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Abstract

In this paper we study the problem of redistributing in
parallel data between clusters interconnected by a back-
bone. This problem is a generalization of the well-known
redistribution problem that appears in parallelism [9]. We
suppose that at mostk communications can be performed at
the same time (the value ofk depending on the characteris-
tics of the platform). We use the knowledge of the applica-
tion in order to schedule the messages and perform a con-
trol of the congestion by ourselves. Previous results [7, 6]
show that this problem is NP-Complete. We propose and
study two fast and efficient algorithms for this problem.
We prove that these algorithms are 2-approximation algo-
rithms. Simulation results show that both algorithms per-
form very well compared to the optimal solution. These al-
gorithms have been implemented using MPI. Experimental
results show that both algorithms outperform a brute-force
TCP based solution, where no scheduling of the messages
is performed.

1 Introduction

In this work we tackle the problem of efficiently schedul-
ing messages when performing data redistribution between
two clusters of machines.

This problem appears frequently in the context of grid
computing and code coupling. Code coupling applications
are composed of at least two codes running on two different
parallel machines (or clusters) that are interconnected bya
high-speed network (a backbone) [13, 12, 25]. The ability
to perform efficiently (as fast as possible) the redistribution
is critical for the performance of the whole application.

During the computation, data from one cluster have to
be transmitted to another cluster. For instance, some data
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of the first node of the first cluster might need to be sent to
the first node of the second cluster while some other data
might need to be sent to another node of the second cluster.
Here, no assumption is made on the redistribution pattern
and therefore any node of the first cluster can send data of
any size to any node of the second cluster.

In the literature a lot of work has been done in order to
optimize communications when the redistribution phase is
local (on the same cluster/parallel machine) [1, 3, 8, 9, 16].

Some work, like MxN [21], tackle the problem of de-
signing a standard interface for data redistribution between
two parallel machines. Cumulvs [15] is a computational
steering environment that uses MxN and is able to perform
remote visualization across a network. In PAWS (Parallel
Application Work Space) [20], code coupling with com-
ponent model that also uses MxN is addressed. In meta-
chaos [26] the interoperability of parallel libraries is studied
as well as the coupling of these libraries. However, these
works do not tackle the redistribution problem from the al-
gorithmic point of view as we do here.

In [7, 6], the problem of redistributing data between two
clusters interconnected by a backbone is studied. The prob-
lem, called K-PBS (K-Preemptive Bipartite Scheduling), is
shown to be NP-Complete and a 2-approximation algorithm
is provided. However, this algorithm has a very high com-
plexity that makes it useless in practice. Moreover, its de-
sign is based on theoretical graph materials that makes it
very hard to implement.

The K-PBS problem takes into consideration the
throughput of the backbone, as this backbone can be a bot-
tleneck for many reasons. The main problem appears when
it is required to send data from a cluster where the sum of
the bandwidth of its network cards is greater than the band-
width of the backbone. The maximum number of commu-
nications that can take place at the same time without gen-
erating the congestion depends on the characteristics of the
platform and is calledk.

The contribution of this paper is that we propose two fast
and efficient algorithms for scheduling any arbitrary com-



munication pattern between two clusters when the back-
bone is a bottleneck. These algorithms approximate the
solution within a factor of two from the optimal solution.
They have a low complexity that makes them useful in prac-
tice. These algorithms work for any values ofk and hence
can also be used when the backbone is not a bottleneck.
We have compared these two algorithms using random dis-
tribution patterns and we show that they perform very ef-
ficiently compared to the optimal solution. Moreover, we
have implemented these algorithms and tested them on real
examples using MPI. Results show that we outperform a
TCP-based brute-force solution that consists in letting the
transport layer doing the scheduling and managing alone
the congestion.

The paper is organized as follow: in Section 2 the prob-
lem of data redistribution is presented and all the notations
are introduced. The related work appears in Section 3. The
algorithms are described in Section 4. Results and exper-
iments are given in Section 5. In Section 6 we state our
concluding remarks.

2 Problem of Data Redistribution

2.1 Modelization

T

t1 t2Cluster 1 Cluster 2
with n2 nodes.

Backbone

with n1 nodes.

