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Abstract

In this paper we examine several scheduling heuristics
for GridRPC middleware relying on the time-shared model
(a server can execute more than one task at a time). Our
work is based on a forecast module called the ‘Histori-
cal Trace Manager’ (HTM), which is able to predict dura-
tions of tasks in the system. We show that the predictions
performed by the HTM are very accurate. The five pro-
posed scheduling heuristics use these predictions to map
submitted tasks to servers. Experimental simulation results
show that they are able to outperform the well-known MCT
heuristic for several metrics (makespan but also sumflow,
max-stretch, etc.) and therefore provide a better quality of
service for the client.

1. Introduction

Recently a standardization of Remote Procedure Call for
GRID environments has been proposed 1. This standardiza-
tion defines an API and a model. The model is composed of
three parts: clients, servers and an agent (also called a reg-
istry): a client contact the agent to access the underlying re-
sources connected to it. Several Problem Solving Environ-
ments (PSE) such as NetSolve [8], Ninf [10] and Diet [6],
instantiate this model. They allow distant and transparent
access to distributed resources, usually called metacomput-
ing. Other systems are application-centric, e.g. they are op-
timized for an application type that can be characterized
(AppleS [3] and APST [9]). These middlewares allow par-
allelism and the access to scientific optimized libraries, in
areas as various as biochemistry, fluid mechanic, nuclear
([17],[14]). . .

∗ This work is partially supported by the Région Lorraine, the french
ministry of research ACI GRID

1 https://forge.gridforum.org/projects/
gridrpc-wg/document/GridRPC_EndUser_16dec03/
en/1

For the execution of an application on a distributed en-
vironment to be most effective, it is relevant to optimize
the choice of the resources where its composing tasks are
mapped. In a PSE, the agent is the focal point charged to
optimize the schedule according to a certain metric. If the
metric is the application completion time (makespan), map-
ping independent tasks onto an heterogeneous environment
is NP-complete [11]. Then, scheduling decisions rely on
heuristics.

In the literature, it is often assumed that a server can
compute only one task at a time [4]. In this context, MCT
was designed in [13] to map tasks on servers. It is used in
many heterogeneous systems and computes estimated fin-
ishing dates assuming that each server executes sequen-
tially submitted tasks. Conversely, some PSE servers such
as NetSolve’s, execute the task as soon as input data is
received. NetSolve also uses MCT to schedule the tasks.
However, since MCT was designed for mono-client system
with sequential execution of submitted task on each server,
it gives suboptimal results for GridRPC systems when mul-
tiple clients can submit tasks and servers can execute multi-
ple tasks at a given time.

In this paper we propose and examine five scheduling
heuristics for GridRPC systems. We use the historical trace
of already mapped tasks to simulate the environment and
take scheduling decisions accordingly. Hence, we have de-
veloped the HTM (Historical Trace Manager), a distributed
computing environment simulator, where resources (net-
work and servers) can be shared.

Our contribution is twofold. First, we show that the pre-
dictions performed by the HTM are very accurate when the
load of each server is not too high. This induces the vali-
dation of simulation results. Second, we have implemented
and tested several scheduling heuristics based on the HTM.
We have compared them with MCT on different metrics and
show that some of them outperform MCT.

This document is organized as follows: section 2 de-
scribes the GridRPC model. We introduce the HTM and
the heuristics in section 3. The accuracy of the HTM and
the simulation results validity are evaluated in section 4 ;



in section 5, we present the metrics on which heuristics per-
formances have been compared ; we explain the experimen-
tal work in section 6 and give the results in section 7 ; we
then conclude in section 8 and present our future objectives.

2. GridRPC Environment

Our work deals with scheduling tasks in GridRPC envi-
ronments [16] instantiating the common client-agent-server
model, which we describe here.

2.1. Overview

Some middlewares are available for common use and
designed to provide network access to remote computa-
tional resources for solving computationally intense sci-
entific problems. Some of them, like Netsolve [8] and
Ninf [10], rely on the GridRPC model. Built on top of
GridRPC, the system is usually divided in three parts:
clients which need some resources to solve numerous prob-
lems, servers which run on machines that have resources to
share and an agent that contains the scheduler and maps the
requested problems of clients to the available servers. Each
machine of such a system can be on a local or geographi-
cally distributed heterogeneous computing network.

