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Vandœuvre les Nancy, France
Emmanuel.Jeannot@loria.fr

Abstract

In this article, we present the AdOC (Adaptive Online
Compression) library. It is a user-level set of functions that
enables data transmission with compression. The compres-
sion is performed dynamically during the transmission and
the compression level is constantly adapted according to
the environment. In order to ease the integration of AdOC
into existing software the API is very close to the read and
write UNIX system calls and respects their semantic. More-
over this library is thread-safe and is ported to many UNIX-
like systems. We have tested AdOC under various conditions
and with various data types. Results show that the library
outperforms the POSIX read/write system calls on a broad
range of networks (up to 100 Mbit LAN), whereas on Gbit
Ethernet, it provides similar performance.

1. Introduction

Computational and data grids are distributed architec-
tures that interconnect a set of heterogeneous computers
(from a parallel machine to a desktop PC) with various
types of networks (Internet, WAN, LAN, etc.). The objec-
tive of such grids is to gather distributed resources (CPU,
disk, memory, etc.), to solve problems that require huge
amount of computation or storage. Nowadays many mid-
dlewares [5, 6, 9, 17] are under development to allow ap-
plications to use grids in a transparent way. These middle-
wares manage the infrastructure, schedule the jobs, handle
communications and data. In order to do this each middle-
ware has to rely on a set of services (scheduling, accounting,
resource discovery, etc.). In this paper we propose and de-
scribe a new service for grid middlewares and data transfer
tools that enables compression on the fly for efficient trans-
mission. The motivation for this work is that many (grid)
applications require a large amount of data to be transmit-
ted. In some cases, data transmission is the most time con-
suming part and therefore needs to be optimized.

The service we propose here is a library called AdOC
(Adaptive Online Compression), which offers the possibil-
ity to transfer data while compressing it. It is an adaptive
service as the compression level is dynamically changed
according to the environment and the data. The adaptation
process is required by the heterogeneous and dynamic na-
ture of grids. For instance if the network is very fast, time to
compress the data may not be available. But, if the visible
bandwidth decreases (due to some congestion on the net-
work), some time to compress the data may become avail-
able.

In this paper, AdOC is tested on several kind of networks
and with different types of data. We compare AdOC read
and write functions to the standard POSIX read and write
system calls. We show that the latency of AdOC is similar
to that of the POSIX read/write. We show that AdOC en-
ables an increase of bandwidth depending on the data sent
and the network (up to 6 times faster). We provide a con-
servative approach of compression that leads to no perfor-
mance degradation on most kinds of networks (on Gbit Eth-
ernet some microseconds are lost with AdOC) and any kind
of data (even an incompressible one).

The API of the AdOC library is very close to the POSIX
read/write system calls and respects their semantic. There-
fore, it has been easily integrated into the NetSolve middle-
ware [6]. The evaluation of the enhanced version of Net-
Solve shows a significant increase of performance on var-
ious scenarii whereas, on worst-case scenarii, no perfor-
mance degradation is seen.

2. Adaptivity issues

Compression is often proposed in various transmission
protocols such as FTP [15], PPP [16] or in the secure copy
tool (scp). However, compressing is never the default be-
havior because no adaptation is provided. In some cases, it
is worth to compress but not always.

In this paper, adapting means changing the compression
level during the transmission. The compression level refers



on how efficiently data are compressed. Adapting the com-
pression level (and in some cases disabling the compres-
sion) must be performed according to the following param-
eters:

• Current speed of the network. If the network is very
fast, there is no time to compress the data. If the net-
work is slow enough, some time may be available
to compress the data. Moreover, the network is often
shared by other users. Thus, its speed can change with
the time: it is then required to change the compression
level.