Figure 1. Architecture for the Redistribution Prob-
lem

We consider the following architecture (see Figure 1).
Let there be two clustersC1 andC2 with respectivelyn1

nodes andn2 nodes. All the nodes ofC1 have a network
card of effective throughputt1 Mbit/s and all the nodes ofC2

have a network card of effective throughputt2 Mbit/s 1. A
network, called a backbone, interconnects the two clusters
andT denotes its throughput.

Let us suppose that an application is running and using
both clusters (for example, a code coupling application).
One part of the computation is performed on clusterC1 and
the other part on clusterC2. During the application, data
must be transmitted fromC1 to C2, following a redistribu-
tion pattern. The question is: how to transmit all the data
from C1 to C2 as fast as possible?

1the effective throughput of a network card is the throughputeffectively
achievable by this card on the computer.

In this paper we suppose that the redistribution pattern
is given and computed by the application. We focus on ef-
ficiently transmitting the data, not on computing the pat-
tern itself. Hence, the redistribution pattern is modeled by a
traffic matrixM = (mi,j)i∈[1,n1],j∈[1,n2], wheremi,j rep-
resent the amount of data to be sent from nodei of cluster
C1 to nodej of clusterC2.

In order to perform the redistribution, one naive solution
consists in sending all the data from all the nodes ofC1 to all
the nodes ofC2 at the same time and let the transport layer
(for instance TCP) schedule the segments. This solution,
as we show in the results section, is suboptimal for many
reasons. If the traffic matrix is very large, dense with high
coefficient a lot of traffic is generated at the same time. This
traffic cannot be handled either by the backbone (when the
aggregated bandwidth of the emitting card is greater than
the bandwidth of the backbone) or by the cards themselves
(when the incoming traffic has a throughput greater than
the throughput of a given card). In both cases, TCP seg-
ments will be dropped. TCP will detect the problem and
start to control the congestion by reducing the window size
and therefore reduce the amount of data sent at a given time.
To avoid these problems, we use the knowledge we have
(i.e. the traffic matrix) to perform optimizations at the ap-
plication level and control by ourselves the congestion by
defining a schedule for all the communications.

We consider two constraints relative to the communica-
tions.

1. 1-port. A transmitter (resp. a receiver) cannot per-
form more than one communication at a given mo-
ment. However, more than one communication can oc-
cur at the same time as long as the receiver/transmitter
pair is different. A parallel transmission of message
between different pair is called astep.

2. k. The maximum number of communications that can
occur during a step is denoted byk. This number de-
pends mainly on the ratioT/t1 andT/t2. It comes
from the fact that no congestion occurs when the ag-
gregated bandwidth generated by clusterC1 or received
by C2 is not larger than the bandwidthT of the back-
bone. Therefore,k must respect the following equa-
tions: (a)k × t1 ≤ T , (b) k × t2 ≤ T (c) k ≤ n1 and
(d) k ≤ n2.

We denote byt the speed of each communication. For
instance, let us assume thatn1 = 200, n2 = 100,
t1 = 10Mbit/s, t2 = 100Mbit/s andT = 1Gbit/s (T =
1000Mbit/s). In that case,k = 100 becauseC1 can send
100 outgoing communications at 10 Mbit/s generating a to-
tal of 1 Gbit/s aggregated bandwidth (which is supported by
the backbone) and each network card ofC2 can receive the
data at 10 Mbit/s. Hence,t = 10 Mbit/s
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In order to minimize the overall communication time,
we allow preemption. This means that a communication
between two given nodes can take place in several steps. In
order to do this we need to assume that any part of the data
to be transmitted can be sent in any arbitrarily small pieces
(larger than 1 byte). In practice the preemption has a cost.
We denote byβ (called thesetup delay) the time to setup a
step (opening sockets, accessing data, etc.) and to preempt
the communication.

We assume that communications steps are synchronous.
An other approach using asynchronous communications is
possible. In particular, in the developped algorithms the
barriers between each communication step can be weak-
ened with some post-processing. However, this is beyond
the scope of this paper and will not be discussed here.

2.2 Formulation of the Problem

The problem of the data redistribution is known in
the literature as K-PBS (K-Preemptive Bipartite Schedul-
ing) [7, 6]. Here follows a summary of the formulation.

Let us consider the traffic matrixM andt the speed of
the communication. One can transformM into a com-
munication matrixC = (ci,j)i∈[1,n1],j∈[1,n2], such that
ci,j = mi,j/t is the time to transfer the data from nodei
to nodej when no preemption occurs.

