
Triplet : a Clustering Scheduling Algorithm for Heterogeneous Systems

Bertrand Cirou
LaBRI, Université Bordeaux I

351, cours de la Libération
33405 Talence Cedex, France

cirou@labri.fr

Emmanuel Jeannot
LORIA, Université Nancy I
615, rue du Jardin Botanique

54602 Villers les Nancy, France
ejeannot@loria.fr

Abstract

The goal of the OURAGAN project is to provide access of
meta-computing resources to Scilab users. We present here
an approach that consists, given a Scilab script, in schedul-
ing and executing this script on an heterogeneous cluster of
machines. One of the most effective scheduling technique is
called clustering which consists in grouping tasks on virtual
processors (clusters) and then mapping clusters onto real
processors. In this paper, we study and apply the cluster-
ing technique for heterogeneous systems. We present a clus-
tering algorithm called triplet, study its performance and
compare it to the HEFT algorithm. We show that triplet has
good characteristics and outperforms HEFT in most of the
cases.

1 Introduction

Scilab is an heavily used tool in the mathematical com-
munity [7]. As Matlab, Scilab allows to execute scripts for
engineering and scientific computation. However, Scilab
has some limitation since it is not parallelized. The goals
of Scilab ��� [1], developed in the OURAGAN project1is to
permit an efficient and transparent execution of Scilab on
a meta-computing environment. Various approaches have
been taken in order to achieve these objectives. The ap-
proach we propose is the following. Given a Scilab script,
first, we analyze and compute its dependencies. Second, we
build a task graph that model the inner parallelism of the
script. This script is then scheduled on an heterogeneous
cluster of workstations. In the last step we execute this script
on the cluster. In this paper we focus on the scheduling and
executing steps. In the literature a lot of work has been done
for scheduling task graphs to an homogeneous set of pro-
cessors [2, 4]. Algorithms for homogeneous processors are
inefficient for most of network of workstations (NOWs). In-

1http://www.ens-lyon.fr/˜desprez/OURAGAN

deed, most of the time, NOWs are made of heterogeneous
computers. Several algorithms have been proposed to tackle
the problem of scheduling tasks on an heterogeneous ar-
chitecture [9, 10, 13]. All these algorithms implement the
list-based scheduling technique. Two-step scheduling tech-
niques have been shown to be very efficient for homoge-
neous systems [6, 11, 14, 15]. A two-step scheduling al-
gorithm works as follows. The first step is the clustering
phase : tasks are grouped into clusters. The main idea of
this phase is to group tasks on virtual processors in order to
suppress unnecessary communications. The second phase
is called the mapping phase: each cluster is assigned a pro-
cessor. This technique has been very successful because the
clustering phase is global. This is opposed to list scheduling
algorithms where only local optimizations are performed.

The research topic concerning clustering of static task
graphs in the case of an heterogeneous platform is relatively
unexplored. M. Eshaghian and C. Wu have proposed an al-
gorithm called cluster-M in [5]. However, in our opinion,
cluster-M has the following deficiencies. As the progression
of the clustering is done by following the topological or-
der of the task graph, bad clusters are then built. Moreover,
this clustering always embeds the most communicant task
onto its father, which is not always the best way to generate
parallelism. Thus, the clustering computed by the cluster-
M algorithm may not always be effective. In this paper, we
propose a theoretical metric which describes the behavior of
a good clustering algorithm. Our main contribution is that
we propose a multi-step scheduling algorithm for hetero-
geneous NOWs. In order to apply the clustering technique
to heterogeneous systems we show that we need to cluster
both tasks and machines. We show that our algorithm, called
triplet behaves as requested by the metric. Finally, we have
compared our algorithm to the HEFT algorithm [9]. It ap-
pears that, in general, for heterogeneous network of work-
stations, triplet outperforms HEFT.

This paper is organized as follows. In Section 2, we de-
scribe the model of task graphs and heterogeneous systems
we target. In Section 3, we present the new metric. Our

multi-step algorithm is presented in Section 4. The metric
conformity is shown in Section 5. The complexity of our
algorithm is computed in Section 6. Experimental results
are described in Section 7. In Section 8 we give concluding
remarks.

2 Definitions and Models

Task Graphs. We use the task graph model to model our
programs. A task graph is an annotated directed acyclic
graph defined by the tuple ���������
	��������� . � is the node
set, representing a task. 	 is the edge set. There is an edge
between task � and task � if there is a dependence between
task � and task � . � is the number of instructions task set.� is the communication volume set. Transforming a Scilab
script into a task graph is out of the scope of this paper.
For more details the reader should refer to automatic paral-
lelization techniques [3] or to the MATCH project [8].