The submission mechanism works as follows: the client
requests the agent for a server that can compute its job. The
agent sends back the identity of the server that scores the
optimum.

In order to score each server, the scheduler needs the
most accurate information on both the problem and the
servers (static information) as well as on the system state
(dynamic information). Static information concern each
server (network and CPU peak performances) and problem
descriptions (size of input and output data as well as the task
cost: number of operations requested to perform the prob-
lem). Dynamic information concerns each server (current
CPU load, current bandwidth and latency of the network).
How these information are computed depends on the imple-
mentation of the middleware and is out of the scope of this
paper.

2.2. MCT and the Agent

Minimum Completion Time (MCT) [13] is used in many
middlewares (such as NetSolve) to schedule the tasks on the
servers. Its is described in Fig 1. It scores each server ac-
cording to the estimated finishing date of the remote call.
This prediction is computed assuming that the last recorded
measures are constant during the execution of the job.

MCT was originally designed to minimize the makespan.
It is a robust, fast, efficient algorithm when tasks are exe-
cuted sequentially on servers. In our context, a task starts as

1 For all server S that can solve the new problem
2 D1(S) = estimated amount of time to transfer

input and output data.
3 D2(S) = estimated amount of time to solve the

problem.
4 Choose the server that minimizes D1(S) + D2(S)

Figure 1. MCT algorithm

soon as input data is completely received. Thus, two or more
tasks can compete for the processor(s) of the same server at
the same time. Therefore it is needed to redesign an algo-
rithm for this context.

3. Historical Trace Manager and Heuristics

Let us assume that a server can run more than one task
at a time (as is implemented in a NetSolve environment).
This is the case when the submission rate is high or when
the environment is heterogeneous. We have then developed
the Historical Trace Manager (HTM), which is called by
the agent when a new task arrives. It gives additional rele-
vant information to compute mappings. We also present five
heuristics that rely on HTM information.

3.1. Notations

We use the following notation: ai is the arrival date of
task i. T ′

i
is the simulated finishing date in the current sys-

tem state and Ci is the real one (post-mortem). The HTM
can simulate the execution of a new task n and give the new
simulated completion dates Ti of all tasks i, i ≤ n. We de-
fine for all k ≤ n, δk = Tk − T ′

k
, the perturbation the task

n produces on each running ones (Fig 2). We also define for
all k ≤ n, Dk = Tk − an, the remaining duration of the
task k before completion. p(i) is the server where the task i
is mapped and di its duration on the unloaded server.

3.2. Overview

The HTM has two goals. First, it records all available in-
formation for each task and second, it computes the Gantt
chart for each server. The scheduler can therefore compute
the impact the new task would have on all the tasks pre-
viously mapped on this server and predict all completion
dates.

In order to build or update the Gantt chart, the HTM uses
the time-shared model: if a server runs n tasks at a given
time, then each task is given 1/n of the server power. One
can see on the top of figure 2 the Gantt chart before the new
task submission and the bottom shows the new Gantt chart
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Figure 2. Notations for the Historical Trace Manager

after the simulation of the new task. Task 1 starts at time a1

and runs using 100% of the CPU until task 2 starts at time
a2 where the two tasks receive 50% of the CPU. In this sys-
tem state, task 1 and task 2 are scheduled to finish respec-
tively at time T ′

1 and T ′

2. Task 3 arrives on the server at
time a3. Without any task running on the server, it should
finished at time T ′

3. The HTM simulates the execution of
this task on the server and computes a new Gantt chart (bot-
tom of the figure). One can see that from a3 to the first fin-
ishing date of a task, here T1, the three tasks share the CPU
and receive 33.3% of its power. The HTM predicts task 3 to
complete at T3.

The simulation is done for every three steps of the exe-
cution of a task: input transfer, computation, output trans-
fer. The accuracy of the HTM on a real platform is shown
in section 4.

