
Improving the GridRPC Model with Data
Persistence and Redistribution
Frédéric Desprez

LIP, INRIA-ENS-Lyon
Lyon, France

Frederic.Desprez@ens-lyon.fr

Emmanuel Jeannot
LORIA, Université H. Poincaré

Nancy, France
Emmanuel.Jeannot@loria.fr

Abstract— The GridRPC model [1] is an emerging standard
promoted by the Global Grid Forum (GGF)1 that defines how
to perform remote client-server computation on a distributed
architecture. In this model data are sent back to the client
at the end of every computation. This implies unnecessary
communications when computed data are needed by an other
server in further computations.

Since, communication time is sometimes the dominant cost of
remote computation, this cost has to be lowered.

Several tools instantiate the GridRPC model such as NetSolve
which is a NES environment developed at the University of
Tennessee, Knoxville.

In this paper, we present the modifications we made to the
NetSolve protocol in order to overcome this drawback. We have
developed a set of new functions and data structures that allow
clients to order servers to keep data in place and to redistribute
them directly to an other server when needed.

I. INTRODUCTION

Due to the progress in networking, computing intensive
problems in several areas can now be solved using networked
scientific computing. In the same way that the World Wide
Web has changed the way that we think about information, we
can easily imagine the types of applications we might construct
if we had instantaneous access to a supercomputer from our
desktop. The GridRPC approach [1] is a good candidate to
build Problem Solving Environments on computational Grid.
It defines an API and a model to perform remote computation
on servers.

Several tools exist that provide this functionality like Net-
Solve [2], NINF [3], DIET [4], NEOS [5], or RCS [6].
However, none of them do implement data persistence in
servers and data redistribution between servers. This means
that once a server has finished its computation, output data
are immediately sent back to the client and input data are
destroyed. Hence, if one of these data is needed for another
computation, the client has to bring it back again on the server.
This problem as been partially tackled in NetSolve with the
request sequencing feature [7]. However, the current request
sequencing implementation does not handle multiple servers.

This work is a "proof of concept" type of work. We have
chosen a GridRPC middleware, implemented persistence and
data redistribution features and evaluated the performance of
these features on several application kernels. We have chosen

1http://www.ggf.org

NetSolve and modiied its internal communication protocol as
well as its API to manage data on the servers. Results show
performance improvement on a LAN and on a WAN.

The remaining of this paper is organized as follows. The
GridRPC architecture, NetSolve and the objectives of this
work are described in Section II. In Section III-A, we describe
the modifications made to the server. Section III-B is dedicated
to a new data structure that tells how to redistribute objects
from a server to an other server. In Section III-C, we describe
all the NetSolve client functions involved in data redistribution
and data persistence operations. In Section III-D, the mod-
ifications done to NetSolve’s scheduler are described and a
program example is presented in Section IV. Experimental
results are given in Section V. Finally and before some
concluding remarks, we discuss a generalization of this work
in section VI.

II. BACKGROUND

A. GridRPC Overview

The GridRPC model defines an architecture for executing
computations on remote servers. This architecture is composed
of three components:

• the agent is the manager of the architecture. It knows
the state of the system. Its main role is to find servers
that will be able to solve as efficiently as possible client
requests,

• servers are computational resources. Each server registers
to an agent and then waits for client requests. Compu-
tational capabilities of a server are known as problems
(matrix multiplication, sort, linear systems solving, . . .).
A server can be sequential (executing sequential routines)
or parallel (executing operations in parallel on several
nodes),

• a client is a program that requests for computational
resources. It asks the agent to find a set of servers that will
be able to solve its problem. Data transmitted between a
client and a server is called object. Thus, an input object
is a parameter of a problem and an output object is a
result of a problem.

The GridRPC architecture works as follows. First, an agent
is launched. Then, servers register to the agent by sending
information of problems they are able to solve as well as

a = foo1(b,c)
d = foo2(e,f)
g = foo3(a,d)

(a) Sample C code

Function Server 1 Server 2
foo1 6s 9s
foo2 2s 3s
foo3 6s 11s

(b) Execution time

Send
g

S 1

S2

S 1

S2

Receive foo3 Send
g

Receive Receive

Receive Receive

foo1

foo2
d

Send

f
Send

e
SendSendSend

a
Send

a

Receive

Receive Receive Send

foo3Receive

Send

d

Receive Receive

Receive Receive

foo1

foo2

f
Send

e
SendSendSend

Receive

execution time: 26s

b c

With data persistence and redistribution

Without data persistence and redistribution

b cClient

Client

Send
d

Receive

execution time: 21s

(c) Execution without (top) and with (bottom) persistence

Fig. 1. Sample example where data persistence and redistribution is better than retrieving data to the client.

information of the machine on which they are running and the
network’s speed (latency and bandwidth) between the server
and the agent. A client asks the agent to solve a problem.
The agent scheduler selects a set of servers that are able to
solve this problem and sends back the list to the client. The
client sends the input objects to one of the servers. The server
performs the computations and returns the output objects to
the client. Finally local server objects are destroyed.