• Current speed of the machine on each side of
the transmission. Compressing and uncompress-
ing data requires some computational power. Before
enabling compression, one must be sure that ma-
chines in both ends have enough computational power
to perform the compression/decompression, with-
out slowing down the transmission. Indeed, if it
requires more time to compress, send and uncom-
press the data than just send the data uncompressed
no gain can be expected. Moreover, many ma-
chines run multi-task operating systems (for in-
stance UNIX). Therefore, the available CPU power
may change with the time. In this case, it is re-
quired to adapt the compression level to the new
conditions.

• Size of the data to be transmitted. Enabling compres-
sion adds a startup time (latency) to the transmission.
Therefore, if small messages are to be sent, the startup
time can be greater than the gain obtained with com-
pression. Hence, for small data, the compression must
be disabled.

• Type of the data to be transmitted. Some data are eas-
ier to compress than other. ASCII data compresses bet-
ter and requires less time to compress than binary data.
Moreover, for some files (such as directories archive),
the nature of the data changes along the file. Hence,
the compression level must be constantly adapted to
the type of the data.

The compression level adaptation must be performed ac-
cording to all these parameters at the same time. For in-
stance, we have to take into consideration the ratio between
the available bandwidth and the CPU power more than each
criteria separately.

Table 1 shows compression timings. Two same size files
have been compressed using either gzip [8] or lzf [13]
tools on a 1 GHz PowerPC G4 under MacOS X 10.2.8.
oilpann.hb is a sparse matrix file in the Harwell-Boeing
format (ASCII). bin.tar is a tarball of executables. Lzf
and gzip as well as their related libraries (liblzf and zlib)
provide lossless compression based on the Ziv-Lempel al-
gorithm [20, 21]. We see that lzf is a fast compression algo-

oilpann.hb bin.tar
algo c. time ratio d. time c. time ratio d. time

lzf 1.5 3.26 2.7 2.3 1.68 3.2
gzip 1 4.4 4.88 2.7 8 2.23 3.1
gzip 2 4.4 5.13 3 8.6 2.27 3.3
gzip 3 4.6 5.52 3 10 2.31 3.1
gzip 4 6 5.83 2.5 11.5 2.38 2.9
gzip 5 6.6 6.32 2.9 12.3 2.43 3
gzip 6 8.1 6.64 2.5 16.3 2.44 3
gzip 7 10.1 6.75 2.8 18.4 2.45 3.5
gzip 8 26.7 6.99 3.8 24.1 2.45 3
gzip 9 46 7.02 2.6 34.3 2.46 3.2

Table 1. Compression Timings on Bench
Files Using lzf and Different Levels of gzip

rithm with low compression ratio. Concerning gzip, we see
that the compression time (columns c. time) increases with
the compression level as the decompression time (columns
d. time) is roughly constant. After level 6 the compression
ratio (columns ratio) does not increase significantly.

For some specific data it may happen that the size of the
compressed data is larger than the size of the uncompressed
data. This is the case for already compressed data. In this
case, tools like gzip [8] guarantee that the size does not in-
crease more than 0.0015% for such files.

In this paper, compression level 0 will mean no compres-
sion (no time is used to compress the data). For compression
level 1 we will use lzf, for compression level 2 we will use
gzip at level 1, . . .

3. The AdOC Algorithm

3.1. Principle

The AdOC algorithm has been proposed by Jeannot,
Knutsson and Bjorkman in [11]. It is a general-purpose
user-level and portable algorithm suited not only for grid
computing but also for any data transfer application. It is
mainly based on two ideas:

• Compression and communication overlap. When
a process performs some I/O (such as access-
ing a disk or a network socket) it is blocked until
the device becomes ready. During that time, the pro-
cessor is available to perform some computation.
Overlapping compression with communication al-
lows the compression time to become mostly invisible
to the user. We also perform decompression and com-
munication overlap on the receiver side for the same
reason.



• Dynamic adaptation of the compression level. We saw
in the previous section that the compression time de-
pends on the compression level. Moreover, the envi-
ronment (CPU/network speed, data, etc. ) is subject
to change with the time. Therefore, the available time
to compress/decompress data changes during the data
transfer. We adapt to the change of the environment by
changing the compression level.