The communication matrixC can be seen as a bipartite
graphG = (V1, V2, E, f) with n1 = |V1| nodes on the left
side andn2 = |V2| nodes on the right side. Each node ofV1

(resp.V2) represents a node of clusterC1 (resp.C2). There
is an edge between two nodes of the graph if there is a non-
zero communication in the communication matrix. Finally,
for any edgee = (i, j) ∈ E, the weight of this edge is the
duration of the communication:f(e) = ci,j .

A communication step must respect the two constraints
explained above (1-port and at mostk communications at
a time). Therefore a communication step is modeled by a
matching of at mostk edges. A matching of a bipartite
graph is a bipartite graph with at most one edge adjacent
to each given node. Therefore, modeling a communication
step by a matching ensures that a node will not send or re-
ceive more than one communication during this step. We
limit the number of edges in the matching byk such that at
mostk communications will take place during this step.

Given a matchingMi representing communication step
numberi, the duration of this step is the duration of the
longest communication, which is the largest weight ofMi.
We denote the largest weight of matchingMi by W (Mi).

We can formulate the problem K-PBS as follows:

• Let G = (V1, V2, E, f) be a weighted bipartite graph,
k a positive integer andβ a positive rational number.
G represents all the communications to perform,k the

maximum number of communications during a step
andβ the startup delay.

• Find a set ofs matchings{M1, M2, . . . , Ms} such that
the maximum number of edges of each matching is
bounded byk and∪s

i=1Mi = G. Each matching rep-
resents a communication step (see Figure 2 for an ex-
ample).

• Minimize the redistribution time. Since each step has
a startup costβ, the objective function to minimize is:

s
∑

i=1

(β + W (Mi))

2

3

4

2
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W(M1)=5 W(M2)=3 W(M3)=4

Figure 2. Example of solution for GraphG, with
k = 3 and 3 steps. Whenβ = 1 the total cost of
the redistribution is(1+5)+(1+3)+(1+4) = 15.
Thanks to the preemption the edge of cost 8 is decom-
posed into 2 edges of cost 4

2.3 Other Notations

We give here the rest of the notations we use in this pa-
per.

• m = |E| andn = |V1| + |V2|,

• ∆(s) is the degree of the nodes,

• P (G) =
∑

e∈E fG(e) the sum of all edges weights,

• for any nodes we callw(s) the sum of the weights of
all edges adjacent tos,

• W (G) = maxs∈V1∪V2
(w(s)).

2.4 Discussion on the Value ofk

Whenk = 1 all the communication have to be done in
sequential and therefore the problem is easily solved. On
the over hand, one might want to use the algorithms pro-
posed in this paper to schedule the communications for a
local redistribution (on the same parallel machine). For
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instance, redistribute block-cyclic data from a virtual pro-
cessor grid to an other virtual processor grid. In that case
the maximum number of communications during one step
is min(n1, n2) , wheren1 (resp.n2) is the number of nodes
of the first (resp. second) virtual processor grid. Therefore,
whenk = min(n1, n2), the backbone is not a bottleneck
and the problem consists in finding a solution for a local
redistribution of any kind (block-cyclic to block-cyclic but
not only).

3 Related Work

In our previous work [7, 6], we have introduced and stud-
ied the K-PBS problem. We have shown that K-PBS is an
NP-complete problem and that approximating the K-PBS
within a factor better than4/3 is impossible unless P=NP.
We have proposed a 2-approximation algorithm. However,
the time complexity of this algorithm isO(kn15/2 × m3).
This large complexity makes it useless in practice. More-
over, this algorithm is based on very theoretical graph ma-
terials that make it very hard to implement. In [7, 6], a lower
bound on the optimal solution of K-PBS is provided. This
lower bound is based on the structure of the input graph,
the value ofk andβ. We will use this lower bound in our
simulation experiments to tell how far solutions of our al-
gorithms are from the optimal solution.

Up to our knowledge, there is no other work on the K-
PBS problem in its generality (n1 6= n2 andk can have any
value, etc.).

This problem has been partially studied in the context of
Satellite-Switched Time-Division Multiple access systems
(SS/TDMA) [4, 17, 18]. In [4], the problem withβ = 0 is
studied and an optimal algorithm with O(mn) steps is de-
scribed. In [17] an optimal algorithm that finds the minimal
number of steps is described. In [18] the problem with-
out preemption is studied. It is shown NP-Complete and a
heuristic is given.