This architecture is based on the client-server programma-
tion paradigm. This paradigm is different than other ones such
as parallel/distributed programmation. In a parallel program
(written in PVM or MPI for instance) data persistence is
performed implicitly : once a node has received some data, this
data is supposed to be available on this node as long as the
application is running (unless explicitly deleted). Therefore,
in a parallel program data can be used for several steps
of the parallel algorithm. On the over hand, in a GridRPC
architecture (the one we address in this paper) no data manage-
ment is performed. Like in the standard RPC model, request
parameters are sent back and forth between the client and the
server. A data is not supposed to be available on a server that
used it for another step of the algorithm (an new RPC) once a

step is finished (a previous RPC has returned). This drawback
can lead to very costly computation as the execution and the
communications can be performed over the internet.

We show here an example where using data persistence and
redistribution is better than retrieving data from the client.
Assume a client asks to execute the three functions/problems
shown in the sample code Figure 1(a).

Let us consider that the underlying network between the
client and the server has a bandwidth of 100 Mbit/s (12.5
Mbytes per seconds). Figure 1(b) gives the execution time for
each function and for each server. Finally let us suppose that
each object has a size of 25 Mbytes. The GridRPC architecture
will execute foo1 and foo3 on server S1 and foo2 on S2 and
sends the objects in the following order: b,c,e,f (Figure 1(c)).
Due to the bandwidth, foo1 will start 4 seconds after the
request and foo2 after 8 seconds. Without data persistence
and redistribution a will be available on S1 16 seconds after
the beginning and d 18 seconds after the beginning (S2 has to
wait that the client has completely received a before starting
to send d). Therefore, after the execution of foo3, g will be
available on the client 26 seconds after the beginning. With
data persistence and redistribution, S2 sends d to S1 which is

available 13 seconds after the beginning of the request. Hence,
g will be available on the client 21 seconds after the beginning
of the request which leads to a 19% improvement.

B. NetSolve and Request Sequencing

NetSolve is tool built at the University of Tennessee and in-
stantiate the GridRPC model [2]. In order to tackle the problem
of sending to much data on the Network, the request sequenc-
ing feature has been proposed since NetSolve 1.3 [7]. Request
sequencing consists in scheduling a sequence of NetSolve calls
on one server. This is a high level functionality since only two
new sequence delimiters netsl_sequence_begin and
netsl_sequence_start are added in the client API. The
calls between those delimiters are evaluated at the same time
and the data movements due to dependencies are optimized.

However request sequencing has the following deficiencies.
First it does not handle multiple servers because no redistri-
bution is possible between servers. An overhead is added for
scheduling NetSolve requests. for loops are forbidden within
sequences, and finally the execution graph must be known at
compile time and cannot depend on results computed within
the sequence.

Data redistribution is not implemented in the NetSolve’s
request sequencing feature. This can lead to sub-optimal
utilization of the computational resources when, within a
sequence, two or more problems can be solved in parallel
on two different servers. This is the case, for instance, if the
request is composed of the problems foo1, foo2 and foo3 given
Figure 1(c). The performance can be increased if foo1 and foo2
can be executed in parallel on two different servers.

C. Goal of our Work

In this work we modified NetSolve and added the data
persistence and data redistribution.

Data persistence consists in allowing servers to keep objects
in place to be able to use these objects again for a new
call without sending them back and forth to and from the
client. Data redistribution enables inter-server communications
to avoid object moving though the client.

Our modification is backward compatible. Data persistence
and data redistribution require the client API to be modified
but we want standard clients to continue to execute normally.
Moreover, our modifications are standalone. This means that
we do not want to use an other software to implement our
optimizations. Hence, NetSolve users do not have to download
and compile new tools. Finally, our implementation is very
flexible without the restrictions imposed by NetSolve’s request
sequencing feature.