The AdOC algorithm is presented Figure 1, and works as
follows. It uses:

• Multithreading. The sending process is made of two
threads. One thread compresses the data. The other
one sends the data on the network. On the receiv-
ing side the process is also made of two threads. One
reads the network the other one decompresses the
data. Multithreading allows to overlap the compres-
sion/decompression and the communication.

• FIFO queues. A queue is used to store data shared
by the threads. On the sending side, the compression
thread stores data in the queue, the emission thread
reads this data and sends it to the network. On the re-
ceiving side, the reception thread reads the network
and stores the data into the queue, the decompression
threads reads the data from the queue to decompress it.

3.2. The compression thread

The compression thread has in charge to compress either
a file or an array of bytes. In order to do that, it splits the
file or the array into chucks of fixed size called buffers. The
compression level is updated before reading a new buffer.
Therefore, a tradeoff has to be found for the buffer size. If
the size is too large, the reactivity needed to adapt the com-
pression level may not be good enough. If the size is too
small, the total amount of data sent will increase. Indeed,
due to internal data structures of compression algorithms,
compressing a file at a given level leads to a smaller com-
pressed file than splitting the file, compressing each part and
merging the compressed parts. In our implementation, the
size of each buffer is chosen to be 200 KB. For this size,
less than 6% of compression degradation is seen and the re-
activity appears to be good enough [11].

Once the compression level is updated, a buffer is com-
pressed at this level. Each time a packet of compressed data
is generated, this packet is read and stored in the FIFO
queue and the compression is resumed. In our implementa-
tion, the size of a packet is 8KB. If the compression is dis-
abled, (compression level = 0) only an uncompressed packet
is stored in the queue and the compression level is updated.

Input n: number of packets in the queue
δ: variation of the size of the queue
l: old compression level

Output l: new compression level

1. if n=0
2. return minLevel
3. if n< 10

4. if δ ≤ 0

5. l=l/2
6. else if n< 20

7. if δ > 0

8. l++;
9. else if (δ < 0)
10. l−−;
11. else if n< 30

12. if δ > 0

13. l+=2;
14. else if δ < 0

15. l−−

16. else if δ > 0

17. l+=2
18. l=max(l,minLevel)
19. l=min(l,maxLevel)
20. return l;

Figure 2. Compression Level Update Algo-
rithm

3.3. Adapting the compression level with the FIFO
queue

The AdOC algorithm monitors the size of the FIFO
queue on the emission side as well as the variation of its
size. The size of the queue is the number of stored packets.
This information is used to update the compression level as
shown in Fig. 2. The idea is the following:

• If the size of the queue increases, this means that the
network and the receiver consume data slower than it is
produced by the compression thread. Some extra time
is therefore available for compression: the compres-
sion level is then increased.

• If the size of the queue decreases, this means that the
network and the receiver consume data faster than it
is produced by the compression thread. It is required
to decrease the compression level in order to generate
packets at a greater rate.

The goal of changing the compression level is to avoid
the queue to become either empty or too large. If the queue



Figure 1. AdOC Algorithm: Emission Process (Reception Process is Symmetric but does not Monitor
the Queue Size)

becomes empty, this means that the sending thread is wait-
ing for data to be sent and therefore the transmission is
slowed down. In order to avoid this to happen, some thresh-
olds are added as describe in Figure 2. The compression
level cannot increase if the queue size is too small (less than
10 packets). The level is increased by 2 (resp. divided by 2)
if the queue is very large (resp. very small).

We see that the AdOC algorithm has a conservative strat-
egy. As each packet has a size of 8 KB, and no compression
is performed before the size of the FIFO becomes larger
than 10 packets, no compression is done for data smaller
than 80 KB.