The K-PBS problem partially falls in a field originated
by packet switching in communication systems for optical
network called wavelength-division multiplexed (WDM)
broadcast network [5, 14, 23, 24, 27]. The problem of
minimizing the number of steps is studied in [14, 17], and
the problem of minimizing the total cost is studied in [23].
In [5] and in [24], the author consider a version of the K-
PBS problem where the number of receivers is equal to the
number of messages that can be transmitted at the same
time (k = n2) and where the setup delay can be overlapped
by the communication time (In [24] authors also assume
that all messages have the same size). In that case, a list-
scheduling algorithm is proven to be a 2-approximation al-
gorithm [5].

The case where the backbone is not a constraint (k ≥

min(n1, n2)) has been studied in [1, 8] and it is known as
thepreemptive bipartite scheduling (PBS). PBS was proven
to be NP-complete in [11, 18]. Approximating the PBS
problem within a ratio number smaller than76 has been
proven impossible unlessP = NP [8]. Several approxima-
tion algorithms for the PBS problem have been proposed
in the literature. In [8], two different polynomial time2-
approximation algorithms for PBS have been proposed and
in [1], an improvement of this result is given.

In the context of block cyclic redistribution many works
exist (see [3, 9] for example). In this case the backbone
is not a constraint and the redistribution pattern is not arbi-
trary. Hence, this problem is less general than K-PBS.

4 Algorithms

In this section, we present two 2-approximation algo-
rithms with increasing complexity and efficiency.

4.1 WRGP Algorithm

In order to present our first algorithm called Generic
Graph Peeling algorithm (GGP), we present a simple ver-
sion of it, working only on weight-regular graphs and called
Weight-Regular Graph Peeling algorithm (WRGP).

We suppose thatk is not bounded and that the bipartite
graphG, given as input, is weight-regular: the sum of the
weights of all edges adjacent to a node is the same for any
node in the graph. This means that each cluster node has
the same amount of data to send or receive.

We are trying to waste the least amount of bandwidth at
each communication step. In order to do that, for each step,
we need two things:

• Issue a maximal number of communications,

• ensure all communications have the same size.

A perfect matching of a bipartite graph is a subgraph that
pairs every vertex with exactly one other vertex. Therefore,
if we have a communication step given by a perfect match-
ing where all edges have the same weight, we know that this
step is optimal. Of course, the whole scheduling may not be
optimal, but at least during this step, the full bandwidth is
being used.

Since a perfect matching can be found using the Hungar-
ian Method [22], the problem is ensuring that all edges have
the same weight. To achieve that, we use preemption. We
cut each edges weights to the weight of the smallest edge in
the matching.

Finally, the algorithm is based on the following property:
in any weight-regular bipartite graph, there exists a perfect
matching [8].
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1. find a perfect matchingM

2. takew the smallest weight of the edges ofM

3. build a perfect matchingM ′ such that

• all edges ofM ′ are also inM

• all edges ofM ′ are of weightw = W (M)

and add it to the sets of communication

4. substractM ′ from the bipartite graph. If an edge
reaches a weight of 0 remove it from the graph

5. start again at step 1, until the graph becomes empty

Figure 3. WRGP algorithm

We use this property in the WRGP algorithm depicted
Figure 3. This algorithm is working because each time we
modify the bipartite graph, it stays weight-regular as the
matchingM ′ is a perfect matching and all its edges have
the same weightw. A small example of this is shown in
Figure 4.

With this algorithm, we ensure that each communication
step is using the full bandwidth.

Complexity of WRGP At each iteration, at least one
edge is removed. This means we have at mostm itera-
tions. One of the best algorithms to find a perfect match-
ing [22] has a complexity ofO(m

√
n) hence the complex-

ity of WRGP isO(m2√n). However WRGP is indepen-
dent from the matching algorithm chosen. On some cases
it could be better to use theO(n

3

2

√

m

log(n)
) matching algo-

rithm developed in [2].

4.2 GGP Algorithm

The WRGP algorithm works only for weight-regular
graphs and does not take into account ourβ parameter. We
explain here how to extend the WRGP algorithm into a gen-
eral case algorithm called GGP.

4.2.1 Communication Cost

In WRGP, we make active use of preemption to cut large
communications into smaller chunks. However, preemption
comes with a cost. As each step of communication costs a
constant timeβ to establish the connection we need to make
sure that the costs of preemption are never higher than the
possible benefits.

