 Finding an Optimization Criterion
In this work, we focus on a metric relevant for users: the

flow time (or turnaround time) that is, the time his/her job
remains in the system. We believe it to be the most ap-
pealing one for a user seeking to gather results and get the
outcome of his/her application as soon as possible. The
question that now arises is how to speed up an applica-
tion execution? Let us suppose that the developer has al-
ready optimized his/her application as much as it is possi-
ble. What are the means left to even speed things further
up? One answer lies in the ecosystem of the application,
that is, in the way the application is deployed and executed.
In a previous work, unrelated to resource management and
job scheduling, we showed that by taking into account an
application behaviour when deploying it on the various pro-
cessing entities (CPUs, cores, threads, etc.), it is possible to
improve its global execution time [18, 15]. Actually, our goal
is to improve the way an application accesses its data. This
data locality can be improved in several ways, but we chose
so far to use the communication pattern of the application,
that is, an expression of the amount of bytes/messages ex-
changed by the application processes. Then, we try to match
this pattern to the underlying architecture by following the
principle that the more processes are communicating with
the others, the closer the cores they should be bound to.
This can be done by several techniques but usually involves
process binding and rank reordering [19].

However, the execution still depends on the set of re-
sources allocated to the application by the RJMS. Since no
guarantee is given that this allocation will be compliant with
the application communication pattern, some negative side
effects may occur. For instance, a subset of nodes might
be physically far from another subset, thus impacting the
communication between processes belonging to each sub-
set. As a consequence, an allocation that takes into account
an application communication scheme leads to performance
improvements. To that end, we consider a well-known and
widespread RJMS called Slurm and design a new plugin
based on the TreeMatch algorithm. So far, TreeMatch
was used to compute a matching between the application
processes and the physical cores available. Now, we use it
to determine a nodes allocation before deploying the appli-
cation.

Hence, to improve the flow time we aim at reducing the job
execution time of the submitted application by improving its
mapping.

2.3 A Motivating Example
The goal of this work is to apply mapping techniques (e.g.

TreeMatch) before the execution of the application pro-
cesses and compare different approaches. We assume that
the communication pattern of the application is known at
submission time. Such a communication pattern can be
gathered with application monitoring (see Section 3.1.2) or
by analyzing the structure of the parallel algorithm (for in-
stance if we are dealing with a stencil code we know which
processes are communicating together and the amount of ex-
changed data). In any case, we assume that this communica-
tion pattern remains unchanged from one run to the other.
It is not the case for all parallel applications but a large



Proc. 0 -1 2 - 3 4-5 6-7
0-1 0 20 0 2000
2-3 20 0 1000 0
4-5 0 1000 0 10
6-7 2000 0 10 0

Table 1: Affinity matrix for 8 processes (4 groups of 2
processes each). Shows the amount of bytes/messages ex-
changed by the application processes

amount of applications comply to these models (for instance,
dense linear applications and kernels, stencil codes, regular
mesh partitioning based applications, etc. ). When the com-
munication pattern changes from one run to an other, the
proposed solution is not applicable and the user has to fall
back to a standard allocation scheme: mixing the proposed
topology-aware mapping with other types of mapping is to-
tally acceptable.

Several possibilities are available. The most obvious one
is to not use TreeMatch at all and let the Slurm environ-
ment deal with the topology by itself. The second possibility
is to apply TreeMatch just before the job execution, once
Slurm has selected the resources. Another possibility is to
use TreeMatch inside the selection mechanism of Slurm.

An example of the difference between these approaches is
depicted by Fig. 1. Let us suppose that we have 6 nodes
composed of two computing entities each. We assume that
node n3 is not available as computing entities 6 and 7 are
already used by an other application, hence unavailable for
a job allocation. Let us assume that a newly submitted
job requests 4 nodes. For the sake of simplicity, we group
processes in pairs (0-1, 2-3, etc.) and hence each pair of
processes shall be assigned to one node. The affinity matrix
is given in table 1.