4. AdOC Library

The AdOC library is an implementation of the AdOC al-
gorithm. This library provides a set of user-level func-
tions to send and receive data through sockets. The
main features of this library are: synthetic API, full
respect of the read/write UNIX system calls seman-
tic, thread-safety, portability on many UNIX-like sys-
tems, efficiency on a broad range of networks (up to
giga-ethernet LAN). Moreover, this library is avail-
able free of charge under the LGPL1 license at
http://www.loria.fr/˜ejeannot/adoc.

4.1. AdOC library API

The AdOC library Application Programming Interface is
very small and provides the ability to send and receive ar-
rays of data or files. It also provides the ability to force or
disable compression. The 7 functions of the API are the fol-
lowing:

• ssize t adoc send file(int d, FILE
*pf, ssize t *slen). This function sends the

1 http://www.gnu.org/copyleft/lesser.html

file pointed by pf to the object referenced by the de-
scriptor d (a socket for instance). After the call, the
number of sent bytes is pointed by slen. The size
of the file is returned by the function. The compres-
sion ratio is therefore the ratio between the value re-
turned by the function and the value pointed by
slen.

• ssize t adoc send file levels(int d,
FILE *pf, ssize t *slen, unsigned
int min, unsigned int max). This func-
tion is the same as above, except that min sets
the minimum level of compression to be used and
max sets the maximum level of compression to be
used. Two internal constants ADOC MIN LEVEL and
ADOC MAX LEVEL define the minimum and maxi-
mum values for min and max. For instance setting
max to ADOC MIN LEVEL, disables the compres-
sion while setting min to ADOC MIN LEVEL+1,
forces the compression.

• ssize t adoc receive file(int d, FILE
*pf);. It reads an AdOC stream from the object ref-
erenced by descriptor d, decompresses the data if nec-
essary and stores the data into the file pointed by pf.
The amount of data stored is returned by the func-
tion.

• ssize t adoc write(int d, void *buf,
size t nbytes, ssize t *slen). This
function is the same as the write UNIX sys-
tem call except that the number of sent bytes is out-
put in the slen pointer (it can be set to NULL if not
used by the application). It writes the data pointed
by buf to the object referenced by the descrip-
tor d. The maximum number of data to write is given
by nbytes.The function returns nbytes on success
(a negative value in case of failure). Thanks to com-
pression, the number pointed by slen must be lower
than nbytes.



• ssize t adoc write levels(int d, void
*buf, size t nbytes, ssize t *slen,
unsigned int min, unsigned int max).
This function is the same as above with the abil-
ity to force or disable compression.

• ssize t adoc read(int d, void
*buf,size t nbytes);. This function is
the same as the write UNIX system call. It reads
an AdOC stream from the object referenced by de-
scriptor d and stores the uncompressed data into buf.
The maximum number of bytes to read is given by
nbytes. The actual number of bytes read is re-
turn by this function.

• int adoc close(int d). This function is used
to close the descriptor file d and to free AdOC internal
buffers. In order to respect the read/write system
call semantic it is required to be able to perform par-
tial read. For instance a sender can send 100 MB, and
the receiver can perform two reads one of 60 MB and
one of 40 MB. In this case, temporary buffers are allo-
cated to store received data. If the socket is closed after
a partial read, temporary buffers have to be freed.

The ability of AdOC to send files is provided to ease
the use of the library when files are to be sent. It is not
intended to be competitive to the sendfile system call
provided by some UNIX systems (such as LINUX). The
main reason is that the sendfile system call does the
file copy inside the kernel whereas AdOC is a user level li-
brary. Only adoc read, adoc write and adoc close
are intended to be used instead of the corresponding system
calls.

4.2. Thread safety

The library does not use any global variable. A static
variable is used to store and retrieve internal buffers when
performing partial read. This variable is always accessed
between locks. Therefore, different threads can use AdOC
at the same time2.