Heterogeneous System Model. Heterogeneous systems
we target are networks of workstations as one can find in a
laboratory. Each workstation can communicate to any other
workstation but communication links may have different
speed. Each workstation may be different and can executes
tasks at different speed. Hence we model an heterogeneous
system by the following tuple : ���������
��� where � is the
set of machine speed. The number of machines is � ��� . � is
the link bandwidth set. There is a communication link be-
tween every machine.

Execution Model. We assume that tasks are atomic: a
machine executes a single task at a time. The total amount
of CPU time required to execute a task is calculated by di-
viding the number of instructions of the task by the power
of the CPU in MIPS. For instance, executing task � on ma-
chine � requires total amount of time of � comp ���! #"%$'&
where � �()� and $'&*(+� . A task can start its computations
only when it has received all its data and can send data only
when its computations are finished. The time taken to trans-
fer data from task � to task � between machine � and , is� com �.- 0/ 1 "32 &4/ 5 where - 0/ 1 (+� and 2 &4/ 5 ()� .

3 Metric

A metric allows to class algorithms depending on so-
lutions they produce. A well known metric on homoge-
neous platform is the speedup, but it looses some sense
when applied to the heterogeneous case. Hence we need to
find new ones for evaluating algorithms in the general case.
Yarmolenko et al. proposed in [16], new criteria called ef-
ficiency and utilization. This metric only apply to indepen-
dent tasks and without communication. Here are the defini-

4P
3P
2P
1P

1P

1P

1P

2P

2P

3P

4P

3P

4P3P
4P2P

667
7
8889
99

TET

TTT
Inactivity

: :: :: :; ;; ;; ;
< << <= == =

> >> >> >? ?? ?? ?

@ @ @@ @ @A AA A

BCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCBBCBCBCBCBCBCBCBCBCBCBCBCBCBCBCB

DCDCDCDCDCDCDCDCDCDCDCDCDCDCDDCDCDCDCDCDCDCDCDCDCDCDCDCDCDDCDCDCDCDCDCDCDCDCDCDCDCDCDCDDCDCDCDCDCDCDCDCDCDCDCDCDCDCDDCDCDCDCDCDCDCDCDCDCDCDCDCDCDDCDCDCDCDCDCDCDCDCDCDCDCDCDCD

ECEFCF

//
tT

tT//

n(n−1) T//
2

G GH H
IIJ
J

K KL L

M MN NOOP
P Q QQ Q
R RR RS ST T

U UV V

0

44444

333

11111

222222

44444

333

222222

11111

0

n = 4

n = 4

Figure 1. Gantt Chart for Processors and Net-
work Links

tions for evaluating processors: let �4	�� be the total execu-
tion time of all tasks for a given schedule and � seq the total
execution time of all tasks on the best processor. Efficiency
and utilization for processors are defined as follow:

	�� � seq�W	X� , YZ� �W	X�,[� � �
Thus, � ��� can be extracted from these two equations:

� ��� � � seq,\]Y
Since this metric does not take the network into account,

we make an extension with two new formulas for evaluating
communications.

In Figure 1 we present two Gantt charts, the upper one is
for the tasks scheduling and the second below corresponds
to the scheduling of the communications.

Let , the number of workstations, ���W� be the total
transfer time, �C�^� the total of the , smallest communi-
cations time and

5`_a5cb[def the number of links in the fully
connected graph of processors.

TST is a constant for a given DAG and a given platform,
this value is calculated by dividing the ,hgji smallest com-
munication by the bandwidth of the fastest link. TST is the
minimal communication time spent when all the ,�gki pro-
cessors are used (the first task starts its computation on one
processor and launches computations on the ,jg�i other
processors with these ,lgZi communications). We set the

network efficiency and utilization for , workstations:

	 net � �4�������� , Y net � � �����, � ,)gji �#� ���
The network efficiency indicate whether only necessary
communications are performed. The network utilization
give an estimation of the average load of the network. If
communications are present all along the execution of the
program then we reach the case where the network utiliza-
tion is maximal.

We can express � ��� as a function of the efficiency and
the utilization. We get a new network dependent formula.

� � � � � �4���	 net Y net , � , gji �
Minimizing � ��� can be done by maximizing the product of
the efficiency by the utilization. An important fact is that
utilization and efficiency are divergent, the more utilization
grows, the smaller efficiency is.