III. MODIFICATIONS DONE TO NETSOLVE

A. Server Modifications

NetSolve communications are implemented using sockets.
In this section, we give details about the low level protocols
that enable data persistence and data redistribution between
servers.

1) Data Persistence: When a server has finished its com-
putations, it keeps all the objects locally, listen to a socket
and waits for new orders from the client. So far, the server
can receive five different orders.

1) Exit. When this order is received, the server terminates
the transaction with the client, exits, and therefore data
are lost. Saying that the server exits is not completely
correct. Indeed, when a problem is solved by a server, a
process is forked, and the computations are performed
by the forked process. Data persistence is also done by
the forked process. In the following, when we say that
the server is terminated, it means that the forked process
exits. The NetSolve server is still running and it can
solve new problems.

2) Send one input object. The server must send an input
object to the client or to an other server. Once this order
is executed, data are not lost and the server is waiting
for new orders.

3) Send one output object. This order works the same way
than the previous one but a result is sent.

4) Send all input objects. It is the same as "send one input
object" but all the input objects are sent.

5) Send all output objects. It is the same as "send one
output object" but all the results are sent.

2) Data Redistribution: When a server has to solve a new
problem, it has first to receive a set of input objects. These
objects can be received from the client or from an other server.
Before an input object is received, the client tells the server if
this object will come from a server or from the client. If the
object comes from the client, the server has just to receive the
object. However, if the object comes from an other server, a
new protocol is needed. Let call S1 the server that has to send
the data, S2 the server that is waiting for the data, C and the
client.

1) S2 opens a socket s on an available port p.
2) S2 sends this port to C.
3) S2 waits for the object on socket s.
4) C orders S1 to send one object (input or output). It sends

the object number, forward the number of the port p to
S1 and sends the hostname of S2.

5) S1 connects to the socket s at port p of S2.
6) S1 sends the object directly to S2 on this socket: data

do not go through the client.

B. Client Modifications

1) New structure for the client API: When a client needs
a data to stay on a server, three informations are needed to
identify this data. (1) Is this an input or an output object? (2)
On which server can it be currently found? (3) What is the
number of this object on the server?

We have implemented the ObjectLocation structure to
describe these needed informations. ObjectLocation has
3 fields:

1) request_id which is the request number of the non-
blocking call that involves the requested data. The re-
quest id is returned by the netslnb standard NetSolve

function, that performs a non blocking remote execution
of a problem. If request_id equals -1, this means that
the data is available on the client.

2) type can have two values: INPUT_OBJECT or
OUTPUT_OBJECT. It describes if the requested object
is an input object or a result.

3) object_number is the number of the object as de-
scribed in the problem descriptor.

2) Modification of the NetSolve code: When a client asks
for a problem to be solved, an array of ObjectLocation
data structures is tested. If this array is not NULL, this means
that some data redistribution have to be issued. Each element
of the array corresponds to an input object. For each input
object of the problem, we check the request_id field. If it
is smaller than 0, no redistribution is issued, everything works
like in the standard version of Netsolve. If the request_id
field is greater than or equal to zero then data redistribution
is issued between the server corresponding to this request (it
must have the data), and the server that have to solve the new
problem.

C. Set of New Functions

In this section, we present the modifications of the client
API that uses the low-level server protocol modifications
described above. These new features are backward compatible
with the old version. This means that an old NetSolve client
will have the same behavior with this enhanced version: all the
old functions have the same semantic, except that when doing
a non-blocking call, data stay on the server until a command
that terminates the server is issued. These functions have been
implemented for both C and Fortran clients. These functions
are very general and can handle various situations. Hence,
unlike request sequencing, no restriction is imposed to the
input program. In section IV, a code example is given that
uses a subset of these functions.

1) Wait Functions: We have modified or implemented
three functions: netslwt, netslwtcnt and netslwtnr.
These functions block until computations are finished. With
netslwt, the data are retrieved and the server exits. With
netslwtcnt and netslwtnr, the server does not ter-
minate and other data redistribution orders can be issued.
The difference between these two functions is that unlike
netslwtcnt, netslwtnr does not retrieve the data.

2) Terminating a Server: The netslterm orders the
server to exit. The server must have finished its computation,
local object are then lost.

3) Probing Servers: As in the standard NetSolve,
netslpr probes the server. If the server has finished its
computations, results are not retrieved and data redistribution
orders can be issued.

4) Retrieving Data: A data can be retrieved with the
netslretrieve function. Parameters of this functions are
the type of the object (input or output), the request, the object
number and a pointer where to store the data.