It is difficult to ensure that preemption is never used too
much or too little. We have chosen the following: we will
not split communications of duration less thanβ. By do-
ing that, we may find some cases where we are subopti-
mal, but we limit the number of communication steps in
the general case. This fact has been taken into account in
the 2-approximation proof. A set of suboptimal examples
reaching the approximation ratio of 2 may be found in [19].

Implementing this constraint in the previous algorithm is
straightforward. We just have to normalize all weights byβ
and round them to the upper integer at the beginning.

As the size of each communication step is given by the
size of the smallest communication in the corresponding
matching, it will never be smaller than 1, since all weights
have been rounded.

4.2.2 k Constraint, Building Weight-regular Graphs

In this section we show how to transform any bipartite graph
into a weight-regular graph such that any perfect matching
of the weight-regular graph has at mostk edges belonging
to the original graph.

Two different cases have to be distinguished:

1. W (G) ≤ P (G)
k andk|P (G).

In this case we buildG′ = (V ′
1 , V ′

2 , E′, fG) a P (G)
k -

weight-regular graph by adding|V2| − k nodes toV1,
|V1| − k nodes toV2 and some edges.

Remark thatΣs∈V1
w(s) = P (G). In order to have

a P (G)
k -weight-regular graph we needΣs∈V1

w(s) =
P (G)

k |V1|. This means, we need to add edges of to-

tal weight P (G)
k |V1| − P (G) = P (G)( |V1|

k − 1) =
P (G)

k (|V1| − k). Therefore we add|V1| − k nodes to

V2, each of weightP (G)
k . We do the same for all nodes

in V2. It is important to note that the new edges are
never connecting two new nodes. A detailed descrip-
tion of this part can be found in [19].

Proposition 1 Any perfect matching ofG′ hask edges be-
longing toG

Proof of proposition 1 Each perfect matching ofG′ has
|V ′

1 | = |V ′
2 | = |V1| + |V2| − k edges. On this matching

we have|V1| − k (nodes added toV2) +|V2| − k (nodes
added toV1) edges not belonging toG. This means we
have: |V1| + |V2| − k − (|V1| − k + |V2| − k) = k edges
belonging to the originalG graph.

2. W (G) > P (G)
k or W (G) ≤ P (G)

k andk 6 |P (G)

In that case we add new edges (each one connecting
two new nodes) to buildG′ such that:P (G′)

k = W (G)
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Figure 4. WGRP. From left to right: the weigth-regular graph at iteration i, the matchingM , the matchingM ′ the
weigth-regular graph at iterationi + 1

if W (G) > P (G)
k or k|P (G′) if W (G) ≤ P (G)

k and
k 6 |P (G). All edges added except the last one have the
largest possible weight:W (G). We call the resulting
graphG′. After that, we refer to the first case and ap-
ply the above technique to build a weight-regular graph
G′′. The proposition 1 shows that any perfect match-
ing of G′′ hask edges belonging toG′ and therefore at
mostk edges belonging toG.

In this case there may be less thank edges fromG in
a perfect matching onG′′. In particular whenk (the
number of allowed simultaneous communications) is
greater than the total number of communications, it is
clear that we will issue less thank communications.
However in such cases, there will be less thank com-
munications even in the optimal scheduling.

4.2.3 Algorithm

We can now extend WRGP for general bipartite graphs, and
respect our constraints. We present in Figure 5 the Generic
Graph Peeling algorithm (GGP) that gives a solution to the
K-PBS problem.

4.2.4 Complexity

Step 2 has added two kind of edges toG. (1) Edges of
weightW (G). These edges are all removed at the last itera-
tion. (2) Edges added to turnG into a weight-regular graph.
There is at most2n edges of this type. Therefore we have
at mostm + 2n + 1 iterations to peelJ with WRGP. Hence
the complexity of GGP isO((m + n)2

√
n).

4.2.5 Approximation Factor

Theorem 1 GGP is a two approximation algorithm.

Input: G = (V1, V2, E, fG) the weighted bipartite graph,
k an integer,β a rational.

Output: R a set of matchings, a solution of K-PBS.

1. Normalize weights byβ, round them to the upper in-
teger,

2. add nodes and edges toG to build a weight-regular
graphJ ,

3. apply algorithm WRGP toJ ,

4. extractR from the solution given by WRGP.