4 The Triplet Algorithm

Homogeneous versus Heterogeneous. Clustering algo-
rithms have been very successful for homogeneous plat-
forms [12, 15]. These algorithms are fast : for the best
clustering algorithms the complexity is bounded by sort-
ing edges of the task graph. Moreover, list-scheduling algo-
rithms traverse the graph using a topological sort and there-
fore does only local optimizations. On the other hand, clus-
tering algorithms consider global criterions to map tasks to
clusters and then are able to perform global optimizations.
Hence, it appears that in most of the cases, clustering algo-
rithms are faster and give better results than list-scheduling
algorithms. This remark motivates us for trying to build a
clustering algorithm for heterogeneous platforms.

However, adapting clustering algorithms to the heteroge-
neous case is a difficult task. In homogeneous systems the
duration of a communication depends only on the number of
data exchanged and the duration of a task depends only on
the number of operations to perform. In an heterogeneous
system this is no longer true. Indeed, the duration of a com-
munication depends also on the speed of the network link
taken and the duration of a task depends on the processor
that will execute this task. Therefore, techniques used for
clustering tasks on homogeneous systems such as compar-
ing the size of data exchanged between tasks or the number
of operations of a task give little informations for an homo-
geneous system (large data can be exchanged rapidly on a
fast link and small data can be exchanged slowly on a slow
link). Hence, clustering algorithms for homogeneous sys-
tems cannot give good results on heterogeneous systems.

Since one cannot know if a given task or a given com-
munication is going to be longer that an other task or com-
munication prior to mapping clusters to processors, we pro-
pose to group machines that share the same characteristics
(network, processor speed,etc. . .) and then to map clusters
of task to clusters of machines. The main advantage of this
approach is that these clusters of machines are sets of some-
how homogeneous hardware. Hence, during the clustering
phase, we can take decisions knowing that clusters of tasks
are going to be mapped on relatively homogeneous clusters
of machines.

Our multi-step scheduling algorithm for heterogeneous
platforms is a bit different than multi-step scheduling algo-
rithm for homogeneous platforms since it is performed in
three steps.The first step is the clustering of tasks. Tasks are
grouped into clusters in order to suppress unnecessary com-
munications while preserving parallelism. The second step
is the workstation clustering. As mentioned above, in order
to efficiently map clusters to machines, machines which are
somehow equivalent need to be grouped together. In the last
step, task clusters are mapped to workstation clusters.

Algorithm 1 Tasks clustering
Require: A task graph and a system topology graph
Ensure: The clustering of the task graph

1: Put each task in a cluster.
2: Generate the list of all the triplets.
3: Sort the triplets by decreasing degree and by decreasing

amount of communication.
4: for each triplet do
5: if geometric or temporal criterion is fulfilled then
6: merge the two clusters
7: end if
8: end for

Clustering Tasks. Algorithm 1 is our task clustering al-
gorithm. Initially, tasks are put in different clusters. In order
to suppress unnecessary communications we need to merge
some clusters. For merging clusters our algorithm considers
tasks which belong to a path of length 2 in the task graph.
Every path of length 2 is composed of three tasks and is
called a triplet. We consider triplets of tasks instead of pairs
of tasks because there are many more triplets than pairs.
Thus, our algorithm test merging possibilities more often
along the growth of clusters.

Before starting the clustering phase, triplets are all gener-
ated. Then, they are all considered one at a time. Therefore,
we need to sort triplets in order to consider large commu-
nicating edges first. Triplets are sorted first by their degree
and second by their decreasing amount of communication
produced by its three tasks. Hence, our algorithm will first

clusterize parts of a task graph that presents few parallelism
and high communications costs.

Our algorithm considers each triplet. Let � f and ��� be two
tasks of a triplet with � f a predecessor of � � and respectively
belonging to cluster � d and � f (see Figure 2). Cluster � d
and � f are merged if one of the two following criteria is
true.

��

��

���

���

��

	�	�	�		�	�	�		�	�	�	
�
�
�

�
�
�

�
�
�
 ������������������������������������

4

23

5

6 7 8

1

21

21

1110

9

0

Trest

Trest

Tcomm Tworst

Tbest

P

t

P

P

best

best

worst

Figure 2. Temporal criterion

Figure 2 shows the first criterion that is based on tem-
poral parameters. Let � rest be the time needed to compute
all successors of � f that are in � d on the best processor. Let� worst be the time required to execute on the worst processor
all successors of �� that are in � f . Let � best be the time to
execute all tasks of � f on the best processor. Let � comm be
the duration of the communication between � f and � � evalu-
ated on the worst network link. Our first criterion cause the
merging when � comm

� � worst � � rest
� � best. This means� d and � f are not merged only if it worth not merging in

the worst case. This criterion controls the width of cluster by
suppressing parallelism each time there is a risk to be slower
if the two clusters are on different processors. The second
criterion use geometric properties of the clusters. Two clus-
ters � d and � f are merged if they do not overlap more than
20% and the resulting cluster is at least 20% greater than
initials clusters. This criterion is purely morphological, its
main goal is to keep clusters elongated.