If Slurm has to allocate resources for these 8 processes,
it will look for the smallest number of switches able to fulfill
the request. In this case, it will require to use the whole
tree. Then, it will allocate processes from left to right in-
side nodes in a round-robin fashion. It will allocate nodes
0, 1, 2 and 4 for the job and then map processes onto the
computing entities. We can see that such an allocation is
rather costly communication-wise as groups of processes are
spread onto the entities and no optimization is enforced in
this regard. It is therefore possible to call TreeMatch (see
Section 3.1.3) to optimize the process mapping on these en-
tities accordingly to the affinity matrix. By doing so, the re-
sulting mapping is: group 0-1 on n0, group 6-7 on n1, group
2-3 on n2 and 4-5 on n4. This is the best possible solution
once the resources have been allocated. However, group 2-3
communicates a lot with group 4-5. With such an alloca-
tion, all the communications will transit through the root of
the topology, a costly solution in terms of hops. However,
a better outcome is achievable if TreeMatch performs the
resource allocation. Given such a topology and the above
affinity matrix, TreeMatch will allocate group 0-1 on n0,
group 6-7 on n1, group 2-3 on n4 and 4-5 on n5 since there
are constraints on node n3.

In this case, all the communication between group 2-3 and
group 4-5 will take only 2 hops instead of 4 and therefore
the communication cost is even more reduced.
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Figure 1: Tree topology of 6 nodes of 2 processing units with
one unavailable nodes: n3

3. A TOPOLOGY-AWARE RESOURCE AND
JOB MANAGEMENT SYSTEM

3.1 Software
In this section, we introduce with more details the vari-

ous software elements that we use to implement the work
described in this paper. First, we shall describe Slurm, our
target RJMS. Then, we shall explain the method employed
to gather information about the application communication
scheme (a.k.a. our affinity matrix). Then, we give more
specific information about the TreeMatch algorithm and
the constraints mapping extension we have implemented.

3.1.1 SLURM
We implement a new topology-aware placement algorithm

within the open-source resource and job management sys-
tem Slurm [30]. Slurm performs workload management
on six of the ten most powerfull computers in the world of
the Top500 list1 including the system ranked number one,
Tianhe-2, which features 3,120,000 computing cores.

Slurm is specifically designed for the scalability require-
ments of state-of-the-art supercomputers. It is based upon
a centralized server daemon, slurmctld also known as the
controller, which communicates with client daemons slurmd
running on each computing node. Users can request the
controller for resources to execute interactive or batch ap-
plications, referred to as jobs. The controller dispatches the
jobs on the available resources, whether full nodes or partial
nodes, according to a configurable set of rules. The Slurm
controller also features a modular architecture composed of
plugins responsible for different actions and tasks such as:
job prioritization, resources selection, task placement or ac-
counting.

The resource selection process within SLURM takes place
as part of the global job scheduling procedure. In particular,
this procedure makes use of the plugin/select, which is re-
sponsible for allocating the computing resources to the jobs.
Other plugins are used to facilitate and extend this pro-
cedure such as plugin/topology which takes into account
the network topology of the cluster, the plugin/gres which
can extend the allocation to different generic resources and
the plugin/task which provides the isolation and possible
binding of tasks on the resources.

There are various resource selection plugins within Slurm
that can take into account the specificities of the underly-
ing platforms’ architecture such as linear and cons_res.

1http://top500.org/lists/2015/11/



The select/linear plugin allows the allocation of complete
nodes for jobs, using simple and scalable best-fit algorithms,
however, the lower granularity of allocatable unit is the node
which is quite limiting for new multicore and manycore ar-
chitectures. The select/cons_res plugin is ideal for this
type of architectures where nodes are viewed as collections
of consumable resources (such as cores and memory). In this
plugin, nodes can be used exclusively or in a shared mode
where a job may allocate its own resources different than
other jobs using the same node. The algorithms within the
cons_res plugin are also scalable, featuring best-fit place-
ment of jobs but they are more complex than select/linear

since a finer granularity of allocatable resources is taken into
account. One of the first version of the select/cons_res

plugin is described in [2].
Our studies and developments as described in the follow-

ing sections are based upon the select/cons_res plugin
therefore we try to analyze a bit more some important inter-
nals of this plugin. The internal representation of resources
and availabilities within Slurm is made using bitmap data
structures. In the case of the linear plugin only a node
bitmap is needed whereas in the case of the cons_res plugin,
besides the node bitmap, a core bitmap is used to represent
internal node resources availabilities. Within the cons_res

plugin, the usage of node and core bitmaps is leveraged effi-
ciently (e.g. kept separated in different contexts) in order to
keep a high scalability for the selection algorithms. Another
functionality of the cons_res plugin is the distribution of
tasks within the allocated resources, which is an important
feature for the optimal performance of parallel applications.