Figure 5. GGP Algorithm

Sketch of proof In [7, 6], Cohen, Jeannot and Padoy in-
troduced a 2–approximation algorithm for K-PBS. Any so-
lution build by GGP can also be found by this algorithm.
Therefore, GGP is a 2–approximation algorithm. A com-
plete proof is given in [19].

4.3 OGGP Algorithm

With the GGP algorithm we just introduced, it is pos-
sible to find cases where the approximation ratio of 2 is
neared. We have enhanced the algorithm to obtain better
results on these cases. The second algorithm, called Op-
timized Generic Graph Peeling algorithm (OGGP), we are
presenting in this section is an extension of the previous
one. It is a 2-approximation algorithm as any solution found
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by OGGP can also be found by GGP. However, we have not
been able to find a set of cases reaching the approximation
ratio.

One part of the GGP algorithm has not been optimized:
the choice of the matching. Indeed, any matching-algorithm
can be used. It is possible to use a more intelligent approach
in order to bind the matching-algorithm with our specific
problem. Intuitively we want to have the least number of
communication steps. This means, we should try to find the
largest possible communication steps. As the size of a step
is given by the smallest communication in the matching, a
good strategy would be to find a matching with the smallest
weight on the edges being as large as possible. The algo-
rithm depicted in Figure 6 finds a maximal matching which
smallest edge’s weight is maximum. It is based on the algo-
rithm described in [4] that maximizes the minimum weight
of a matching.

1. G′ = ∅, M = ∅, G′′ = G

2. whileM is not maximal inG do:

(a) choosee ∈ E(G′′)|∀e′ ∈ E(G′′), f(e) ≥ f(e′)

(b) E(G′) = E(G′) ∪ e

(c) E(G′′) = E(G′′)\e
(d) M = a maximal matching inG′

Figure 6. Algorithm for extracting a matching that
maximizes the minimal weight

Proof the algorithm of Fig 6 returns the desired match-
ing. If we call l the last edge added at the previous step
in G′, we havel ∈ M because withoutl it was not pos-
sible to find a maximal matching inG. We also have
∀e ∈ G, f(e) > f(l) ⇒ e ∈ G′. Suppose thatM ′ is a max-
imal matching better thanM (it’s minimum weight is larger
than the one ofM ). M ′ is such that:∀e ∈ M ′, f(e) > f(l).
Therefore, we have:M ′ ⊂ G′. This is a contradiction,
so M is a maximal matching maximizing the minimum
weight.

Complexity This algorithm complexity is O(m ×√
nm) = O(m2

√
n). Therefore, the complexity of OGGP

is O((m + n)3
√

n)

5 Experiments

5.1 Simulations

The GGP and OGGP algorithms have been implemented
in a bipartite graphs library we developed. Moreover, for
any given graph, it is possible to compute the minimum time
required to redistribute the data. This is based on the lower
bound of K-PBS described in [7, 6].

In each following simulation we generate some random
bipartite graphs, execute GGP and OGGP, and we plot the
ratio between the duration of the found solution and the du-
ration given by the lower bound. We call this ratio the eval-
uation ratio. Hence, the closest to 1 is the evaluation ratio,
the best is the found solution. The computation times of the
different algorithms are not taken into account here, as they
are all under one second. The graph are generated with a
random number of nodes (up to 40) and a random number
of edges (up to 400).

The graph of Figure 7 is showing how the ratio is chang-
ing as k increases. Each point of the graph is obtained by
running 100000 simulations and taking the average or the
maximal ratio. The weights of each edge is uniformly gen-
erated between 1 and 20 andβ is set to 1.
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Figure 7. Evaluation Ratios for Small Weights

We see OGGP is giving far better results than GGP with
its worst-case graph below GGP’s average case. We should
also note that the worst evaluation ratio reached is 1.15, well
below 2.

On the graph of Figure 8, we conduct the same exper-
iment, but with this time some more realistic values for
the weights. We consider an amount of data to transfer far
greater thanβ and generate weights of up to 10000.

This graph seems similar to the previous one, but the
scale is not the same. The worst ratio reached is 1.00016,
very close to the best achievable ratio. This means that for
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Figure 8. Evaluation Ratios for Large Weights

this kind of input, GGP and OGGP will behave in an iden-
tical manner, and that it will be difficult to find a better al-
gorithm.

