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Abstract

New developments in the field of theoretical chemistry re-
quire the computation of numerous Molecular Potential En-
ergy Surfaces (PESs) to generate adequate quantum force
field parameters. Because workstations alone cannot ful-
fill the requirements of these modern chemical advances,
we present in this paper how we have tackled this problem
using several up-to-date computer science technology such
as grid-computing middleware, molecular databases, script
interfacing, etc. An example on the optimization of semiem-
pirical parameters for water shows the potential power of
our approach and the benefit theoretical chemistry can gain
with it.

1 Introduction

Computing the potential energy of a chemical system (a
molecule or a set of interacting molecules) is one of the
basic operations of modern theoretical chemistry [3]. The
application fields are very large. For instance, it enables the
design of new molecules in the field of pharmacology or the
better understanding of chemical reactions in the field petro-
chemistry. Given a system, several conformations (i.e., the
relative positions of its atoms) have to be studied. A po-
tential energy is given for each conformation. Therefore,
for one system, the set of possible conformations defines a
(hyper–)surface of potential energy called a PES (Potential
Energy Surface). As the Schrödinger equation that defines
the quantum behavior of atoms and their components (nu-
clei and electrons) does not admit an analytical solutions in
the general case, approximation schema have to be designed
to compute such PES.

Among all the approximation methods available, two
methods calledab initio and semiempirical methods present
complementary advantages. Theab initio method, which is
derived from the Born-Oppenheimer approximation, is pre-
cise but time consuming and is limited to small systems.
The semiempirical method uses parameters that need to be

evaluated and is suited for large systems. It is faster than
the ab initio method (by about two orders of magnitude)
but less precise. The precision of the semiempirical meth-
ods heavily depends on the quality of the parameters. These
parameters can be derived from experiments or by fitting
semiempirical surfaces onab initio ones. However, experi-
mental parameters are obtained from gas phase systems and
hence are not suitable for liquid phase systems that repre-
sent the vast majority of the problems studied in theoretical
chemistry.

In this paper, we study and define a software architec-
ture that is able to fit the parameters of any semiempirical
method based onab initio computations. The problem is
the following: given a system, it is required to compute
the potential energy of thousands of conformations using
anab initio method. Thousands of systems have to be stud-
ied which leads to months of computation on a modern PC.
However, the computation of the potential energy of each
conformation is independent and hence can be easily par-
allelized. Moreover, each conformation potential energy as
well as other information (dipole, charges, etc.), need to be
stored for the semiempirical parameter fitting. Finally, due
to the nature of the available computing resources, we want
our application to work on a large set of distributed and het-
erogeneous machines (called a grid).

Our contribution is the following. We have used the
DIET [1] middleware to dispatch and execute eachab ini-
tio computation. DIET is working under the GridRPC
model [4], while our problem is close to the desktop grid
model. Therefore, we show that it is possible to bridge
both models into a more general one. We use MySQL
database(s) to store conformations to be computed as well
as PES results. We provide an integrated framework that is
able to fit semiempirical parameters given a set ofab ini-
tio PESs. Results show that this framework is able to use
the full potentiality of the computing environment. On the
chemical point of view, we show that the parameter fitting
outperforms any previous fitting of the literature. Therefore,
this proves that our application can be used in production by
chemists.



The paper is organized as follow: in Section 2 the
chemical problem and the fitting procedure are introduced.
The software architecture (DIET middleware and MySQL
database) are described in Section 3. Results and exper-
iments are given in Section 4. In Section 5 we state our
concluding remarks.

2 Problem Specifications

2.1 Potential Energy Surface in Chemistry

Theoretical chemistry mainly consists in modeling the
properties (e.g., the structure, the reactivity,etc) of atoms
and molecules. The main equation describing the micro-
scopic behavior of atoms and molecules is the Schrödinger
equation (i.e., the famousHΨ = EΨ equation) which
in the general case does not admit any analytical solution.
Along years, theoretical chemists have carefully developed
cascading approximations to the Schrödinger equation in
order to obtain close analytical solutions. Among them, the
Born-Oppenheimer approximation is the main one: it uses
the large difference between electron and nuclei masses to
suggest a clear separation between the electron and nuclei
motions. As a result, the energy of a molecular system can
be expressed as the sole function of its nuclei positions.
This allows for the definition ofpotential energy surface
(PES) which represents the variation of the potential energy
of a molecular system as a function of the position of all
system nuclei. The latter is called aconformation: the as-
sociation of a set of atoms and their space coordinates.

