
Low Memory Cost Dynamic Scheduling of Large Coarse Grain Task Graphs

Michel Cosnard
LORIA - INRIA Lorraine

615, rue du Jardin Botanique
BP 101

54602 Villiers Les Nancy, France
email: michel.cosnard@loria.fr

Emmanuel Jeannot and Laurence Rougeot
LIP, ENS de Lyon
46, allée d’Italie

69364 Lyon cedex 07, France
email:

�
ejeannot,lrougeot � @ens-lyon.fr

Abstract

Scheduling large task graphs is an important issue in par-
allel computing since it allows the treatment of big size prob-
lems. In this paper we tackle the following problem: how to
schedule a task graph, when it is too large to fit into mem-
ory? Our answer features the parameterized task graph
(PTG), which is a symbolic representation of the task graph.
We propose a dynamic scheduling algorithm which takes the
PTG as an entry and allows to generate a generic program.
The performances of the method are studied as well as its
limitations. We show that our algorithm finds good schedule
for coarse grain task graphs, has a very low memory cost,
and has a good computational complexity. When the aver-
age number of operations of each task is large enough, we
prove that the scheduling overhead is negligible with respect
to the makespan. The feasibility of our approach is stud-
ied on several compute-intensive kernels found in numerical
scientific applications.

1. Introduction

As the computational power of distributed memory par-
allel computer increases very large problems are then to be
solved. In the task parallelism approach, computations are
allocated onto processors and there is one control flow per
processor which is data driven. The task graph is a model
well suited for such an approach. The task graph is a DAG
where each node is a sequential task, and where edges corre-
spond to dependences between tasks, mostly due to commu-
nication. A task is a set of sequential instructions that must
be executed on one processor.

In the literature a lot of work has been done to schedule
such task graphs [5], either allowing the duplication of tasks
on the processors [19, 20], or not [11, 17]. In order to gen-
erate a parallel program, static schedulers, like Pyrros [24],

need to have the complete task graph in memory. This so-
lution cannot be implemented when dealing with very large
problems because the task graph is too large to fit into mem-
ory. Furthermore, a task graph is built when all the parame-
ters have been instantiated. Thus, if the parameters change,
the analysis of the sequential program has to be repeated
and a new task graph is then rebuilt. Hence, static task
graph scheduling does not allow to build a generic program.
In Cilk [3], the task graph is scheduled at run-time. Cilk
can handle big size problems but communication cost is not
taken into consideration. The Cilk system give good results
with tree-like style computation (min-max search, backtrack
exploration, etc...) but it has not been designed for scien-
tific loop-nest computations. In [2, 13] run time methods to
schedule task graphs are described addressing the problem
of processor memory requirement, but these works do not
consider DAG memory requirement. In [1], a tool CASCH,
is presented. It allows to generate a schedule and a parallel
code for a sequential program. Nevertheless CASCH uses
standard static scheduling algorithms and consequently, has
the same drawbacks as Pyrros.

In this paper we present and study a new approach that
allows to solve very large problems (of the order of a mil-
lion tasks). This is a complete automatic parallelization line
for most of the compute-intensive kernels found in numeri-
cal scientific applications. The input is an annotated fortran-
like sequential program. A tool, PlusPyr [18], generates an
intermediate program representation called the parameter-
ized task graph (PTG) [9, 10]. The PTG is a compact pro-
gram representation for DAG parallelism, and it requires a
small amount of space to be stored because it is independent
of program sizes. Once the parameter values are known, it
is possible to use the parameterized task graph to build the
task graph. This possibility is not considered bellow. We
propose a different approach which consists in building a
generic program that dynamically schedules the task graph.
This method requires the parameters value to be given at run
time. The parameterized task graph dynamic scheduler (PT-

GDS), which has been studied in [7, 8], is a new algorithm
which uses the parameterized task graph to explore the DAG
and schedule the tasks. During the scheduling, the key point
is that, at any moment, PTGDS has only a small part of the
task graph in memory. This paper is focused on the feasibil-
ity of such an approach. We study the parallelization of sev-
eral computation intensive kernels. We show that the use of
the parameterized task graph allows to schedule large prob-
lems. We discuss the limitation of our approach and derive
some required conditions such that the scheduling overhead
is negligible with respect to the parallel time.