5) Redistribution Function: netslnbdist, is the func-
tion that performs the data redistribution. It works like the
standard non-blocking call netslnb with one more parame-
ter: an ObjectLocation array, that describes which objects
are redistributed and where they can be found.

D. Agent Scheduler Modifications

The scheduling algorithm used by NetSolve is Minimum
Completion Time (MCT) [8] which is described Figure 2.
Each time a client send a request MCT chooses the server
that minimizes the execution time of the request assuming no
major change in the system state.

1 For all server S that can resolve the problem
2 D1(S) = estimated amount of time to transfer

input and output data.
3 D2(S) = estimated amount of time to solve the

problem.
4 Choose the server that minimizes D1(S) + D2(S).

Fig. 2. MCT algorithm

We have modified the agent’s scheduler to take into account
the new data persistence. The standard scheduler assumes
that all data are located on the client. Hence, communication
costs do not depend on the fact that a data can already be
distributed. We have modified the agent’s scheduler and the
protocol between the agent and the client in the following
way. When a client asks the agent for a server, it also sends
the location of the data. Hence, when the agent computes the
communication cost of a request for a given server, this cost
can be reduced by the fraction of data already hold by the
server.

IV. CODE EXAMPLE

In figure 3 we show a code that illustrates the features
described in this paper. It executes 3 matrix multiplications:
c=a*b, d=e*f, and g=d*a using the blas dgemm function
provided but Netsolve, where a is redistributed from the first
server and d is redistributed from the second one. We will
suppose that matrices are correctly initialized and allocated.
In order to simplify this example we will suppose that each
matrix has n rows and columns and tests of requests are not
shown.

In the two netslnb calls different parameters of dgemm
(c = β × c + α× a× b, for the first call) are passed such has
the matrix dimension (always n here), the need to transpose
input matrices (not here), the value of α and β (respectively
1 and 0) and pointers to input and output objects. All these
objects are persistent and therefore stay on the server: they do
not move back to the client.

Then the redistribution is computed. An array of
ObjectLocation is build and filled for the two objects
that need to be redistributed (a and d).

ObjectLocation *redist;

netslmajor("Row");
trans="N";
alpha=1;
beta=0;

/* c=a*b */
request_c=netslnb("dgemm()",&trans,&trans,n,n,n,&alpha,a,n,b,n,&beta,c,n);
/* after this call c is only on the server*/

/* d=e*f */
request_d=netslnb("dgemm()",&trans,&trans,n,n,n,&alpha,e,n,f,n,&beta,d,n);
/* after this call d is only on the server*/

/* COMPUTING REDISTRIBUTION */
/* 7 input objects for dgemm */
nb_objects=7;
redist=(ObjectLocation*)malloc(nb.objects*sizeof(ObjectLocation));

/* All objects are first supposed to be hosted on the client */
for(i=0;i<nb_object;i++)
redist[i].request.id=-1;

/* We want to compute g=d*a */

/* a is the input object No 4 of dgemm and the input object No 3 of request_c */
redist[4].request_id=request_c;
redist[4].type=INPUT_OBJECT;
redist[4].object_number=3;

/* d is the input object No 3 of dgemm and the output object No 0 of request_d */
redist[3].request_id=request_d;
redist[3].type=OUTPUT_OBJECT;
redist[3].object_number=0;

/*g=d*a*/
request_g=netslnbdist("dgemm()",redist,&trans,&trans,n,n,n,&alpha,NULL,n,NULL,n,

&beta,g,n);

/*wait for g to be computed and retrieve it*/
netslwt(request_g);

/*retrieve c*/
netslretrieve(request_c,OUTPUT_OBJECT,0,c);

/*Terminate the server that computed d*/
netslterm(request_d);

Fig. 3. code example

dba e

fc

g

c=a*b
f=d*e
g=c*f

Fig. 4. Matrix multiplications program task graph.

200 400 600 800 1000 1200 1400 1600 1800 2000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

+ + +
+

+

+

+

+

+

+

× × ×
×

×

×

×

×

×

×

◊ ◊ ◊
◊

◊

◊

◊

◊

◊

◊

3 DGEMM with NetSolve+
3 DGEMM with NetSolve and 2 in parallel×
3 DGEMM with Scilab◊

T
im

e
in

 s
ec

on
d

3 Matrix Multiplications

Matrix size

Fig. 5. Matrix multiplications using NetSolve on a cluster of PCs.

The call to netslnbdist is similar to previous netslnb
call except that the redistribution parameter is passed.