The Born-Oppenheimer approximation is not the only
approximation used by theoretical chemists to compute the
energy of a molecular system. Others approximations are
further used and lead to diverse computational methods.
Ab initio and semiempirical methods are among the most
popular of these. The former follows directly from the
Born-Oppenheimer approximation. They are calledab ini-
tio methods because they need in their development only
the solution of well-defined equations without requiring at
any parameter. However, while they are very reliable, they
are very CPU time consuming and, therefore, limit studies
to very small molecular systems (e.g., less than a couple of
dozens of atoms). The latter semiempirical methods can be
summarized as simplifiedab initio methods for which more
approximations are made. In this case, many computations
are defined as unnecessary and are replaced by the evalua-
tion of much simpler functions usingpredefined atomic pa-
rameters. This is why they are calledsemiempiricalmeth-
ods: they solve approximate quantum chemistry equations
involving parameters determined from experiments. Over-
all, semiempirical calculations are far faster thanab initio
calculations. This implies that larger molecular systems can
be tackled by semiempirical systems whileab initio meth-

ods are confined to smaller molecular systems. However,
semiempirical methods suffer from a serious drawback: the
atomic empirical parameters they used have most often been
determined from experimental data on isolated molecular
systems (i.e., from gas phase systems rather than liquid
phase systems). Therefore, they are not well suited to de-
scribe interactions between molecules which are at the fun-
damental basis of chemical reactivity in organic and bioor-
ganic chemistry. This leads to the following dilemma: to
model interesting molecular systems, theoretical chemists
are actually limited to either use less reliable semiempirical
methods on large real systems, or to use trustworthyab ini-
tio methods on smaller model systems that do not represent
reality.

One of the possible solutions to this problem would be
to use atomic semiempirical parameters coming from ex-
perimental data on interacting systems instead of isolated
ones. However, the parameters needed by semiempirical
equations cannot be easily derived from these experimental
data (in fact, it is not actually possible to treat experimental
data on interacting systems to output these parameters). An-
other solution is to fit semiempirical parameters not on ex-
perimental data but onab initio PESs from small (then com-
putable) interacting molecular systems. Using the transfer-
ability assumption of chemical properties1, semiempirical
parameters that can well reproduceab initio PESs should
be able to reproduce chemical properties of larger molecu-
lar system with anab initio precision without requiringab
initio computations. This is the solution we present in the
rest of the manuscript.

2.2 A Grid Solution

Fitting semiempirical parameters onab initio PESs im-
plies the use of an optimizing procedure. First, consider-
ing a set of molecular systems, each represented by a set of
conformations,ab initio PESs must be generated. It con-
sists in calculating theab initio energy of each conforma-
tion of each system. Each energy calculation can be very
CPU time consuming, but becauseab initio PESs will only
be used as a reference PES set, these calculations will only
be performed once. Second, for a given set of semiempiri-
cal parameters, semiempirical PESs are generated. It con-
sists in calculating the semiempirical energy of each con-
formation of each system with the current set of semiempir-
ical parameters. This step is far less CPU time consuming,
as compared to the computation of theab initio reference
state, but it will be repeated several times until convergence
of the optimizing procedure. Then, ascore is generated:
it reveals the similarity between theab initio PESs and the
corresponding current semiempirical PESs. In the scoring

1This assumption is the core assumption of many thereotical methods
in chemistry, like molecular mechanics for example.



function, we not only include the energy information but
also other relevant chemical information data (so calledde-
scriptors) like the total dipole moment, the energy gradi-
ent,etc. Given the score for the current iteration, the opti-
mizer can generate a new set of semiempirical parameters
that serves for the next optimizing step. This procedure is
repeated until convergenceof the semiempirical parameters.