Slurm provides configuration options to make the re-
sources selection network topology-aware through the ac-
tivation of the topology plugin (topology/tree plugin). A
particular file describing the network topology is needed and
the job placement algorithms favor the choice of groups of
nodes that are connected under the same network switch.
The goal of the Slurm topology-aware placement algorithms
is to minimize the number of switches used for the job and
provide a best-fit selection of resources based on the net-
work design. This feature becomes mandatory in the case of
pruned butterfly networks where no direct communication
exists between all the nodes. We use this plugin in our ex-
periments. The scalability and efficiency of topology-aware
resource selection of Slurm has been evaluated in [10].

Finally since the cons_res plugin deals with multi-core
architectures the isolation and binding of tasks upon the
used resources is an important feature to guarantee a min-
imal interference between jobs sharing nodes. This feature
takes place through the usage of the task/affinity or the
task/cgroup plugin which use linux kernel mechanisms such
as cgroups and cpusets or APIs such as hwloc [5] in order to
provide the described isolation and binding.

3.1.2 Application Monitoring
For this work we need to model an application communi-

cation scheme. The way communications occur describes the
affinity between processes. For the affinity matrix, we gather
the communication pattern thanks to a dynamic monitoring
component we integrate in Open MPI as an MCA (Modu-
lar Component Architecture) framework called pml (point-
to-point management layer). This component, when acti-
vated at launch time, monitors all the communications at
the lowest level in the Open MPI stack (i.e. once collec-

tive communications have been decomposed into point-to-
point operations). Therefore, as opposed to the standard
MPI profiling interface (PMPI) approach where the MPI calls
are intercepted, we monitor in our case the actual point-to-
point communications that are issued by Open MPI, which
is much more precise: for instance, we can see the tree used
for aggregating values in a MPI_Gather call.

Internally, this component uses the low-level process ids
and creates an associative array to convert sender and re-
ceiver ids into ranks in MPI_COMM_WORLD. At the end of the
execution, each process dumps its local view into a file and
a script aggregates all the local views at a given process to
get the full communication matrix.

3.1.3 TreeMatch
TreeMatch [15] [14], is a library for performing pro-

cess placement based on the topology of the machine and
the communication pattern of the application, for multicore,
shared memory machines as well as distributed memory ma-
chines. It computes a permutation of the processes to the
processors/cores in order to minimize the communication
cost of the application.

To be more specific, it takes as input a tree topology
(where the leaves stand for computing resources and internal
nodes correspond to switches or cache levels) and a matrix
describing the graph affinity between processes. The topol-
ogy information is supplied either by the RJMS or by tools
such as hwloc or netloc2. A hierarchy is extracted from
this graph so that it matches the hierarchy of the topology
tree. The outcome is a mapping of the processes onto the
computing resources. The objective function optimized by
TreeMatch is the Hop-Byte [31], that is, the number of
hops weighted by the communication cost:

Hop-Byte(σ) =
∑

1≤i<j≤n

ω(i, j)× d(σ(i), σ(j))

where n is the number of processes to map, σ is the process
permutation output produced by TreeMatch (process i is
mapped on computing resource σ(i)), A = (ωi,j) 1 ≤ i ≤
n, 1 ≤ j ≤ n is the affinity matrix between these entities
and hence ω(i, j) is the amount of data exchanged between
process i and process j and d(p1, p2) is the distance, in num-
ber of hops, between computing resources p1 and p2. In a
previous work [15], we have shown that minimizing this met-
ric allows for application runtime reduction for tree-based
topologies.

An important feature of TreeMatch is that it only uses
the structure of the tree and does not require a precise val-
uation of the speed of the links in the topology. Therefore,
TreeMatch does not require a performance assessment of
the system on which the application is going to be executed.
We believe this to be a strong advantage, as gathering such
information is error-prone, might be incomplete and subject
to inaccuracy.

In order to tackle the fact that not all resources are avail-
able for mapping we enhance TreeMatch from [15] to take
constraints into account. When not all leaves are available
for mapping (because some of them are already used by other
applications), it is possible to restrict the leaves onto which
processes can be mapped such that only a subset of the nodes
is used for the mapping. To do so, we use a recursive k-

2https://www.open-mpi.org/projects/netloc



0 1 2 3 4 5 6 7

0 3 1 2 No constraints

0 3 1 2 Constraints

(a) Input tree topology example.

Proc. 0 1 2 3
0 0 5 10 100
1 5 0 20 5
2 10 20 0 10
3 100 5 10 0

(b) Affinity matrix example.

Figure 2: Example of TreeMatch output (green square)
based on the affinity matrix and the tree topology. The
first line is without constraints: in this case the hop-byte
metric is 360. The second line is when only cores with even
numbers are allowed to execute processes (hop-bye is 660 in
this case)

partitioning algorithm where we add dummy processes that
are forced to be mapped onto unavailable resources while
real processes are mapped to actual available resources.