4.3. Portability

This library has been ported and compiled on many
UNIX-like systems. It incorporates the compression library
required by the algorithm (zlib [10] and liblzf [13]). So far
AdOC has been successfully compiled and tested on the fol-
lowing platform/architectures: Linux, Solaris/SunOS, Dar-
win/MacOS, freeBSD, IBM AIX, SGI IRIX, dec-alpha
OSF, cygwin as well as 64 bits linux kernels. We also ported

2 We have incorporated AdOC into the Internet Backplane Protocol
(IBP) [4] that use multiple threads to store or retrieve data from data
handlers. It works without error.

the AdOC library to gcc/windows. However, tests show that
cygwin outperform the gcc/windows version in most of the
cases. Therefore, due to the difficulty to maintain two ver-
sions we provide only the cygwin one.

Note that, since we use the liblzf and the zlib, the com-
pression is lossless, and therefore no alteration of the data
are seen by the user.

5. Performance issues

In Section 3, we described an overview of the AdOC al-
gorithm. We discuss here some performance issues that we
have dealt with. This requires to change the algorithm in or-
der the library to be efficient in broad range of scenarii.

Fast Networks In order the AdOC library to be general, one
should not see performance degradation on fast Network.
For some networks (up to 100 Mbit LAN), we need fast
compression libraries that are able to compress the data to a
speed at least equal to that of the network. We use the LZF
library of Marc Alexander Lehmann [13]. As shown in Ta-
ble 1, it is a very fast compression library that has about the
same speed as the memcpy function3. The drawback of this
library is that the compression ratio is very low (less than 2)
therefore, we use this library as the first compression level
(the second compression level corresponds to gzip at level
1).

Furthermore, very fast networks such as Gbit LAN are
too fast for modern processors to have time to compress
data even with lzf. In order to avoid performance degrada-
tion for such networks, we incorporate a bandwidth mea-
surement into the protocol as follow. If the size of the data
to transmit is large enough (512 KB) we measure the time
to transmit a part of the data (256 KB) without compres-
sion. We deduce the speed of the link. If this speed is above
500 Mb/s, it means that we are dealing with a very fast net-
work and we send the remaining data uncompressed, other-
wise we use the adaptive algorithm.

The drawback of this approach is that no compression is
performed if the size of the data is less than 512 KB what-
ever the network is. We think that this is reasonable as we
target mainly large data set transfers and that 512 KB is less
than the half of a 3.25 inches floppy disk capacity.

Compression level divergence The goal of the AdOC algo-
rithm is to maintain the emission queue size to a reasonable
value. If the queue size is empty, this means that no pack-
ets are sent to the network. If it is too large, this means that
we have time to compress the data. However, when the re-
ceiver is very slow with regard to the sender, the adaptation
process may diverge. Indeed, if we start compressing the
data, the receiver will take a longer time to decompress it.

3 We could have used lzo [14], which has comparable performance to
lzf, but its license is incompatible with the AdOC one.



Usually the compression time is far longer than the decom-
pression time because it requires more computation power,
but this is no longer true when both ends are very heteroge-
neous. If the compression time becomes smaller than the de-
compression time and the network is fast enough, the queue
size will increase leading to an increase of the compression
level. This is not the good choice, because the receiver will
still be the bottleneck, the queue size will increase again
leading to an increase of the compression level, etc. The
good choice would be to disable the compression in such
case.

The problem is that we want the library to respect the
read/write semantic. Therefore, it is not possible for the re-
ceiver to send any information to the sender and ask it to
stop the compression. Hence, the sender has to guess that
the receiver is too slow for the compressed data it is send-
ing. In order to solve this problem, we propose the follow-
ing conservative strategy. The compression thread continu-
ously measure the visible bandwidth and records it for each
compression level. When updating the compression level,
AdOC checks if the current level gives a better visible band-
width than any smaller compression levels. If this is not
the case this means that maybe we are facing a compres-
sion level divergence (an other reason could be that the net-
work is temporally congested). Nevertheless, our conserva-
tive strategy gets back to the level that gives a better visible
bandwidth and forbids the previous compression level for 1
second. After 1 second, we assume that the dynamic condi-
tion may have changed and we let AdOC try this level again
if it decides it can be useful.