This paper is organized as follows: Section 2, gives the
definitions used along this paper. Section 3 deals with the
PlusPyr software. In Section 4 we describe the dynamic ap-
proach and the PTGDS algorithm. Section 5 studies theoret-
ical results concerning PTGDS behavior and our dynamic
approach. Section 6 presents the experimental results we
obtained. Finally, in section 7 concluding remarks are given.

2. Definitions and Models

Throughout this paper, we will use the following general
definitions:�

A task graph, is an annotated directed acyclic graph
(DAG), defined by the tuple �����	��

��
���

��� . � is
the node set, each node representing a task. ��������� is
the number of nodes. In this paper we will say node or
task indifferently. � is the edge set. There is an edge
from task � to task � if there is a dependence between
task � and task � (i.e. task � must be executed after the
end of task �). ����� ��� is the number of edges. � is the
task weight (or task duration) set, �! �"#� will represent
task � duration. � is the set of edge weights (or com-
munication volumes), $! &% '�"(� represents the commu-
nication cost along the edge from node � to node � . It
becomes) if the two tasks are mapped on the same pro-
cessor.�
We call *+�,��� the granularity of the task graph � . We
use the definition given by Gerasoulis and Yang in [15]:-/.,0�1325476�89;:=<,> ? @ 4�6�8 @ A 94CBEDGF!HJIJK	L	M!N 9�OQP FSR 9UT A 94CBEDVF
HQW,XJY&Y	N 9�OZP 9 R F\[�[�
A task graph � is said coarse grain if *]�&���_^��a` , i.e.
if all the communication costs of any task are smaller
than the task duration.

The execution model for task graphs is called macro data
flow. Each task first receives all the needed data, computes
without interruption and then sends the results to its succes-
sors. We do not allow task duplication, because duplication
results in an increase of the memory required by the sched-
uler. This is incompatible with one of our goals which is to
have a low memory cost algorithm.

In this paper we do not discuss issues concerning the
topology of the target machine. We deal with a clique of pro-
cessors. It is useful to recall here that, in the wormhole rout-
ing mode, which is widely used now, the communication
cost is not easily affected by the inter-processor distance, ex-
cept if contention is high[4]. Therefore, the following par-
allel computer model will be used:�cb

is the number of processors (they are all identical).�ed
is the time taken by the execution of one elementary

instruction. If f is the number of operations performed
by task � (the computational cost of task �), we have� � d f .�hg

is the startup time of a communication, and i is the
transmission rate. If jk &% ' is the number of items sent
from task � to task � , $! &% 'C� g�l imjn &% ' .

3. PlusPyr and the Parameterized Task Graph

We have proposed the parameterized task graph [9] as a
solution for automatically deriving task graphs from sequen-
tial programs. It uses parameters which have to be instanti-
ated in order to build the expanded task graph. It is mainly
composed of generic task codes and communication rules.
A generic task is a set of instructions which have to be exe-
cuted sequentially.

The communication rules represent symbolic depen-
dences between generic tasks. They have two forms. Re-
ception rules define data received by generic tasks. Emis-
sion rules describe the data sent by a generic task. They also
give the symbolic value of the communication volume along
the generic edge.

In this paper the DAG which is built when values are
given to the parameters will be called the the expanded task
graph, or simply the task graph.

PlusPyr [18], a tool built by Michel Loi, is able, given a
sequential program, to derive the parameterized task graph.
PlusPyr is also able, once the values of the parameters are
given, to construct the expanded task graph. There are some
limitations concerning the input language, for more details
see [9]. The analysis performed by PlusPyr also gives the
symbolic computational cost of each generic task. This anal-
ysis is based on the work done by Feautrier on integer para-
metric programming (see [12, 22] for an introduction) and
[9, 10], for more details.