In Fig. 2, we describe an example where we map 4 pro-
cesses on an architecture featuring 8 computing resources
and structured as a 3-levels tree. We display 2 cases: one
without constraints and the other where only cores with even
numbers are available for mapping.

3.2 Job Allocation Strategy
We implement a new selection option for the Slurm

cons_res plugin. In this case the regular best-fit algorithm
used for nodes selection is replaced by TreeMatch.

To this end we need to provide three pieces of information:
a job affinity matrix, the cluster topology and the constraints
due to other jobs allocations.

The communication matrix is provided at job submission
time through a distribution option available in the srun com-
mand:
srun -m TREEMATCH=/comm/matrix/path cmd

#SBATCH -m TREEMATCH=/comm/matrix/path.
Its location (path) is then stored by the Slurm controller
in the data structure describing a job and can be used by
TreeMatch for allocation.

As for the global cluster topology, it is provided to the
controller by a new parameter in the configuration file:
TreematchTopologyFile=/topology/file/path.

Whenever a job allocation is computed, this topology is
completed by constraints informations. These constraints
are provided by the nodes and cores bitmaps used by the
Slurm controller to describe the cluster utilization. We need
to translate this topology description into the TreeMatch
topology.

TreeMatch considers computing units as selection gran-
ularity and assign them an id considering the global topol-
ogy. It must be the same for the Slurm selection plu-
gin using TreeMatch. Hence we use the cons_res plu-
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Figure 3: Comparison of TreeMatch overhead (s) for dif-
ferent job size on a cluster with 80640 cores between methods
with and without subtrees

gin with the configuration SelectTypeParameters=CR_CPU

or CR_Core. In this case Slurm uses a cores bitmap de-
scribing precisely the location of unused CPUs inside nodes
relatively to the nodes bitmap. Therefore, we need to trans-
late Slurm local CPU ids into global TreeMatch CPU
ids. Then, we use the constraints feature of TreeMatch
(described in Section 3.1) to only use CPUs not already al-
located to a running job. The CPUs chosen by TreeMatch
must then be translated again in new bitmaps for Slurm to
use.

However, in the case of a large topology, our algorithm
overhead increases: the larger the topology, the longer the
TreeMatch algorithm takes. To reduce this time, we also
implement an alternative method which first finds a subtree
in the global topology. Then, TreeMatch uses this subtree
to rapidly choose the job allocation. To find this subtree we
search through the topology tree from the leaves up to the
root and from left to right. We stop as soon as we find a
node with enough unused CPUs. For instance, if we consider
Fig. 1 and we assume that node n0 is occupied instead of
n3, then the first tree with 2 CPUs is n1 and if we need 6
CPUs, we shall select subtree t1.

Fig. 3 compares the overhead of this algorithm with and
without subtree utilization on a cluster featuring 80640 cores.
It shows that, for jobs using less than 4096 cores, the sub-
tree technique reduces the overhead. In any case both ap-
proaches takes less than 1s. At some point, the time in-
creases linearly with the application size. However, as shown
in the experiments (Sec. 4), the TreeMatch overhead is
largely compensated by the execution time gain. Moreover,
for large applications, it is possible to compute the map-
ping at the node level (instead of computing it at the core
level): hence a full-size application (80640 cores) requires
5040 nodes which leads to an overhead of a few seconds.

For the experiments described in Section 4 we need to
modify the jobs run times dynamically according to their al-
location. To do this we compute for each job both the Slurm
allocation and the TreeMatch one. Then we compute R,
the ratio between their hop-byte cost (c.f. Section 3.1). We
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model job runtimes with computation times and communi-
cation times: T = Tcalc + Tcomm. Let α be the ratio of
communication time of the whole runtime: Tcomm = αT .
Hence, T = αT + (1 − α)T . TreeMatch impacts only
the communication cost. Therefore, we model the execution
time T ′ using the TreeMatch allocation with:

T ′ = Tcalc +RTcomm = RαT + (1− α)T

= (1 +Rα− α)T

We validate this model with the minighost application [3]
that computes a stencil in various dimensions. We execute
84 runs with various settings (number of processors, differ-
ent parameters) using a round-robin placement or a map-
ping computed with TreeMatch. The minighost output
also provides the percentage of communication in a run. In
our case, this ranges from 5% to 45%. Fig. 4 shows the vali-
dation of the above model. On the x-axis is the TreeMatch
runtime and on the y-axis is the predicted time based on the
ratio R of the hop-byte of the TreeMatch mapping and the
Slurm mapping, α the percentage of communication and
T the measured execution runtime. We see a very strong
correlation between both timings even though the modeled
timings tend to be slightly larger than the real ones.