3.3. Utility of the HTM

Let us suppose that the environment contains only 2
identical servers (same network capabilities, same CPU
speed peak, same set of problems etc.). At time 0, the client
sends to the servers two tasks T1 and T2, whose durations
are 100 and 1000 seconds respectively, with no input data.
Suppose that T1 is scheduled on the server 1 and T2 on
the server 2. At time 80, let a client submit to the agent a
task T3 whose duration is 100 seconds. Without the histor-
ical trace manager, the agent only knows that server 1 and
server 2 have the same load and therefore is not able to de-
cide which is the best server to schedule T3. However, the
historical trace manager simulates the tasks on each server
and the heuristic knows that the remaining duration of task
T1 is 20 seconds while the remaining duration of task T2

is 920 seconds. Therefore it knows that scheduling T3 on
server 1 will lead to a shorter completion time than schedul-
ing T3 on server 2.

3.4. Heuristics

The HTM is able to predict the duration a task would
take on a server, but can also be used to design heuristics ca-
pable to handle other metrics in addition to the makespan.
Indeed, we present in this section some heuristics that con-
sider the perturbation which a task induces on others (more
are presented in [5]).

• Historical MCT: HMCT is MCT using HTM infor-
mation: it simulates the new task on each server. Then,
it selects the server that gives the best finishing date for
this task, e.g. the soonest.

• Advanced HMCT: The HTM simulates the incom-
ing task. For each server s, there is a task ts that fin-
ishes the latest. AHMCT chooses the server s0 where
the last finishing date is the soonest, e.g where Tts0

=
mins Tts

. We expect that minimizing the makespan at
each step will help to minimize the makespan at the
end.

• Min Perturbation: From information given by the
HTM after the simulation of the new task n, MP
chooses the server that minimizes the perturbation∑n−1

i=1
δi. In case of equality, for instance when the

system starts, the server where the new task finishes
the soonest is chosen.

• Min Length: The HTM simulates the new task n on
each server. Then, ML chooses the server that mini-
mizes the quantity

∑n

i=1
Di, e.g. the sum of the re-

maining quantity of each task on the server at the new
task arrival date, including the new one.

• Min SumFlow: The HTM simulates the new task and
then computes for each server s, Ps =

∑
i
(Ti − ai).

MSF choses the server s0 that minimizes Ps. But as
the difference between two values is only due to per-
turbations and to the new simulated task duration, the
heuristic only needs to compute

∑n−1

i=1
δi+Tn−an for



each server s, that is to say the perturbation of the last
task on the server plus the estimated length of the new
task. Finally, this heuristic is the same as MTI (mini-
mize total interference) proposed by Weissman in [18].

4. Validation of Simulation Results

In this section, we compare real tasks durations against
their estimations made by simulation in the HTM. There
are two objectives: firstly, to determine the accuracy of the
HTM and secondly, to evaluate the limits of simulation re-
sults.

In order to perform the following tests, we have inte-
grated our HTM into the code of the agent in NetSolve.
We have performed 100 experiments where 500 non iden-
tical and independent jobs have been requested. Indeed, a
job can require 20, 35 or 50 seconds on the unloaded server.
The real and the HTM estimated duration of each task dur-
ing each experiment have been recorded. Figure 3 show rep-
resentative results, highlighting two main areas of informa-
tion:

• In dark dots: the ratio for each task of the HTM
estimated completion date divided by the real post-
mortem one, indexed by the submission date on the ab-
scissa. Hence, the closest to 1 is the ratio, the most ac-
curate the prediction is ;

• In light dots: the number of tasks that have interfered
during the task execution.

Results show that the HTM predicts accurate completion
dates of previously assigned and still running tasks, taking
into account interferences tasks have on each other. Then
HTM information are relevant to give more accuracy to load
reports.

However the accuracy is degrading when too many tasks
(5 or more) are executed on a server. This occurs when the
rate is much too fast for the environment or when the heuris-
tic tends to overload some servers. We should also note that
the HTM always predicts tasks flow greater than in reality.