With this strategy the compression level is disabled when
the receiver is not able to decompress data at a rate greater
than its network arrival speed.

Small messages The AdOC library is a multithreaded li-
brary with a queue that is shared between the threads and
accessed by mutexes. This adds some latency to the trans-
fer. This latency has a cost that is visible for short mes-
sages on fast networks. Nevertheless, for small messages,
compression is not very useful, and we measure the speed
of the network by sending the first 256 KB uncompressed.
Therefore, when messages are short (less than 512 KB), the
data are sent uncompressed directly without launching the
threads. In this case, the latency is the same than direct read
and write calls.

Compressed and random data Some data, like ran-
dom or already compressed one, takes time to be com-
pressed and the obtained compression ratio is poor and
sometimes smaller than one. In AdOC sending such data
can lead to performance degradation. In order to avoid
such a degradation we compare the size of each com-
pressed packet to its original size. If the compression
ratio is smaller than a given threshold, we stop compress-
ing the remaining of the buffer and set the compression

level to its minimal value for the next 10 packets before en-
abling compression again.

6. Experiments

The AdOC Library is designed to be used as a general-
purpose communication service for any application instead
standard POSIX read/write system calls. Hence, we have
first measured its performance against those calls. Second,
as it is intended to be incorporated into grid middlewares,
we have plugged AdOC into the NetSolve [6] and compared
application performance of both versions.

6.1. AdOC vs. POSIX read/write
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6.1.1. Bandwidth Figures 3, 5, 4, 6 and 7 show the perfor-
mance of AdOC compared to the POSIX read/write system
calls. The experiments where performed using Linux ma-
chine, with 100 Mb network cards. On the x-axis, is shown
the amount of transferred data in bytes. This axis use loga-
rithmic scale. The sent data size is between 1 byte and 32
MB. On the y-axis, we show the bandwidth visible at the ap-
plication level (by the user). It is evaluated by measuring the
amount of time required by the application to send and re-
ceived back a buffer of the given size.

Since the performance of AdOC depends on its capac-
ity to compress data 4 drawings are shown on each figure.
One represents the read/write performance. The three other
drawings represent the AdOC timings with different data
types. The first type represents ASCII data: it has a com-
pression ratio of about 5 with gzip level 6. The second type
represents binary data: it has a compression ratio of about
2 with gzip level 6. The last type represents incompressible
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data as gzip is not able to compress it. These data were gen-
erated randomly, the randomness being set accordingly to
the desired compression ratio.

We believe that for most of the applications, data to be
sent will be between the ASCII and the binary data.

Reproductivity of the experiments is a difficult issue.
This is especially true on Internet and WAN where exper-
iments are not reproducible. The standard deviation of the
timings is very high and therefore it is difficult to conclude
on the performance of each method based on average tim-
ings. To illustrate this phenomena, let us compare Figure 5
and Figure 4. On Fig. 4, each point represents the average
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time of 40 measurements, on the Fig. 5, each point is the
best time of 40 measurements. On one hand, we see that it
is difficult to conclude on the behavior of each method with
the plotting of average value (the average bandwidth is os-
cillating after 8 KB). On the other hand, plotting the best
value gives smoother plots. Best-value plottings appear to
be more reproducible. Therefore, we have decided to use
only best values for Renater and Internet figures of this ar-
ticle. Another justification is that best value is fair for all
the methods (with or without AdOC) : each of them is eval-
uated under the same circumstances: when network pertur-
bation is minimal.