4. EXPERIMENTAL VALIDATION

4.1 Emulation Experimental Setup
Our experiments have been carried out on the Edel clus-

ter from the Grid’5000 Grenoble site. Edel is composed of
72 nodes featuring 2 Intel Xeon E5520 CPUs (2.27 GHz, 4
cores/CPU) and 24GB of memory.

We emulate Curie (a TGCC cluster with 5040 nodes and
80640 cores3) using a Slurm internal emulation technique
called multiple-slurmd initially described and used in [10].
Slurm uses deamons: one slurmctld as the controller and
one slurmd on each node. To emulate a larger cluster, we
use 16 Edel nodes and launch 315 slurmd daemons on each
node. We can consequently submit jobs as if we were work-
ing on the Curie cluster, emulating all the job scheduling
overheads. We use simple jobs (just performing a call to
sleep) in order to provide the necessary time and space il-
lusion to the controller that a real job is actually executing.

3http://www-hpc.cea.fr/en/complexe/tgcc-curie.htm

We base our experiments on a Curie workload trace taken
from the Parallel Workload Archive4. We have two sets
of jobs. The first one is to fill the cluster, and the jobs
belonging to this set are always scheduled using Slurm in
order to have the same starting point for all the experiments.
The second set, called the workload, is the one we actually
use to compare the different strategies.

All the measurements are done through the Slurm loggin
system which gives us workload traces similar to the ones
we obtaine from Curie.

Finally, to use TreeMatch we need to provide each job
with a communication matrix. For these experiments we
use randomly generated matrices featuring various sparsity
rates. Indeed, the name of the application does not appear in
the workload trace and therefore we cannot know the gain an
optimized mapping would yield for a given entry in the trace.
However, this depends on the communication ratio of the
application (the higher this ratio, the larger is the possible
gain in terms of runtime) and its communication pattern.
Here, based on recent results [8, 11], we design the matrices
such that the gain is similar to real-world applications. On
average, the observed gain is 4% (resp. 11% and 18%) for a
communication ratio of 10% (resp. 30% and 50%).

4.2 Emulation Results
We compare 4 cases : the classical topology-aware Slurm

selection (SLURM), the same but using TreeMatch for
process placement after the allocation process and just be-
fore the execution starts (TM-A), TreeMatch used both
for the allocation process and for the process placement
(TM-I) and finally the same but using the subtree technique
to reduce the overhead (TM-Isub).

To evaluate our results, we use several metrics (two are
for the whole workload and two are for each individual job):

• makespan: this is the time taken between the submis-
sion of the first job and the completion of the last job
of the workload.

• utilization: this is the ratio between the CPUs used
and the total number of CPUs in the cluster during
the execution of the workload.

• job flowtime (or turnaround time): this is the time
between the submission and the completion of a given
job.

• job runtime: this is the time between the start and the
completion of a given job.

In our case, the workload comprises 60 jobs. To keep the
duration reasonable we decrease the jobs runtimes by a 50%
factor. Figure 5 describes the results obtained for this work-
load and two values of α (1/3 and 1/2). Figure 5a shows
that using TreeMatch to reorder the process ranks reduces
the makespan but using it inside Slurm to allocate nodes
decreases it even more. This is what is shown in Fig. 1:
incorporating TreeMatch in Slurm gives more room for
optimization as the mapping is not constraints by the allo-
cation. Moreover, the subtree optimization leads to compa-
rable results than without the optimization. This is due to
the fact that in this case the makespan is determined by a
small set of jobs and hence the impact of this optimization

4http://www.cs.huji.ac.il/labs/parallel/workload/



Com SLURM TM-A TM-Isub TM-I
50% 8318 6407 6073 6077
33% 8316 7502 6821 6887

(a) Makespan

Com SLURM TM-A TM-Isub TM-I
50% 33% 42% 44% 44%
33% 33% 36% 40% 39%

(b) Utilization

Figure 5: Workload Metrics for the different strategies and
different amount of communication ratio