4. Dynamic Execution of a Parameterized Task
Graph

In the literature, dynamic execution policy is mainly used
in the following two cases : (1) dealing with nondetermin-
istic programs [3], (2) load balancing and process migration

2

[21, 23]. Here we use dynamic execution for the following
reasons: (1) to obtain a generic parallel program for each
sequential program : we give the parameters value, at run-
time, and then schedule the tasks during the execution. We
use the parameterized task graph because it is problem size
independent, (2) to handle big size problems. It is impossi-
ble to have a very large task graph in memory. The parame-
terized task graph allows to build at run-time, the small part
of the DAG needed to perform task mapping optimization.

4.1. PTGDS, the Scheduling Algorithm

1 schedule(task T) o
2 for each task T’ in father(T) do
3 if not(allocated(T’)) then schedule(T’);
4 endfor
5 allocate T to the processor that minimizes its starting time;
6 for each task T’ in father(T) do
7 if T is the last son of T’ to be scheduled then
8 remove from memory all information on T’
9 endif
10 endfor
11 allocated(T)=true;
12 p

Figure 1. The PTGDS Algorithm

PTGDS schedules the tasks: it determines on which pro-
cessor and when each task has to be executed. For each task� , when the parameters value is known:�

We use the code analysis performed by PlusPyr to de-
termine the duration of � .�
We use the parameterized task graph, to determine the
set of the children of � , the set of the parents, and the
communication volume between parents or children.
Most of the time in the PTG the set of sons/fathers of� is described by a polyhedron. In the program, in or-
der to have all the sons/fathers, we generate a loop nest
that scans all the points of this polyhedron. We use a
tool called enum which has been developed at the Uni-
versité de Rennes [14].It transforms a parameterized
polyhedron into a loop nest. The number of items sent
between two tasks is also described by a polyhedron.
In the program we generate a parameterized polyno-
mial that enumerates the number of points in the poly-
hedron, i.e. the number of items. We use the polylib
from the Université de Strasbourg [6], to build such a
polynomial.

Figure 1 gives the general scheme of PTGDS algorithm. PT-
GDS starts from a node which is topologically a descendant
from all the other tasks (“the output task”). It recursively

explores the DAG and, for each task � , schedules all the fa-
thers of � before allocating � to a processor. We also add a
source node (the “input task”) that is the predecessor of all
the node in the DAG. The input task is the only source node
in the DAG, and is always scheduled to the processor ` at
time) .

Lines 7 and 8 are justified as follows: each time a task� is scheduled we put allocated(T)=true. Thus, we need
a data structure (in our case an AVL tree [16]), to store all
the values of allocated(T). When all the sons of task � have
been scheduled, the test on the line 3 will never be performed
again for � . Then, we can remove from the AVL all the in-
formations about � . Hence, lines 7 and 8 allow a major re-
duction of the memory used during execution of the algo-
rithm.

4.2. Combining Scheduling and Dynamic Execution

The target code is an SPMD generic program which uses
a supervisor/executor protocol. One supervisor executes
PTGDS, and sends orders to the processors. There is one
executor per processor. We assume that the supervisor is ex-
ecuted on the parallel machine host. Each executor receives
messages from the supervisor. Those messages command
either the execution of the task or the sending of data to an-
other. For instance, when a task � is assigned to processorq

, the supervisor orders the executors to send to
q

the data
needed for the computation of � . Incoming messages are
handled independently by each executor. The execution is
dynamic, since the supervisor sends orders to the executors
while scheduling the task graph. Such a complete dynamic
execution of the parameterized task graph will be called PT-
GDE (Parameterized Task Graph Dynamic Execution). Fig-
ure 2 gives the code of the supervisor and one executor. All
the executors have the same code: the sequential generic
task, and the communication protocol.

Each executor manages two lists. The execution mes-
sages that cannot be performed because the data are not yet
present in the local processor memory are stored in exec list.
This list is updated when new data arrive or new data are
computed. The send messages that cannot be performed be-
cause the data have not already been computed by the pro-
cessor are stored in send list. This list is updated when new
data are computed.

5. Minimizing the Impact of the Scheduling
Overhead

In this section we show that it is possible to derive a sim-
ple upper bound on the average number of operations of
tasks in order to obtain an efficient execution on a parallel
computer.