The adequate number of conformations by PES can be
evaluated at a couple of hundred conformations. The num-
ber of PESs needed to perform a good fitting procedure can
also be evaluated at a couple of hundred PESs. Therefore,
the number of calculations by iteration step in the optimiza-
tion procedure should range between10

4 to 10
5 energy

evaluations. A single workstation cannot handle this task
alone and, because all energy calculations are independent
one from another, it is possible to distribute the work on a
pool of computers that together will provide enough CPU
power.

Many flows of information are transfered during the fit-
ting process. They have four different meanings:i) the con-
formation information defines which systems are involved
in the fitting procedure, how many conformations by system
are considered, and how atoms are positioned for each con-
formation;ii) the method information defines which solver
can be required (i.e., ab initio or semiempirical solver, in-
cluding in the latter case the corresponding parameter in-
formation); iii) the calculation information associates one
conformation and one method together to ask for the corre-
sponding calculation;iv) the descriptor information gathers
all chemical properties arising from the PESs building, they
are used in the scoring function.

Given the necessary computer power needed to fulfill the
requirements of evaluating numerous PESs in conjunction
with the necessity of an efficient storage of the informa-
tion, we suggest to build our application in associating mod-
ern grid technology to distribute the quantum calculations
among independent computers, with a relational database
to store all the information generated by the computations.

3 Software Architecture

Each computing and storage element makes up our grid.
The software architecture is given in Figure 1.

We have decided to use the DIET2 (Distributed Interac-
tive Engineering Toolbox) [1] middleware to port our appli-
cation on our grid. The DIET environment works under the
gridRPC [4] model. It features a hierarchy of agents, and
a set of clients and servers. Each server provides a service
and is registered to an agent of the hierarchy. When a client
performs a request, it asks the agent at the top of the hierar-
chy (called the master agent), to find the best server for its

2http://graal.ens-lyon.fr/DIET
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Figure 1. Software Architecture

request. Then, the client submits its request in a standard
RPC way to the server. One of the most interesting aspects
of DIET is the hierarchy of agents. This hierarchy (a logi-
cal tree), is designed in order to closely match the topology
of the underlying network (each agent is deployed at a key
point of the infrastructure) and to improve the scalabilityof
the middleware (a given agent registers only a few servers).
Therefore, DIET applications are able to work on very large
grid environments.

The application needs to store information about the
computations that have to be performed and the results.
It is required to access to the information very often and
very efficiently. Therefore, we have decided to use MySQL
databases for storing the information. As a first approach
we think that one MySQL database will provide enough
performance for this application. However, if requests to
a single database appear to be a bottleneck we will con-
sider switching to a distributed database middleware such
as OGSA-DAI3.

Since the DIET API is in the C/C++ language, some
python scripts are used to interface DIET with the
databases. These scripts are used to extract requests and
to filter and store results in the databases. Requests and re-
sults are transferred between the grid components in XML
files.

On the computing side, python scripts are used to parse
XML request files and call the quantum chemistry (QC)
solver with the right arguments. Several solvers can be used
to computeab initio or semiempirical energies (i.e., quan-
tum chemical energies, or QCEs). Each time a compute

3http://www.ogsadai.org.uk



node registers to the DIET environment, it tells DIET which
kind of operations it is able to perform.

3.1 MySQL Database

Figure 2. MySQL Database Description

Figure 2 shows how the database is organized:

• The conformation information is distributed in three
tables: theSystem table includes system invariants
like name, chemical formula, total charge, and spin
multiplicity; the Conformation table makes the
correspondence between sets of atoms belonging to the
Atom table and theSystem table (see definition of
a conformation in section 2.1); theAtom table stores
atom relative information: the name, index and posi-
tion in space of each considered atom.

• The method information is stored in theMethod ta-
ble. It includes the solver required to use the method
(theSoftware field) and the parameters used by the
method (theDefinition field).