TM−Isub 22.50 s / 1.16 38.20 s / 1.44 205.85 s / 1.09

[5 s, 18 s] TM−I 15.70 s / 1.24 183.35 s / 0.95

[14 s, 20 s] [7 s, 13 s] TM−A 167.65 s / 0.76

[20 s, 253 s] [6 s, 213 s] [4 s, 185 s] SLURM

33% of communication

(a) 33% of communication

TM−Isub 10.20 s / 1.19 47.83 s / 1.47 322.23 s / 1.27

[4 s, 14 s] TM−I 37.63 s / 1.24 312.03 s / 1.06

[12 s, 23 s] [3 s, 11 s] TM−A 274.40 s / 0.86

[27 s, 396 s] [13 s, 306 s] [11 s, 307 s] SLURM

33% of communication

(b) 50% of communication

Figure 6: Statistical comparison of selection methods: flow
time

is not visible for this metric. We also see that the larger the
communication ratio the greater the gain, this is expected as
TreeMatch optimizes communication only. This is tested
through simulation in Section 4.3.

Figure 5b also shows that for the same submission work-
load, TreeMatch improved the resource utilization.

In Fig. 6 and Fig. 7, we use paired comparisons between
different strategies for respectively jobs flowtime and jobs
runtime. Here, we consider job-wise metrics, therefore we
want to understand if, when we average all the jobs, a strat-
egy turns out to be better than another. Each strategy is
displayed on the diagonal. On the upper right, we have the
average difference between the strategy on the column and
the one on the row and the geometric mean of the ratios.
For instance, in Fig. 6a, we see that on average the job flow-
time is 183.35s faster with TM-I than with SLURM and the
average ratio is 0.95. On the lower left part, we plot the
90% confidence interval of the corresponding mean. The in-
terpretation is the following: if the interval is positive, then
the strategy on the row is better than the strategy on the
line with a 90% confidence. In this case, the correspond-

TM−Isub 18.90 s / 1.20 37.45 s / 1.54 200.17 s / 1.08

[4 s, 14 s] TM−I 18.55 s / 1.28 181.27 s / 0.90

[14 s, 20 s] [9 s, 14 s] TM−A 162.72 s / 0.70

[13 s, 252 s] [3 s, 212 s] [−2 s, 176 s] SLURM

33% of communication

(a) 33% of communication

TM−Isub 7.03 s / 1.22 48.43 s / 1.54 317.10 s / 1.17

[3 s, 11 s] TM−I 41.40 s / 1.27 310.07 s / 0.96

[13 s, 23 s] [6 s, 13 s] TM−A 268.67 s / 0.76

[22 s, 383 s] [6 s, 303 s] [2 s, 305 s] SLURM

33% of communication

(b) 50% of communication

Figure 7: Statistical comparison of selection methods: run-
time

ing mean is highlighted in green. If the interval is negative
the strategy on the line is better than the one on row and
the corresponding mean is highlighted in red. Otherwise,
we cannot statistically conclude with a 90% confidence on
which strategy is the best and we do not highlight the corre-
sponding mean. For example, on Figure 6a we can see that
using TreeMatch in SLURM is better than not using it.
Moreover, here we see that using the subtree optimization
improves the metric. For all the cases we see that TM-Isub
is better than TM-I that is better than TM-A. Therefore,
restricting the usage of TreeMatch improves the perfor-
mance as the gain in computing a solution overcome the
loss in terms of quality of this solution.

Moreover, both flowtime and runtime using TreeMatch
in Slurm are shorter than using TreeMatch after Slurm,
with a ratio between 1.44 and 1.54. We can also see that
the more an application communicates, the smaller are the
average gaps. For example, between TM-I and TM-Isub
(with a 33% of communication ratio), the average difference
is 22.5 s, but for a 50% ratio it is 10.2s. In these experiments,
the cluster is already full when submitting the first jobs.
Therefore, a part of their flowtime corresponds to the wait
for a free allocation.

Figure 7 shows the comparison of jobs runtimes. We ob-
serve similar behavior except that the confidence interval
between SLURM and TM-A does not allow to conclude with
90% confidence that TM-A is better than SLURM.

Through these experiments we observe that using Tree-
Match in the allocation process induces no negative effects
and improves the global use of a cluster. Moreover, from a
user point of view, using TreeMatch can also be profitable
by decreasing the runtime of his/her jobs.