3

1 schedule(task T) o
2 for each task T’ in father(T) do
3 if not(allocated(T’)) then schedule(T’);
4 endfor
5 send the order of executing T to the executor which, according
to PTGDS, minimizes its starting time;
6 send, to executors which execute the fathers of task T, the order
of transmitting data to the executor which executes T;
7 for each task T’ in father(T) do
8 if T is the last son of T’ to be scheduled then
9 remove from memory all information on T’
10 endif
11 endfor
12 allocated(T)=true;
13 p

1 while true do o
2 case type message of
3 execute :
4 if all the required data are in memory
5 then execute the task; send new computed data if required
(check send list);
6 If possible execute a task with the new data computed
(check exec list);
7 else store this message in exec list;
8 send :
9 if all the required data are in memory
10 then send the data;
11 else store this message in send list;
12 receive :
13 store the data in memory;
14 execute task if possible (check exec list);
15 p

Figure 2. PTGDE code. Left: the Supervisor; Right: an Executor

In [7, 8] we have shown that the computational complex-
ity of PTGDS is rs�S�,� l �t�U�vukwtx�� lyb �S� , and that on an un-
bounded number of processors for any DAG � :q �]z|{E}J�&���_~ q �����&����~���` l `*]�,��� � q �]z|{E}J�&���
where

q � � �,��� is the parallel time found by PTGDS andq � z|{G} �,��� is the optimal parallel time.

Definition 1 Let us call �Czv{ , the average number of opera-
tions of tasks in � , i.e. � zv{ ���\�v�,��!� . Let

q ���������,�s
 b � be
the parallel program execution time, of the parameterized
task graph � scheduled by PTGDS, on a

b
processors par-

allel computer. Let �]��� { �,�s
 b � be the time taken by PTGDS
on the supervisor to schedule � on

b
processors.

Lemma 1
q �=���&��
 b �_~ q ���������,��
 b ��~�� �	� {=�,��
 b � lq �����&��
 b �

Proof of Lemma 1: Due to scheduling overhead the time
taken by the executor to finish is greater than the total paral-
lel time. Moreover, since PTGDS is executed on the super-
visor and the parallel code is executed simultaneously on

b
executors, the total dynamic execution time is lower than the
sequentialization of the supervisor time plus the executors
time.

In many cases (particularly, in all the examples of sec-
tion 6.1), the number of edges of the task graph is of the
same order of the number of nodes. The main limitation of
our approach is that dynamic scheduling is costly when deal-
ing with fine grain task graphs. Theorem 1 gives a sufficient
condition on the average number of task operations such that

the scheduling overhead is negligible with comparison to the
parallel time.

Theorem 1 If ����r��,�Q� and

b��#�Z� � b
Sukwtx��Q�y���/�v�Czv{\�
then q ���������&��
 b ��� q � � �,��
 b � l��
where

�
is a negligible time with comparison to

q � � �,��
 b � .
Proof of Theorem 1 Let � �	� {=�,�s
 b � be the supervisor
time.� ��� {��&��
 b ��� schedule time

l
messages time

The maximum amount of communication done by the su-
pervisor is rs�,�G� , since it has to communicate to the execu-
tors at most each time two processors have to send data�]��� { �&��
 b ��� r����,� l �Q�J� b�l ukwtx_�t� l r��,�G�
Let ��� ���Z� � b
Sukwtx��Q� , and since ����r��,�Q� :�]��� { �&��
 b ��� r��&�t��� l r��,�Q�
Then, it exists some constant such that:� ��� {��&��
 b ��� \�Q� d (1)

We cannot have a superlinear speedup, thus:q � � �,�s
 b ��¡ � ��¢	£b
(2)

By theorem hypothesis,

b � � �/�v�¤z|{\� . This im-
plies that:

b � � �/� �\�v�,��!� � and finally \�Q� d ��/� �\�v�,�{ � . Replacing equation 1 and 2 leads to � �	� {=�,��
 b ����/� q �/{=�,��
 b ��� . Since, according to lemma 1
q �����,�s
 b �7~q ���������&��
 b ��~�� �	� {=�,��
 b � l q �����&��
 b � , then:q ���������&��
 b �3� q �=���,��
 b � lh�

4

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

processors

S
pe

ed
up

+ Gauss + Backsolve

* Jordan

o Givens

x Gauss

−− Power (m=100,l=1)

n=100

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

processors

S
pe

ed
up

n=1000

+ Gauss + Backsolve

* Jordan

o Givens

x Gauss

−− Power (m=100,l=1)

Figure 3. Speedup Simulation vs. Number of Processors for Several Examples and Several Matrix
Sizes

6. Results and Experiments

6.1. Examples of programs

We present here the set of program examples we used for
our experiments. Extensive tests on the parallelization of
these numerical kernels have been carried out.
The Gaussian Elimination: this program is composed of
two generic tasks: one for the computation of the pivot col-
umn, one for the update of the submatrix.
Gaussian Elimination and backward substitution: this
program has two generic tasks: one for the “ijk” Gaussian
Elimination, and a second one for solving the system by a
backward substitution. This shows that we can easily ana-
lyze the concatenation of two programs.
The Givens algorithm: we have a simple program, with
only one generic task. The main loop is composed of many
instructions: it shows that complex computational costs can
be handled.
Jordan Diagonalization: The Jordan method is decom-
posed into two generic tasks, one to diagonalize the matrix
and the other one to solve the system. In the two generic
tasks, for-loops are sequentialized.
Power of a matrix: We compute the � },¥ power of matrix� of order ¦ . In this example, 3 parameters (n,m and l) are
used. Hence, the computational cost and the granularity can
be easily tuned.

For all these examples experiments have been carried out
to validate our approach. Speedup simulations, memory
cost measurement and scheduling overhead comparison to
the parallel time were done. All the tests were done using
the following values (found on Sparc 5 workstation linked
by Ethernet on PVM) : i(��`E§©¨ s ª double,

g �¬«®­�¯ ms and

for one operation on a double

d ��)\­�°Q°t«_¨ s.

6.2. Speedup Simulations

In Figure 3, the speedup simulations show that, when the
matrix size is high, PTGDS has no difficulty to use all the
processors.

6.3. Memory Cost

In Table 1 we study the memory cost of PTGDS for sev-
eral task graphs. We have instantiated parameters value and
run PTGDS on the expanded graph. The column # Tasks,
is the number of tasks in the DAG. PTGDS optimizes the
number of tasks in memory. The list of tasks needed to al-
locate other tasks is handled by an AVL tree. Column Max
tasks is the maximum size of the AVL during the execu-
tion. The parameterized task graph is a description of the
edges in the task graph. sometime an edge in the task graph
is generated by several rules. Hence, when we use the com-
munication rules to explore the DAG, the program gener-
ates more edges and tasks than there are in the DAG. Our
program ensures the schedule correctness by checking du-
plicated edges and tasks. However, it is necessary to use all
the rules in order to count the amount of data sent between
tasks. Column # Nodes gives the number of tasks generated
by the recursive DAG exploration. Column Max # nodes is
the maximum number of tasks in memory during the exe-
cution. Column # Edges is the number of edges generated
by the recursive DAG exploration. Column Max # edges is
the maximum number of edges in memory during the execu-
tion. Edges and tasks are removed from memory when the
corresponding recursive step is finished. These three data
structures are the only one which vary with the parameters

5

Program # Tasks Max # tasks # Nodes Max # nodes # Edges Max # edges¦���`E)t)
Gauss 5150 200 20593 199 15348 398
Givens 4952 295 24856 198 14851 494
Gauss & BS 5052 201 30501 102 20100 303
Jordan 5052 200 40394 101 15052 301
Power (m=100) 10002 9805 30011 102 39802 10100¦#��`E)t)Q)
Gauss 501500 2000 2005993 1999 1503498 3998
Givens 499502 2995 2498506 1998 1498501 4994
Gauss & BS 500502 2001 3005001 1002 2001000 3003
Jordan 500502 2000 4003994 1001 1500502 3001
Power (m=100) 99202 98005 299111 102 396202 99200