• TheCalculation table gathers all information rel-
ative to the calculation asked by the user. It associates
a conformation with a method. Three time fields are
employed to respectively store the time when the user
asked for the calculation (thecreationTime field),
the time when the job was submitted to the grid (the
submitTime field) associated with the hostname
of the computer performing the job (theHostname
field), and the time when the calculation was com-
pleted (thecompletionTime field). Two additional
boolean fields are inserted: theDone field indicates
whether the calculation is terminatedand all chemi-
cal information arising from the calculation have been

inserted in the database, and theTest field indicates
if the calculation is relative to a temporary calculation
during the fitting procedure. The latter field enables
the periodic cleaning of the database.

• The descriptor information is stored in two tables: the
GlobalProperty table is relative to all chemical
properties that are system general properties like en-
ergies, dipole moments,etc; theAtomicProperty
table gathers all chemical properties which are relative
to atoms like atomic charges (theMulliken field) or
energy gradient.

3.2 DIET Middleware

The DIET middleware features three components:
agents, servers, and clients. In order to compute all the
PESs, we want to use as many resources as possible. If
these resources are not on the same network, DIET agents
can be deployed at key points of the infrastructure and, in
order to bypass firewalls, a virtual private network (VPN)
based on IPSEC can be used

Concerning agents and clients, there are two ways of
building the application:

1. In thepushmode each database plays the role of the
client and each QC solver plays the role of a server.
The database asks DIET to find a server that is able
to compute the QCE of each of its conformations.
Servers send back the result that is stored into the
database. This is the way, the GridRPC model is de-
signed for.

2. In thepull mode each QC solver plays the role of a
client. It asks DIET to find a conformation for it to
solve. Each database plays the role of a server. It pro-
vides conformation to compute to the client/QC solver.
It provides a second service that is to store results. This
mode is the way desktop-grids work.

For our application, thepushmode has the following
drawbacks. (1)Asynchronism: the client (the database) is
blocked whenever the server is doing the request. There-
fore, no more than one server can be used at a given mo-
ment. One solution is to use a non-blocking call. However,
this requires extra computations to store the results at the
right place in the database, and such non-blocking call is
not always provided in grid middleware. (2)Load balanc-
ing: the middleware has to schedule the requests in order to
balance them on the different servers. This requires to keep
track of the current requests in the hierarchy of agents and
to monitor the resources in order to find the least loaded
server. (3)server overloading: The client has no knowl-
edge on the number of available servers. Therefore, it can
send far many requests (in an asynchronous mode), than the



number of servers. In this case, some servers can become
overloaded and may collapse due to lack of memory.

The pull mode solves all these drawbacks. Each client is
a computational resource and servers are databases. There-
fore, each client computes one and only one QCE at a time.
The load is balanced between solvers and there is no possi-
bility to overload a given one.

Hence, we chose to use the pull mode and built our ap-
plication in a desktop-grid way. We only implement this
version and therefore no comparison is provided with the
push mode. This shows that the gridRPC model enables
to also build desktop-grid applications. We think that this
bridges the two models into a more general one and shows
that it is possible to design such applications with GridRPC
middlewares.

We developed the server code and the client code They
use the DIET API to communicate each other. The client
sends its request to the database as an XML file. This file is
processed by a python script on the server side and a request
is generated to the data base. Two kinds of transactions are
allowed. One for requesting a conformation, one for storing
results in the database. The transmission of data between
client and server are done by DIET which rely on CORBA.
This is a GRID application as any client and server can run
anywhere on any standard network (even a WAN).

Nevertheless, the pull mode requires some problems to
be addressed. One is fault tolerance, the other happens
when no more conformation have to be computed. The fault
tolerance problem happens whenever a client asks for a con-
formation but fails to send back the result. In this case, the
conformation is marked ”submitted” and cannot be sent to
an other client. This may lead to never compute this confor-
mation. In order to avoid that, we associate to any confor-
mation sent to a client a timeout on the server side. When
the timeout is up, the database server is free to send it again
to a new client. When a client has finished a conformation,
it asks the database server to store the result and requests for
a new conformation. If no more conformation needs to be
computed, the client suspends itself for a given amount of
time. This avoids the server to be flooded by conformation
requests it cannot answer.