4.3 Simulation Results
As the experiments done in the above section are carried
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Figure 8: Average flowtime using the Curie trace with different strategies and various percentage of communication

out through emulation, they are very long to compute (as
long as the real execution times). In order to cover a larger
set of test cases and a longer time-scale we design a simulator
that simulates both the job selection part and the job exe-
cution part. Our simulator is an event-based one that reads
the machine topology and the job submission trace workload
and computes the start time and end time of each job based
on its duration (given by the workload) and the allocation.
For the job selection step, we implement the same algorithm
than we use in the above section and the time to compute
the allocation is based on the duration of TreeMatch when
it is used or is set to 2 seconds when Slurm is used. For
the execution time part, we use the formula shown in Sec-
tion 4.1 if we use TreeMatch. Otherwise, the duration
given by the Curie trace is used. It is accurate enough to
provide makespan duration with an average absolute error
of less than 3% for Figure 5a.

The experiments described here represent more than 12
millions node-hours. Note that allocations above 1 million
node-hours are only given to application projects proposal
by supercomputing centers and never to software stack op-
timization projects 5, hence justifying the use of simulation.

Figure 8a shows the average flow of the jobs in the case
where the machine is already full of jobs (that have all been
scheduled using the regular Slurm strategy). We group the
measurements by simulation duration (i.e. for group 50, we
consider only the jobs submitted during the first 50 hours):
we go from 1 hour (365 jobs) to 100 hours (13687 jobs).
On the x-axis we display the different percentage of com-
munication (from 10% to 50%) and we have 4 strategies:
the plain Slurm, TreeMatch applied at the beginning of
the job to map processes to resources after Slurm has allo-
cated the nodes (TM-A), and TreeMatch used in Slurm
to compute the allocation and the mapping using the mini-
mal subtree (TM-Isub), or 3 levels above the minimal sub-
tree (TM-Isub+3). We see that the impact of TreeMatch
on the flow increases with the duration of the simulation
because at the beginning of the simulation, as the machine
is full, the flowtime depends mainly on the time a job has
to wait before starting, while as time goes the impact on
the improvement of the mapping due to TreeMatch accu-
mulates. Here, we do not see much difference between the

5See PRACE core hours award for instance: http://www.
prace-ri.eu/hermit-awardees

different strategies involving TreeMatch because there is
less room for optimization when the machine is fully utilized.
However, the results are consistent, in terms of quality with
the emulation results presented in the previous section.

Figure 8b shows the average flow of the jobs in the case
where the machine is totally empty. In this case, we see
that the gain with TreeMatch increases and appears ear-
lier which corroborates the hypothesis made in the previous
paragraph. Moreover, as we have more opportunities for op-
timization we see that using TreeMatch in Slurm is more
beneficial than using it just before the job execution. We
also see a large gap for hour 5 because in the workload a
large job (32768 cores) is submitted at 8461s, that takes a
long time to schedule and that uses a substantial part of the
machine, thus impacting all the subsequent jobs.

As in the previous section, we see that even with a small
average gain on each jobs (4% for the 10% communication
ration case to 17% for the 50% communication ratio), we are
able to achieve very large gain on the overall. This is due to
the fact that these gains accumulates during the workload
lifetime. We therefore expect even greater gains on real set-
tings as the operational lifetime of a real machine is much
longer than the experiments done here.

5. RELATED WORKS AND DISCUSSION
The idea of using the most adequate hardware resource

to a specific application is not new and has been explored
in previous work. It has been particularly popular in the
context of grids environments ([17], [27], [25]) where it is
important to select the best set of resources (clusters in this
case) to use. Such work try to reduce the impact of WAN
communication in grids but do not address the deeper details
of the physical topology, such as NUMA effects or cache
hierarchy for instance.

More recently, some works have targeted a specific type
of applications, that is, MapReduce-based applications. For
instance, the TARA [16] uses a description of the application
to allocate the resources. However, this work is tailored for
a very specific class of applications and does not address
hardware details.

The mapping of a parallel applications’ tasks to the phys-
ical processors based on the network topology can lead to
important performance improvements [4]. Network topol-
ogy characteristics can be taken into account by the sched-
uler [20] so as to favor the choice of group of nodes that are



placed on the same network level, connected under the same
network switch or even placed close to each other so as to
avoid long distance communications. This kind of feature is
taken into account by most of open-source and proprietary
RJMSs. However even if most of them use the characteristics
of the underlying physical topology, they eventually fail to
take into consideration the application behaviour when allo-
cating resources and this is something that this work specif-
ically addresses. HTCondor (formerly Condor) leverages a
so-called matchmaking approach [23] that allows it to match
the applications needs to the available hardware resources.
However, the application behaviour is not part of this match-
making and HTCondor targets both clusters and networks
of workstations. Slurm [30], as previously described, pro-
vides an option to minimize the number of network switches
used in the allocation, so as to reduce the communication
costs during the application execution (switches that are the
deeper in the tree topology are supposed to be the less costly
than upper ones). The same idea of topology-aware place-
ment is exploited by PBS Pro [22], Grid Engine[21], and
LSF [26]. Fujitsu [9] provides the same but only for its pro-
prietary Tofu network. As far as our knowledge, Slurm [30]
remains the only one providing a best-fit topology-aware se-
lection whereas the others propose first-fit algorithms.