Table 1. Memory Cost of Main Data Structures of PTGDS, for Various Matrix Size

0 2 4 6 8 10 12 14

x 10
4

0

50

100

150

A_cost

tim
e

se
c

power (m=40,l=1); p=32

o: scheduling time

x: parallel time

0 1000 2000 3000 4000 5000 6000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

o: scheduling time

x: parallel time

A_cost

tim
e

se
c

Givens; p=16

Figure 4. Execution Time of PTGDS and Execution Time Simulation vs. Average Number of Task
Operations

value.
Table 1 shows that the memory required to schedule the

task graph is only a small portion of the total memory re-
quired by the whole task graph. The differences between¦��±`G)t) and ¦²�±`G)t)t) show that required memory in-
creases linearly, while (except for Power), the size of the
DAG increases quadratically.

6.4. Comparison Between Scheduling Overhead
and Execution Time

In this section we show that, according to theorem 1, the
amount of time taken by PTGDS to schedule the parame-
terized task graph is negligible when the average number of
task operations of is high. In Figure 4, the simulated ex-
ecution time of Power and Givens on a ³t« -processors ma-
chine (such as defined in this section), has been compared to

the time taken to schedule the DAG when the average num-
ber of operations of tasks increases. For Power we see that
when

b�´�µ ¯Q)\­ �¤z|{ then
q ���,��� µ `E)®­ q ������¶_�,��� . For

the Givens algorithm we see that when

b=´�µ «Q)\­ �¤z|{ thenq ���,��� µ ¯\­ q ������¶·�&��� .
7. Conclusion

In this paper we have presented a scheme for a complete
line of automatic parallelization for some kind of programs.
This work is based on the PlusPyr tool which builds the pa-
rameterized task graph. We have conducted experiments on
various programs. We have given requirements for this ap-
proach to be valid. Theoretical results show that PTGDS
finds good schedule on an unbounded number of processors
for coarse grain task graphs, and has a competitive computa-

6

tional complexity. In this paper, we have given a theoretical
bound for the average number of operations a task should
perform if we want the schedule overhead to be negligible
in comparison to the parallel time. Our experiments show
that, (1) PTGDS finds good schedules on a fixed number of
processors, (2) the algorithm memory cost is low, so we can
handle very large task graphs, (3) for some programs, with
tasks large enough, PTGDS execution time is small with re-
gards to the makespan. Thus, it is possible to schedule dy-
namically such programs.

In conclusion, we are implementing parameterized task
graphs dynamic scheduling in order to have generic pro-
grams and to deal with large task graphs. This method ap-
pears to be efficient on coarse grain task graphs, when the
average number of operations of the tasks is high, as for in-
stance, for block algorithms.

In our future works we plan to the realize the code gen-
erator, and to study a new method to schedule statically pa-
rameterized task graphs.

8. Acknowledgements

This work is part of the European Community Eurêka Eu-
roTOPS project. We would like to thank Michel Loi for pro-
viding us with the PlusPyr software, Tao Yang of UCSB for
very helpful discussions about this paper and the anonymous
referees for valuable comments and suggestions.

References

[1] I. Ahmad, Y.-K. Kwok, M.-Y. Wu, and W. Shu. Auto-
matic Parallelization and Scheduling on Multiprocessors us-
ing CASCH. In ICPP’97, Aug. 1997.

[2] G. Blelloch, P. Gibbons, and Y. Matias. Provably efficient
scheduling for languages with fine-grained parallelism. In
Proceedings Symposium on Parallel Algorithms and Archi-
tectures, pages 1–12, July 1995.

[3] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiser-
son, K. H. Randall, and Y. Zhou. Cilk: An efficient multi-
threaded runtime system. In Fifth ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming
(PPoPP’95, Santa Barbara, California, July 1995.

[4] S. Chintor and R. Enbody. Performance Degradation
in Large Wormhole-Routed Interprocessor Communication
Networks. In Proceedingsof ICPP’90, volume I, pages 424–
428, 1990.