Results show that up to 512 KB, AdOC and POSIX
read/write have the same performance: this is due to the fact
that no compression is performed under this size. At that
point and after, AdOC starts compressing data, and the time



POSIX AdOC AdOC with forced
read/write compression

Internet 80 80 225
Renater 9.2 9.2 25
100 Mbit LAN 0.18 0.20 1.8
Gbit LAN 0.030 0.045 1.6

Table 2. Latency of AdOC vs. POSIX
read/write on Different Networks (in millisec-
onds)

to send data with AdOC becomes smaller than the time to
send data with POSIX read/write. Not surprisingly the gain
depends on the data and the network:

• On a 100 Mb Ethernet LAN (Fig. 3), for 32 MB, AdOC
is between 1.85 and 2.36 times faster than the POSIX
read/write.

• On Renater4 between Nancy and Lyon (Fig. 4), for 32
MB, AdOC is between 6.1 and 2.6 times faster than
the POSIX read/write.

• On Internet between France and Tennessee (Fig. 6), for
32 MB, AdOC is between 5.5 and 6 times faster than
the POSIX read/write. The fact that the gain is smaller
with Internet that with Renater is partially due to the
fact that the machine we used in Tennessee was slower
than the machines we used on Renater.

Moreover, we see that, for all these networks, for every
size and type of data there is no performance degradation.
Finally, the difference between AdOC with incompressible
data and POSIX read/write is never significant: AdOC does
not loose time with this kind of data.

For Gbit Ethernet (Fig. 7), we see a small degradation up
to 1MB. This is the overhead of testing the network and the
data size in order to guess if compression has to be used.
However, in our tests the degradation does not depend on
the size of the data: the overhead is between 10 and 20 µs.

6.1.2. Latency We have measured the average time of a
zero byte ping-pong with AdOC and POSIX read/write. Re-
sults are shown in Table 2

We see that there is no difference between AdOC and
POSIX read/write up to 100 Mb LAN. For Gbit LAN the la-
tency is about 15 µs higher with AdOC. The latency given
in the column AdOC with forced compression shows the
overhead of starting the full AdOC process (threads, FIFO
queue, mutexes, etc.) and the protocol overhead. Since these

4 Renater is the network that interconnects research center and uni-
versity of france it provoides a backbone of several Gbit see www.
renater.fr

timings are very high, it justifies not to compress the data for
small size.

6.2. AdOC into NetSolve
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Figure 8. NetSolve Timings on a 100 Mb LAN
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NetSolve is a middleware that works under the GridRPC
model. It features a set of servers that register to an agent.
When a client requests for a service it asks the agent to
find the best suited server. It then executes the request to
the server as a normal RPC.

We have modified NetSolve in order to enable AdOC in
this middleware. This was very easy as it required to mod-
ify only the communicator.c file. We changed each



read call into adoc read and each write call into
adoc write. We had also to change the makefiles so
that NetSolve links against the AdOC library at compila-
tion.

In Figures 8 and 9 we show the time to execute a dgemm5

request on a LAN or on Internet using NetSolve. The agent
and the server were on one end of the network whereas the
client was on the other end. On the x-axis is shown the size
of the matrix (number of lines or columns as matrices are
square). On the y-axis we plot the time to perform the en-
tire request. Each axis uses logarithmic scale. Two kinds of
matrices where used. Matrix full of zero (called sparse ma-
trix), matrix with 13 significant digits (as in some standard
matrix libraries) and an exponent between 10−20 and 10+20

(called dense matrix). We do not use oilpann.hb file as
it is a fix size ASCII matrix and we want to vary the size and
use binary data. In our case a sparse matrix is very easy to
compress : it is the best case. A dense matrix is hard to com-
press and should be considered as the worst realistic case.

For each kind of data the time with and without AdOC is
plotted.

On a LAN (Fig. 8), we see that for dense matrices Net-
Solve with AdOC is slightly better than NetSolve with-
out AdOC (5% faster for 2048*2048 matrix). On sparse
matrix performance is better (up to 5.6 times faster for a
2048*2048 matrix). There is no performance degradation
due to AdOC for any matrix size and any data type.