Because the HTM is an environment simulator, results
induce that independent tasks simulations are relevant to
foresee what can be expected in reality. Indeed, the HTM
and the Simgrid tool [7] for example use similar simulation
mechanisms. Nonetheless, there are some limitations due to
the arrival rate, to the heterogeneity (tasks and servers) and
to the heuristic: accuracy is obtained if less than 5 tasks are
executed simultaneously on a server.

5. Performance Metrics

In this section, we present metrics that have been ob-
served when comparing our heuristics against a modeliza-
tion of MCT. In gridRPC middleware it is important to im-

Figure 3. Ratio of the HTM Estimated Du-
ration by the Real Post-Mortem Duration of
Tasks of a Set of 500 Tasks Submission

prove the speed of the application but also the ressources
utilization and the quality of service for each requests. This
is why we do not only observe the makespan metric.

• Makespan: It is the completion time of the last fin-
ished task, maxi Ci. Minimizing the makespan is usu-
ally the goal of the schedule of an application: the
sooner the application is finished, the greater it is.
Nonetheless, the makespan of a set of tasks is mainly
due to the last completed task starting time [13, 5] and
because independent tasks can be submitted by sev-
eral clients, this may not be the main metric to opti-
mize here.

• Sum-Flow [2]: This is the amount of time that the
completion of all tasks has taken on all resources,∑

i
(Ci − ai). Executing tasks on servers can have a

cost proportional to their duration, the cost possibly
being a function of servers computing power.

• Max-Flow [12]: It is the maximum amount of time a
task has spent in the system, maxi(Ci − ai).

• Max-Stretch [12]: The stretch of a task i is defined by
si = (Ci − ai)/di. It is the factor by which a task has
been slowed down relative to the time it takes on the
same but unloaded server. The max-stretch, defined as
maxi si is by what maximum factor a task has been
slowed down relative to the time it takes on the un-
loaded server. This can represent a Quality Of Service
of the scheduler.

• Number of tasks that have finished sooner: Whereas
this is not a metric, this value gives in correlation with
the previous metrics a relevant idea of a quality of ser-
vice given to each independent task when comparing
two heuristics. For instance, comparing the heuristics
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Figure 4. Results for HMCT vs. MCT on 25 servers

H1 with MCT (on the same set of tasks {t1 . . . tn} and
same environment), it is | {i|CiH1

< CiMCT } |.

The user point of view is not that the last submitted task
finishes the soonest (makespan policy) or benefits the most
of the system, but that his own tasks (a subset of all client
requests) finish as quickly as possible. Therefore, if we can
provide a heuristic where most of the tasks finish sooner
than with MCT without delaying other tasks completion
date (that can be verified with the sumflow for example),
we can then claim that this heuristic, for the user, outper-
forms MCT.

6. Experimental Work

A Problem Solver Environment is simulated with the
Simgrid tool [7]. The dynamic mapping heuristics are eval-
uated using some parameters that characterize heteroge-
neous servers and each task of the metatask. We explain in
this section the different models we used for client-agent-
server mechanisms, heterogeneous entities and independent
tasks. We used the Gnu Standard Library [1] for all the prob-
abilistic distributions used thereafter.

We assume the agent has perfect knowledge of the fol-
lowing information:

• current server load ;

• current network load ;

• peak CPU and network performances ;

• number of operations of any tasks ;

• size of the input and output data of any tasks.

MCT needs all these information while the historical trace
manager (and in consequence, our heuristics) needs only the
static ones (last three items). Static information are easier
to compute accurately as compared to dynamic (for exam-
ple, tasks durations can be obtained from benchmarks or
from means of executions performed on each server [15]).
Therefore, in our simulation, the performance MCT will ob-
tain using these information will be better than in any real
GridRPC middleware.

6.1. Platform Model Characterization

We assume the client and the agent are able to reach
each server. The experiments are conducted on the basis
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Figure 5. Results for AHMCT vs. MCT on 25 servers

that servers are dedicated to the environment (for instance
a set of clusters where reservation is possible). Moreover,
we suppose that all problems can be solved on any server.
We do not considered any arrival/withdrawal of any server
in the system.