[5] P. Chretienne and C.Picouleau. Scheduling Theory and its
Applications, chapter 4, Scheduling with Communication
Delays: A Survey, pages 65–89. John Wiley and Sons Ltd,
1995.

[6] P. Clauss, V. Loechner, and D. K. Wilde. Deriving For-
mulae to Count Solutions to Parameterized Linear Systems
using Ehrhart Polynomials: Applications to the Analysis
of Nested-Loop Programs. Technical report, Université

de Strasbourg, April 1997. research report RR 97-05
http://icps.u-strasbg.fr/pub-97/pub-97-05.ps.gz.

[7] M. Cosnard and E. Jeannot. Automatic Coarse-Grained Par-
allelization Techniques. In Grandinetti and Kowalik, editor,
NATO workshop : Advances in High Performance Comput-
ing. Kluwer academic Publishers, 1997.

[8] M. Cosnard and E. Jeannot. Building and Scheduling Coarse
Grain Task Graphs. Technical Report RR97-03, Labo-
ratoire de l’Informatique du Parallélisme, Ecole Normale
Supérieure de Lyon, France, Feb. 1997.

[9] M. Cosnard and M. Loi. Automatic Task Graph Genera-
tion Techniques. Parallel Processing Letters, 5(4):527–538,
1995.

[10] M. Cosnard and M. Loi. A Simple Algorithm for the Gener-
ation of Efficient Loop Structures. Internationnal Journal of
Parallel Programming, 24(3):265–289, June 1996.

[11] H. El-Rewini, T. Lewis, and H. Ali. Task Scheduling in Par-
allel and Distributed Systems. Prentice Hall, 1994.

[12] P. Feautrier. Dataflow analysis of array and scalar references.
Internationnal Journal of Parallel Programming, 20(1):23–
53, 1991.

[13] C. Fu and T. Yang. Space and time efficient execution of par-
allel irregular computations. In sixth ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming
(PPoPP’97), Las Vegas, June 1997.

[14] M. L. Fur. Compilation de boucles dirigé par la distribution
des donnés. PhD thesis, Université de Rennes I, July 1995.

[15] A. Gerasoulis and T. Yang. On the Granularity and Cluster-
ing of Direct Acyclic Task Graphs. IEEE Transactions on
Parallel and Distributed Systems, 4(6):686–701, June 1993.

[16] E. Horowitz, S. Sahni, and S. Anderson-Freed. Fundamen-
tals of data structures in C. W.H. Freeman and company,
New-York, 1993.

[17] Y.-K. Kwok and I. Ahmad. Dynamic Critical-Path Schedul-
ing: An Effective Technique for Allocating Task Graphs to
Multiprocessors. IEEE Transactions on Parallel and Dis-
tributed Systems, 7(5):506–521, May 1996.

[18] M. Loi. Construction et exécution de graphe de tâches acy-
cliques à gros grain. PhD thesis, Ecole Normale Supérieure
de Lyon, France, 1996.

[19] M. Palis, J.-C. Liou, and D. Wei. Task Clustering and
Scheduling for Distributed Memory Parallel Architectures.
IEEE Transactions on Parallel and Distributed Systems,
7(1):46–55, Jan. 1996.

[20] C. Papadimitriou and M. Yannakakis. Toward an Archi-
tecture Independent Analysis of Parallel Algorithms. SIAM
Journal on Computing, 19(2):322–328, 1990.

[21] C. Perez. Load Balancing HPF Programs by Migrating Vir-
tual Processors. In Second International Workshop on High-
Level Programming Models and Supportive Environments,
HIPS97. IEEE Computer Society Press, Apr. 1997.

[22] A. Schrijver. Theory of linear and integer programming.
John Wiley & sons, 1986.

[23] N. Shivarati, P. Krueger, and M. Singhal. Load Distributing
for Localy Distributed Systems. Computer, 25(12):33–44,
Dec. 1992.

[24] T. Yang and A. Gerasoulis. Pyrros: Static Task Scheduling
and Code Generation for Message Passing Multiprocessor.
In Supercomputing’92, pages 428–437, Washington D.C.,
July 1992. ACM.

7