4 Results

We here present preliminary results we have obtained
with our application. We have optimized MNDO semiem-
pirical parameters [2] for the water molecule (H2O) us-
ing ab initio MP2/aug-cc-pVDZ [3] calculations as a ref-
erence. Our database contains only one system: the wa-
ter molecule; 300 conformations are considered, each de-
scribing the position of the two hydrogens and the oxygen
of the water molecule in space. Therefore, theSystem,
Conformation, andAtom tables store respectively 1,

300, and 900 entries.
The database server is represented by a Linux laptop

(processor: Intel PIII 700 Mhz with 256 Mo RAM), and
the clients are up to 6 Linux desktops (processor: Intel PIV
3Ghz with 1Go RAM); all computers are interconnected
through a 10/100 Mbs switch.

4.1 Reference PES

Demand for the calculation of the reference PES is made
by associating in theCalculation table the 300 confor-
mations of the water molecule with the MP2/aug-cc-pVDZ
method. Since the water molecule is very simple, a typical
calculation time on a client for 1 water conformation is only
3.5 seconds. Figure 3 shows the speed-up obtained for the
building of the reference PES. We see that on 6 machines
the efficiency is about 90%. We believe that the scalability
of the environment would be even better with more than one
database and larger molecular systems.
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Figure 3. Speed-up for generating the reference PES

4.2 Fitting Procedure

The fitting procedure is performed through a simplex op-
timizer [5]. The initial step is represented by the MNDO
semiempirical parameters from Dewaret al. [2]. Differ-
ences between the reference MP2/aug-cc-pVDZ PES and
the MNDO PES can be seen on Figure 4 that represents
respective isoenergetic contours plotted from the 300 con-
formations stored in the database as a function of the two
parameters defining the geometry of a water molecule: a
commonOH distance and thêHOH angle.

After 217 iteration steps corresponding to 315 PES eval-
uations, the simplex optimizer has found a better set of
MNDO semiempirical parameters to describe the water
molecule (see Table 1). The better agreement of these new
parameters with the reference PES can be seen on Figure 5.
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Figure 5. Isoenergetic contour plot of the water
PES as a function of theOH distance and thêHOH

angle. Final step of the fitting procedure (plain line:
optimized MNDO parameters, dashed line: reference
ab initio method)

This small example shows the potentiality of our applica-
tion to efficiently determine new sets of semiempirical pa-
rameters to better describe molecular PESs.

5 Conclusions

Computing the potential energy of a chemical system is
one of the most important operation of modern theoretical
chemistry. In this paper, we have presented a complete inte-
grated application for computing potential energy surfaces
(PESs) of molecular systems in order to determine the pa-

Atoms Parameters Initial Values Optimized Values

Hydrogen Uss (eV) -11.906276 -12.047942

ζ (au) 1.331967 1.326597

β (eV) -6.989064 -7.007905

α (Å−1) 2.544134 2.527682

ρ0 (Å) 0.560345 0.558599

Oxygen Uss (eV) -99.643090 -102.011717

Upp (eV) -77.797472 -77.584175

ζ (au) 2.699905 2.839812

β (eV) -32.688082 -32.443890

α (Å−1) 3.160604 3.155540

D1 (Å) 0.282894 0.283812

D2 (Å) 0.240043 0.242252

ρ0 (Å) 0.466882 0.465616

ρ1 (Å) 0.275822 0.276476

ρ2 (Å) 0.278628 0.278686

Score 0.155 0.018

Table 1. Initial and final values of the MNDO pa-
rameters for water molecule using a simplex semiem-
pirical parameter fitting procedure. The score line in-
dicates how good is the fit (0 meaning prefect fitting)

rameters of any semiempirical method. The application is
ported on a grid environment with the DIET middleware
and uses MySQL databases for storing requests and results.
Preliminary experiments show that the performance of the
environment is good and the found results improve previous
parameters of the literature. In our future work, we will port
the application to a large-scale grid for computing PESs in
a production mode and fitting large sets of parameters.
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