At the end of the computation, a wait call is performed for
the computation of g, the matrix c is retrieved and the server
that computed d is terminated.

V. EXPERIMENTS

Scilab is a tool heavily used in the mathematic community
[6]. As Matlab, it allows to execute scripts for engineering and
scientific computations. However, it has some limitations since
it is not parallelized. The goal of Scilab// [9], developed in the
OURAGAN project2 is to allow an efficient and transparent
execution of Scilab in a grid environment. Various approaches
have been implemented in order to meet these objectives. One
of these is to execute Scilab computations on dedicated servers
distributed over the Internet. In order to achieve this goal, we

2http://graal.ens-lyon.fr/~desprez/OURAGAN

chose to use NetSolve [10], [2] as a middleware between the
Scilab console and our computational servers.

Figures 5 and 6 show our experimental results using Net-
Solve as a NES environment for solving matrix multiplication
problems in a grid environment.

In Figure 5, we ran a NetSolve client that performs 3 matrix
multiplications using 2 servers. The client, agent, and servers
are in the same LAN and are connected through Ethernet.
Computations and task graphs are shown in Figure 4. The first
two matrix multiplications are independent and can be done in
parallel on two different servers. We see that the time taken by
Scilab is about the same than the time taken using NetSolve
when sequentializing the three matrix multiplications. When
doing the first two ones in parallel on two servers using the
redistribution feature, we see that we gain exactly one third of
the time, which is the best possible gain. These results show
that NetSolve is very efficient in distributing matrices in a

0 400 800 1200 1600 2000 2400

0

200

400

600

800

1000

1200

+ + + + +
+

+
+

+
+

+
+

+

+

+ +

× ×
×

×

×
×

×

×

×

×

×

×

×

×

×

×

Matrix multiplication with data persistence+
Matrix multiplication without data persistence×

T
im

e
in

 s
ec

on
d

Matrix Multiplication

Matrix size

1) C11 = A11B11

2) C22 = A21B12

3) C12 = A11B12

4) C21 = A21B11

5) C11 = C11 + A12B21

6) C22 = C22 + A22B22

7) C12 = C12 + A12B22

8) C21 = C21 + A22B21

Fig. 6. Matrix multiplication using block decomposition.

LAN and that non-blocking calls to servers are helpful for
exploiting coarse grain parallelism.

Then, we have performed a matrix multiplication (Figure 6)
The client and agent were located in one University (Bor-
deaux) but servers were running on the nodes of a cluster
located in Grenoble 3. The computation decomposition done
by the client is shown in Figure 6. Each matrix is decomposed
in 4 blocks, each block of matrix A is multiplied by a
block of matrix B and contributes to a block of matrix
C. The first two matrix multiplications were performed in
parallel. Then, input data were redistributed to perform matrix
multiplications 3 and 4.The last 4 matrix multiplications and
additions can be executed using one call to the level 3 BLAS
routine DGEMM and requires input and output objects to
be redistributed. Hence, this experiment uses all the features
we have developed. We see that with data persistence (input
data and output data are redistributed between the servers and
do not go back to the client), the time taken to perform the
computation is more than twice faster than the time taken to
perform the computation without data persistence (in that case,
the blocks of A, B, and C are sent back and forth to the client).
This experiment demonstrates how useful the data persistence
and redistribution features that we have implemented within
NetSolve are.

VI. GENERALIZATION

Results in the previous section show that data persistence
and redistribution improve performance of NES. Therefore
data management appears to be an important feature for

3Grenoble and Bordeaux are two french cities separated by about 500 miles

GridRPC environment. In order the client to be able to manage
data three functionalities are required:

1) Data handler. The handler must describe the state of
data (persistent or not) and its location. In this paper the
ObjectLocation structure play the role.

2) Storage on the server. In order to implement data persis-
tence each server must be able to temporary store data.
Complex memory management such as dumping data to
disk might be required for some class of applications.

3) Data operations. Given a data handler, one must be
able to destroy this data on a remote server, redistribute
this data from one server to an other, or retrieve this
data to the client. More complex functionalities such as
managing duplication might also be wanted. Moreover,
some operations on how to manage consistency (what
to do if the same data is duplicated on more than
one server) have to be implemented. An other issue to
address concern the time limitation of the persistence.
It is not reasonable to assume that any data can be
persistent forever. When too much data is stored in the
memory of a server, mechanism close to processor cache
algorithms have to be imagine. For instance data can be
dumped to disk or moved to persistent remote storage
facilities when memory is required. Data can also be
deleted after a given amount of time depending on its
type and some specifications given by the client.