6.2. Application Model Characterization

We consider independent task submissions (tasks that
have no precedence relation), requested by one or more
users. A task is not preemptible: it can not be stopped and
continue later nor be removed to be scheduled on another
server.

A task begins to be executed on a server as soon as all
of the input data has been sent from the client. We consider
that a task is finished when the data output is completely re-
ceived by the client.

6.3. Instantiation

We want to test how the heuristics react under differ-
ent environment conditions and we want to achieve the best
possible overview when comparing each of them against

MCT. Therefore, same environments and same task sets are
generated for each heuristic: comparisons are conducted on
the same sets of tuples (servers, tasks, arrival dates, etc.).

Experiments are conducted with a number of servers
held to 25. They have one processor and their computing
capacity is drawn from a uniform distribution in the range
[150000, 500000]. Their network cards have the same per-
formance (100Mbits/sec).

We use a uniform distribution to draw the input and out-
put sizes of data to be transferred between the client and
the server from the range [1Ko, 300Mo]. The computation
cost is generated from a uniform distribution, with the fol-
lowing rules:

• the computation phase costs more than 10 times than
the transfer phase;

• the computation phase must not be greater than 600
seconds on the fastest server of the 25 available.

To draw task arrival dates, we use a Poisson distribu-
tion whose parameter µ varies from 0 to 70. Simulation re-
sults give an asymptotic point of view for µ < 10: for these
rates, MCT schedules more than five tasks on a server, and
results are consequently distorted. On the other hand, when
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Figure 6. Results for Min Perturbation vs. MCT on 25 servers

µ = 70, each server is executing at most one task at a given
moment for half of the heuristics tested. For each value of
µ, we have varied the number of tasks from 10 to 250. Each
plot in a graph is the mean of results of 1000 different tasks
sets: each heuristic required 200000 simulations.

7. Results

Results are given in figures 4,5,6,7 and 8. Each is com-
posed of five 3D graphics, one for each observed metric.
They present the gain in percentage of the heuristic over
MCT. For example, the first graph shows the percentage
of ‘tasks that finish sooner’. It shows a gain if the value
is greater than 50. In the others, a gain is performed as soon
as the percentage is positive.

Considering that the makespan of an application com-
posed of independent tasks is mainly due to the last com-
pleted task starting time [13, 5], we cannot expect a priori
a great gain on the makespan.

To compute servers scores in our simulations, MCT uses
information which are far more precise than in a real en-
vironment (NetSolve). In consequence, our modelization
of MCT behaves better than the algorithm does in reality.

Therefore, if we build a heuristic that outperforms our simu-
lation of MCT, this heuristic will certainly outperform MCT
in reality.

7.1. HMCT

Figure 4 shows that there is a gain greater than 8% on
the makespan for µ ≤ 20. For µ ≥ 30 the gain is still posi-
tive even if almost null. The Sum-Flow is greater for HMCT
than MCT for µ > 10 (leading to negatives performances).
Because HMCT tends to optimize the use of fast servers
for new tasks, it delays the running ones (for µ ≤ 10, the
rate is so high that the flow is increased for both MCT and
HMCT). It also results in a percentage of ’tasks that fin-
ish sooner’ lower than 50% (under 20% for µ = 30). For
µ ≥ 40, the Max-stretch shows that a task is 30% longer
than if scheduled with MCT: there are interferences on fast
servers, even at a low rate.

HMCT has a drawback: it tends to overload fast servers
but real-world servers cannot handle too many jobs. Con-
sequently, when using HMCT in a high heterogeneous net-
work, there is a risk for faster servers to collapse.
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Figure 7. Results for Min Length vs. MCT on 25 servers

7.2. AHMCT

One can see that AHMCT behaves mostly like HMCT
(Fig 5). The main differences concern the max-stretch,
where it gives better results against MCT than HMCT for
µ ≤ 30, and the percentage of tasks that finish sooner,
where it is always outperformed by HMCT.