Finally we conducted some experiments on the cases
where the weights are small (between 1 and 20) andbeta
increases. For each input,k is randomly generated. The
results are shown in Figure 9.
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Figure 9. Evaluation Ratios whenβ Increases

We see that, withβ smaller than the weights, evaluation
ratios as high as 1.8 for GGP and 1.6 for OGGP are reached.
After that, ratios drop quickly because the optimal cost rises
with β. Note that OGGP has an average ratio of 1.2.

5.2 Real-World Experiments

In order to validate theoretical results and simulations,
we have conducted several real-world experiments. We
used two clusters of 10 1.5 GHz Pentium computers running
Linux. Network cards were 100Mbits Ethernet adapters and
the two clusters were interconnected within a local network
by two 100Mbits switches. In order to test interesting cases,
that is wherek 6= 1, we limited the available incoming and
outgoing bandwidth of each network card to100

k Mbits per
second. This was done using thershaper[28] Linux kernel
module. This module implements a software token bucket
filter thus enabling a good control of the available band-
width. We conducted experiments fork = 3, k = 5, k = 7.
Only k = 3 andk = 7 results are shown here.

Two different types of redistribution have been imple-
mented. First, a brute force TCP-only approach: we start all
communications simultaneously and wait until all transfers
are finished. In this case the network transport layer (TCP)
is responsible for the congestion control. The second ap-
proach allows us to test our algorithms: we divide all com-
munications into different steps, synchronized by a barrier,
and only one synchronous communication can take place in
each step for each sender. Both algorithms have been im-
plemented using MPICH [10]. We have not implemented an
exponential algorithm finding the optimal solution (which
could seem possible as the number of nodes and edges is not
very high) because designing such an algorithm is difficult,
and anyway our algorithms are already close enough to the
optimum. All communication times have been measured
using thentp_gettimefunction call from the GNU libc.

In our tests, the 10 nodes of the first cluster have to com-
municate to each 10 nodes of the second cluster. The size of
the data to transfer between two given cluster nodes is uni-
formly generated between10 andn MB. We plot the total
communication time obtained whenn increases as shown
in Figure 10 and 11.

Several observations can be made:

• We achieve a5% to 20% reduction of communica-
tions costs. Although we are alone on a local network,
where TCP is efficient, we are able to achieve better
results.

• The barriers cost extremely little time. Although
OGGP algorithm has 50% less steps of communica-
tion, it gives the same result as GGP. However we be-
lieve the cost of synchronizations may increase if we
introduce some random perturbations on the network.

• The brute-force approach does not behave determinis-
tically. When conducting several time the same exper-
iments we see a time variation of up to 10 percents. It
is interesting to see that our approach on the opposite
behaves deterministically.
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Figure 11. Brute-Force vs. GGP or OGGP (k = 7)

• As the available bandwidth decreases (i.e.k increases)
we increase the benefits of usingGGP orOGGP over
the brute-force approach.

6 Conclusion

In this paper we have studied and proposed two schedul-
ing messages algorithms called GGP and OGGP for the re-
distribution problem. The novelty of our approach is that we
set the maximum number of messages during one step. This
is especially useful when the redistribution is performed be-
tween two clusters interconnected by a backbone and when
this backbone is a bottleneck. However the algorithms we
have proposed can also be used when redistribution hap-

pen on the same parallel machines or in the context of
SS/TDMA systems or WDM network.

Our contribution is the following:

• The proposed algorithms have a low complexity and
provide solution at most twice longer than the optimal
one,

• simulation experiments show that OGGP outperform
GGP due to an internal optimization when building
each communication step. Moreover, these two al-
gorithms find solutions very close to the optimal one
when communications are long,

• we have performed real experiments on two clusters.
Results show that our scheduling algorithms outper-
form the brute-force approach that consists in letting
the network managing the congestion alone (redistri-
bution time can be reduced to up to 20%).

In our future work , we want to extend the model to han-
dle more complex redistributions.

First we would like to consider achieving a local pre-
redistribution in case a high-speed local network is avail-
able. This would allow to aggregate small communications
together, or on the opposite to dispatch communications to
all nodes in the cluster.

Second, we would like to study the problem when the
throughput of the backbone varies dynamically or when the
redistribution pattern is not fully known in advance. We
think that our multi-step approach could be useful for these
dynamic cases.

The final goal of this work is to produce (together with
the people involved in the INRIA ARC redGRID) a fully
working redistribution library.
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