Discussions have started within the GridRPC Working
Group of the GGF to take this feature into account.

VII. CONCLUSION AND FUTURE WORK

The GridRPC model is an emerging standard for NES
middleware. However, this standard does not deal with data
management. This leads to sub-optimal communication cost
when requests require intermediate objects to be computed on
distant servers.

Data persistence (the ability of a server to keep data locally)
and data redistribution (the ability of a server to send its data
to an other server) are studied here. This paper is a proof of
concept work, where we show how we added data management
to NetSolve, a GridRPC NES.

Our contributions are the following. We have modified the
server in order to be able to keep data in place on servers after
computation. The server waits for orders from the client and
is able to redistribute data to an other server when needed. We
have modified the client API in order to simply write client
programs involving data persistence and data redistribution.
Then, we have modified the agent’s scheduler. Allocation
decisions take into account the fact that some data may
already be distributed. These modifications keep the backward
compatibility with old Netsolve clients. Finally, these features
are standalone and there is no need to download or compile
an other software.

Results show a real improvement of the NetSolve environ-
ment thanks to data persistence and redistribution either on
LAN or on WAN.

Future works are directed towards the following directions.
First, we want to implement new functionalities such as
deleting some data on a server. Second, we need to enhance
the scheduler to be able to take more accurate decisions. Third,
we are aware that using data persistence and data redistribution
requires to rewrite NetSolve client programs. We would like
to simplify the client API in order to increase the transparency
of the proposed features. Finally, we want to implement data
redistribution and data persistence for parallel servers. This last
development requires the development of a data redistribution
routine between servers that will be able to transfer huge
distributed data sets.

ACKNOWLEDGMENT

The authors would like to thank Eddy Caron from LIP,
ENS-Lyon for fruitful discussions on data redistribution and
its generalization.

REFERENCES

[1] H. Nakada, S. Matsuoka, K. Seymour, J. Dongarra, C. Lee, and
H. Casanova, “A GridRPC Model and API for End-User Ap-
plications,” Dec. 2003, https://forge.gridforum.org/projects/gridrpc-wg/
document/GridRPC_EndUse%r_16dec03/en/1.

[2] H. Casanova and J. Dongarra, “NetSolve: A Network-Enabled Server
for Solving Computational Science Problems,” International Journal of
Supercomputer Applications and High Performance Computing, vol. 11,
no. 3, pp. 212 – 213, Fall 1997.

[3] S. S. Hidemoto Nakada, Mitsuhisa Sato, “Design and implementations
of ninf: towards a global computing infrastructure,” Future Generation
Computing Systems, Metacomputing Issue, vol. 15, pp. 649–658, 1999.

[4] “DIET,” http://graal.ens-lyon.fr/DIET/.
[5] “NEOS,” http://www-neos.mcs.anl.gov/.

[6] P. Arbenz, W. Gander, and J. Moré, “The remote computational system,”
Parallel Computing, vol. 23, no. 10, pp. 1421–1428, 1997.

[7] D. C. Arnold, D. Bachmann, and J. Dongarra, “Request sequencing:
Optimizing communication for the grid,” in Euro-Par 2000 Parallel
Processing, 6th International Euro-Par Conference, vol. volume 1900
of Lecture Notes in Computer Science. Munich Germany: Springer
Verlag, Aug. 2000, pp. 1213?–1222.

[8] M. Maheswaran, S. Ali, H. J. Siegel, D. Hengsen, and R. F. Freund,
“Dynamic matching and scheduling of a class of independent tasks
onto heterogeneous computing system,” in Proceedings of the 8th
Heterogeneous Computing Workshop (HCW ’99), april 1999.

[9] E. Caron, S. Chaumette, S. Contassot-Vivier, F. Desprez, E. Fleury,
C. Gomez, M. Goursat, E. Jeannot, D. Lazure, F. Lombard, J. Nicod,
L. Philippe, M. Quinson, P. Ramet, J. Roman, F. Rubi, S. Steer, F. Suter,
and G. Utard, “Scilab to Scilab// , the OURAGAN Project,” Parallel
Computing, vol. 27, no. 11, 2001.

[10] D. C. Arnold and J. Dongarra, “The NetSolve Environment: Progressing
Towards the Seamless Grid,” in International Conference on Parallel
Processing (ICPP-2000), Toronto Canada, Aug. 2000.