7.3. Min Perturbation: MP

The figure 6 shows that when nbtask > 80, the gain on
the makespan is positive (greater than 5% for nbtask = 250
and µ < 30). MP allows gain on the Sum-Flow, with a peak
at 15% for µ = 30. The percentage of ‘tasks that finish
sooner’ is always greater than 60%, with a peak at 70%
for µ = 30, (when in most cases, no more than one task
is running on a given server). There is always a gain on
the Max-Stretch: in some cases, the gain reaches 90%. The
Max-Flow is always better except for µ = 30.

Despite these good results, MP presents a major draw-
back: when only one server is idle, it is chosen regardless its
speed, possibly jeopardizing its performance. This happens
when dealing with highly heterogeneous resources and/or

a high rate of costly requests: for example, when µ < 30
and nbtasks < 50, MP is outperformed by MCT on the
makespan.

7.4. Min Length: ML

Except for µ = 0, the gain on the makespan is always
positive (Fig 7). ML has also a positive gain on the Sum-
Flow, with a peak at 15% when µ = 10. On the Max-
Stretch, MCT performs slightly better for 20 ≤ µ ≤ 40
and gives around 60% on the percentage of ‘tasks that fin-
ish sooner’, with a peak at 80% for µ = 50.

ML achieves a makespan at least as good as MCT for
µ 6= 0, an adequate performance on the Max-Stretch and
gains on the Sum-Flow, the Max-Flow and on the percent-
age of ‘tasks that finish sooner’. Since the mapping deci-
sion is partly taken using the cost of the new task, ML does
not present MP’s drawback. Therefore, this heuristic tends
to overcome the drawbacks of HMCT and MP, while keep-
ing the advantages of both.
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Figure 8. Results for MSF vs. MCT on 25 servers

7.5. Minimum Sum Flow

MSF presents great performances on the makespan,
around 9% when µ ≤ 20, against MCT (Fig 8). The per-
centage of ‘tasks than finish sooner’ is slightly worse
than MCT’s for 25 ≤ µ ≤ 50, but is always above 40%.
For µ ≥ 35, tasks are slowed down by a maximum fac-
tor of 20% (occuring when 50 ≤ µ ≤ 60). Sum-flow per-
formances depend on the parameter µ: MSF maximizes
the use of fast servers when 30 ≤ µ ≤ 40 and so de-
lays tasks. It induces a greater flow cost. But when µ ≤ 30,
MCT overloads faster servers and MSF, taking into ac-
count interferences, performs slightly better than MCT.

7.6. Discussion

To summarize our heuristics performances, we can con-
clude that our heuristics outperform MCT on the makespan.
However, the percentage of ’tasks that finish sooner’ of
HMCT is poor and the Max-Stretch is always negative. In
a client-agent-server context, this needs to be improved. To
what we expected, AHMCT gives almost identical results as
HMCT, with less tasks ’finishing sooner’ but a better perfor-

mance on the max-stretch. MP shows great performances on
every metrics but can present the drawback to unnecessarily
utilize slow servers. ML tends to overcome HMCT and MP
drawbacks in addition to good performances on every met-
rics, except when all tasks are submitted at the same time
(e.g. µ = 0, an almost impossible situation). MSF behaves
better than MCT. Indeed, it combines HMCT and MP per-
formances. It outperforms ML on the makespan but looses
on the other metrics.

Since ML has positive results on all observed metrics
and outperform all the other heuristics on the percentage of
’tasks that finish sooner than MCT’, we consider that over-
all it is the best one among all the tested heuristics in this
paper.

8. Conclusion and Future Work

GridRPC is an emerging standard for metacomputing
middleware. Therefore, it is important to design efficient
scheduling heuristics for this model.

Consequently, we have presented the Historical Trace
Manager, a predictive and recording module that can
be used in Problem Solver Environment relying on the



GridRPC model. We have shown that it is able to give rel-
evant and accurate information on the estimated duration
of any task in the environment if servers are not over-
loaded. This leads to validate the use of time-shared
simulations of independent tasks to study new heuris-
tics.