Some other RJMS offer task placement options that can
enforce a clever placement of the application processes. That
is the case of Torque [7] which proposes a NUMA-aware job
task placement. OAR [6] uses a flexible hierarchical rep-
resentation of resources which offers the possibility to place
the application processes upon the hierarchy within the com-
puting node. However, in these existing works, only the
network topology is taken in account and the nodes internal
architecture is left unaddressed when performance gains are
expected from exploiting the memory hierarchy.

Jingjin Wu et al. in [28] introduced a hierarchical task
mapping strategy for modern supercomputers based on gener-
ic recursive algorithms for both fat-tree and torus network
topologies showing very good performance with low over-
head. Rashti et al. [24] proposed a weighted graph model
for the whole physical topology of the computing system,
including both the inter and intra node topologies. Even if
both previous related works have shown interesting results
with application sets, they have not been integrated with
real resource and job management system neither tested
with real workload traces whiles soulissions mixesch is our
case in this paper.

A study for torus network topology [1] showed how pro-
cessor ordering takes place based on space filling curve, such
as Hilbert Curve, to map the nodes of the torus onto a 1-
dimensional list in order to preserve locality information.
This paper described the study about the allocation strate-
gies implemented on the proprietary Cray Application Level
Placement Scheduler (ALPS). Similar strategies, have been
recently incorporated within SLURM with6 (or without7)
the use of ALPS. Another interesting work [29] adapted only
for torus topology, presented a window-based locality-aware
job scheduling strategy that tries to optimize job and sys-
tem performance in the same time. Its goal is to preserve
node contiguity by considering multiple jobs for scheduling
while making use of the 0-1 Multiple Knapsack problem for

6http://slurm.schedmd.com/cray alps.html
7http://slurm.schedmd.com/cray.html

resource allocation. The last 2 related works do not con-
sider communication patterns as parameters within the al-
gorithms.

Several binding policies are available, and they are com-
patible with the policies implemented in Open MPI. In all
these solutions, the user has to retrieve the architectural
details before submitting his/her job. Also, the placement
options offered leave the user with the burden to determine
his/her policy beforehand, and the application communica-
tion scheme is not taken into account.

In our case, we improve this functioning on three levels:
first, we take into account not only the network but also
the node internal structure. The information used is based
on the structure of the nodes and the memory hierarchy. In
other words, we do not use latency and bandwidth figures to
compute our allocation. Then, this information is retrieved
directly by our plugin does not have to be supplied by the
user. All the technical details are hidden. Last, but not
least, we also take into account not only the architecture
but also the application behaviour both for the allocation
and the execution of a job.

6. CONCLUSIONS
Job scheduling plays a crucial role in cluster administra-

tion, enabling both better response time and resource usage.
In this paper, we tackle the problem of allocating and map-
ping jobs according to a cluster topology and application
process affinity. We extend TreeMatch to design a new
allocation policy that allocates and maps at the same time
application processes on the resources, based on the commu-
nication matrix of the considered application. Such strategy
is implemented in the Slurm cons_res plugin. We test this
strategy on emulation and simulation and compare it with
the standard Slurm topology-aware policy and the method
consisting in mapping processes after the allocation is deter-
mined.

Results show that taking into account application char-
acteristics and the topology provides better makespan, flow
time, utilization and job runtime compared to the standard
topology-aware and compact Slurm policy. We also show
that the level at which we consider the topology impacts the
performance. It is better to have a more local view of the
topology than only a global view since in this latter case,
allocation quality is slightly better but longer to compute.
Last, even if not all the jobs are able to use this strategy all
of them benefit from it with a reduced flowtime.

For future work, we would like to investigate the following
research axes. First, we would like to look at fragmentation
metrics. Indeed, the way jobs are allocated impacts the
global resource usage and this aspect should be quantified.
Also, we would like to find means to gather in a system-
atic fashion applications communication patterns in order
to create an applications classification based on these pat-
terns and then implement this solution in production. We
would also like to validate this approach in other job sched-
uler such as OAR [6]. Concerning Slurm integration and
extensions, we are currently working on the inclusion of our
new developments in the next official Slurm release.
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