On Internet (Fig. 9), we see that NetSolve with AdOC al-
ways outperforms standard NetSolve. It is 2.6 times faster
on a 2048*2048 dense matrix and 30.8 times faster on a
2048*2048 sparse matrix. We never see performance degra-
dation due to AdOC on Internet too.

7. Related work

Several researches are done on using compression for
transmitting data. In [12], the authors proposed an algorithm
closed to the AdOC algorithm. They implemented this al-
gorithm in the linux Kernel (TCP stack). Hence this imple-
mentation was not portable. With these authors we proposed
the AdOC algorithm in [11].

In [18] the authors proposed a work close to ours. The
adaptivity depends on the network, CPU and data. How-
ever, it ignores any related work on adaptive compression
and this work is less general than ours as no library is pro-
vided and it does not work on 100 Mb LAN or higher. For
high speed compression, it uses the Huffman algorithm that
is slower and gives lower compression ratio than LZF.

In [19], an other adaptive compression study is per-
formed. This is an ongoing work. This work highlights
some problems of the original AdOC algorithm. These

5 A dgemm is a matrix-multiplication program.

problems are all addressed in this paper. The compression
is performed using threaded and non-threaded implementa-
tion. In the non-threaded implementation there is no over-
lap of communication and compression. It proposed a feed-
back mechanism in order to avoid compression level diver-
gence. However, this mechanism requires to know the max-
imum available bandwidth of the network.

Compression to speedup data transfer is used in [2]. In
this work the authors propose a Grid-enable computational
framework based on Cactus [3] and Globus [9]. However,
the compression was not adaptive: once, the compression is
set, it is not possible to disabled it.

In [7], the authors propose an integrated solution for
wide area communication on grids called NetIbis. Many
features are proposed in this work and they use AdOC for
enhancing the communication performance.

8. Conclusion

Data transfer is a key feature for computational and data
grids. Such grids have to rely on efficient data transmission
services that are able to provide fast transfer rate. Compres-
sion is one mean to increase the bandwidth see at the appli-
cation level. However, the heterogeneous and dynamic na-
ture of the grids required to adapt the compression to the
environment.

In this paper we have presented the AdOC library. This
library provides adaptive online compression for transfer-
ring data. The main features of the AdOC library are:

• The compression level is adapted according to the en-
vironment (current speed of the network and CPUs)
and the data. The compression is lossless.

• It provides compression and communication overlap.
AdOC is able to compress some part of the data while
sending compressed or uncompressed packets.

• It works on a broad range of network (up to Gbit LAN)

• It is easy to incorporate into any existing software.
AdOC is thread-safe and its API is very close to the
read/write system calls and respects their semantics.

• It is ported on many UNIX like systems (LINUX
(32/64 bits), SunOS, Darwin, Cygwin, etc.)

• It has a low latency: for small messages AdOC gives
the same performance as POSIX read/write (up to 100
MBit LAN).

We have tested this library on various condition with
various data types. First, it appears that there is almost no
performance degradation due to AdOC (on Giga-Ehternet
LAN, some microseconds are lost due to AdOC). Second,
the performance gain obtained using AdOC depends on the
data itself and the environment and can be very important
(up to 6 times faster).



This library is intended to be used in any middleware
that performs data transfer. We have incorporated the library
into NetSolve. This was done easily thanks to the API close
to the read and write system call. The performance of Net-
Solve with AdOC is never worst than NetSolve alone. Most
of the results show an increase of performance for NetSolve
with AdOC.

Our future work is directed towards extending the use of
AdOC in existing software. An IBP data mover has already
been proposed: it is needed to evaluate the performance pre-
cisely. The next software we target is gridFTP [1], where (as
in FTP) a compression option is available.

We also direct our future work towards lossy compres-
sion for image transfer with various resolution. This is use-
ful when a user has to choose one image among a set of
images (thumbnails): the resolution and accuracy of the
thumbnails is not necessary required to be very high.
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