Five scheduling heuristics that rely on HTM informa-
tion have also been presented: Historical MCT, Advanced
HMCT, Min Perturbation, Min Length and Min Sum Flow.
With the availability of HTM information, they are able
to compute the perturbation which tasks induce on each
other. We have performed an extensive simulation study on
five metrics and various parameters. They show greater per-
formances against the modelization of MCT, which has a
far better understanding of the environment than in reality.
Thus, they are all expected to outperform MCT in real solv-
ing environment. Nonetheless, HMCT, AHMCT and MP
may not be the best heuristics in a production environment
where no information is available on the rate of submis-
sion for example. Results show that MSF and ML outper-
form MCT, but ML gives a better quality of service, ML is
then the best heuristic.

We will now aim to see how heuristics behaves in a real
environment, improve the reliability of the HTM predic-
tions with a message sent to the agent when a task finishes
and consider memory requirements.

Even if the agent decision is short (under 10 msec), the
scalability may be a problem. We plan to build a scalable
version of the HTM in order to distribute the scheduler in
the DIET environment, which has a hierarchy of agents [6].
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numéro spécial metacomputing, 2001. http://www.ens-
lyon.fr/ desprez/DIET/index.htm.

[7] H. Casanova. Simgrid: A toolkit for the simulation of ap-
plication scheduling. In Proceedings of the IEEE Sympo-
sium on Cluster Computing and the Grid (CCGrid’01). IEEE
Computer Society, may 2001. available on http://www-
cse.ucsd.edu/ casanova/.

[8] H. Casanova and J. Dongarra. Netsolve : A network server
for solving computational science problems. In Proceedings
of Super-Computing -Pittsburg, 1996.

[9] H. Casanova, G. Obertelli, F. Berman, and R. Wolski. The
apples parameter sweep template : User-level middleware for
the grid. In Proceedings of the Super Computing Conference
(SC’2000), 2000.

[10] S. S. Hidemoto Nakada, Mitsuhisa Sato. Design and imple-
mentations of ninf: towards a global computing infrastruc-
ture. Future Generation Computing Systems, Metacomput-
ing Issue, 15:649–658, 1999.

[11] O. Ibarra and C. Kim. Heuristic algorithms for scheduling
independent tasks on nonidentical processors. Journal of the
ACM, 24(2):280–289, 1977.

[12] M. l A. Bender, S. Chakrabarti, and S. Muthukrishnan. Flow
and stretch metrics for scheduling continuous job streams.
In SODA: ACM-SIAM Symposium on Discrete Algorithms,
1998.

[13] M. Maheswaran, S. Ali, H. J. Siegel, D. Hengsen, and R. F.
Freund. Dynamic matching and scheduling of a class of in-
dependent tasks onto heterogeneous computing system. In
Proceedings of the 8th Heterogeneous Computing Workshop
(HCW ’99), april 1999.

[14] W. Nelson, H. Hirayama, and D. Rogers. The egs4 code sys-
tem. Technical report, Stanford Linear Accelerator Center
Report SLAC-265, 1985.

[15] M. Quinson. Dynamic performance forecasting for network-
enabled servers in a metacomputing environment. In Interna-
tional Workshop on Performance Modeling, Evaluation and
Optimization of Parallel and Distributed Systems (PMEO-
PDS’O2), april 15-19 2002.

[16] K. Seymour, H. Nakada, S. Matsuoka, J. Dongarra, C. Lee,
and H. Casanova. Overview of gridrpc: A remote procedure
call api for grid computing. In Grid Computing - Grid 2002,
LNCS 2536, pages 274–278, november 2002.

[17] J. Stiles, T. Bartol, E. Salpeter, and M. Salpeter. Monte carlo
simulation of neuromuscular transmitter release using mcell,
a general simulator of cellular physiological processes. Com-
putational Neuroscience, pages 279–284, 1998.

[18] J. Weissman. The interference paradigm for network job
scheduling. In Proceedings of the 10th International Par-
allel Processing Symposium, HCW, 1996.