Clustering Workstations. After having done task clus-
tering, we clusterize the workstation graph as well to get a
global view of the problem. This clustering is needed for de-
tecting machines that present the same characteristics. We
suppose we deal with LAN type network, where each com-
puter is able to do point to point communications. The clus-
tering is done by sorting machines, then by going through
the sorted list and creating a new cluster each time the vari-
ation between two consecutive workstations is big enough.

Algorithm 2 Mapping task’s clusters onto clusters of work-
stations
Require: A set of task’s clusters and a set of workstation’s

clusters
Ensure: Assign a Workstation to each task

1: Sort workstation’s clusters by decreasing network ca-
pabilities and by CPU power.

2: Determine a maximum load for each cluster of work-
station.

3: Sort task’s clusters by amount of external communica-
tions and by number of instructions.

4: for each task’s cluster in the order do
5: if if the number of operations assigned to current

cluster of workstations exceed its load. then
6: switch to next workstation cluster.
7: end if
8: Assign current task’s cluster to the Workstation hav-

ing the best completion time.
9: end for

We sort workstations, first by decreasing network capabili-
ties, then by decreasing CPU power. Clusters are defined in
the following way: while two consecutive workstations have
less than i���� of difference concerning their bandwidth and
CPU power we add them on the same cluster. In the other
case we create a new cluster with the last workstation con-
sidered. This clustering is fast and permits to put together
computers that are somewhat equivalent.

Mapping Tasks Clusters onto Workstations Clusters.
Our mapping algorithm is shown in Algorithm 2. Each task
cluster has its own values for the amount of output com-
munication and the total number of instructions required
to achieve. Clusters of workstations are labeled with their
overall network capabilities and total CPU power. Before
doing the mapping, we need to sort clusters of each sort
(first by the network parameter and second by the compu-
tation parameter). Moreover, the mapping must equitably
load each cluster of workstations, hence we need the repre-
sentation of each of these clusters compared with the others.
Our mapping algorithm allocates task’s cluster, in the order,
to workstations having the best completion time as long as
the load limit is not exceeded. This mapping insure that the
largest communications are done on the best links and each
cluster of processors has nearly the same time computation
load.

5 Metric Conformity

The triplet algorithm contributes to minimize � ��� . In the
two formulas we got for � ��� , we need to maximize the prod-
uct of the efficiency by the utilization. 	 is improved at the

assignment time, because we choose the processor that min-
imize execution finish time of the cluster being mapped. Y
is maximized thanks to the load balancing done between
clusters of workstations.

Concerning the network, the reduction of � � � depends of
the product 	W5����
Y 5���� . During the clustering, only commu-
nications that are profitable are kept. Thus, 	45���� is high. ForY 5���� , the geometric criterion increase the number of tasks
executable at time � . Hence, the probability of communica-
tions is high and then the value of Y 5���� too.

6 Complexity

Let be
��� and

� b the in and out degree of the task � and� �&	��
 ,
� b&	��
 the maximum in and out degree of the graph.

Let be � � the number of triplets in the DAG. Each task �
contributes to

�� � b triplets : for one incoming edge there
is one triplet per outgoing edge. Thus � � is the sum of all
these triplets for each task in the DAG.

���^�
� ����
 �� d

��� � b �

� ����
 �� d

� �&	��
 � b&	��
 � � �h� � �&	��
 � b&	��

In the worst case,

� �&	��
 � � b&	��
 ��� � � �)� � and the
number of triplets is � �
� �h� �'� . However for most of the
graphs

� �&���
 and
� b&	��
 are constant and small. For some

graphs only the maximum out degree or the maximum in
degree is related to � � � (In the Gaussian Elimination task
graph, for instance

� �&	��
 � � and
� b&	��
 � � ��� � � �).

Let
� &	��
 � � �&	��
 � b&	��
 . The complexity of the cluster-

ing phase is bounded by a sort of all the triplets, hence its
complexity is � �
� �h� � &	��
���� � �
� � � � &	��
 �
� .

Let ! be the number of processors. For the mapping
step, the worst case is reached when we have only one
cluster of tasks and one of workstations. For each task,
the best processor is taken among the ! ones available.
The mapping takes � �"! � � � � . The triplet algorithm takes� �
� � � � &	��
 ��� � � � �h� � &	��
 � � ! � � � � .

Since for most of the task graphs
� &	��
 is a constant, we

claim that our algorithm has a very competitive complexity.

7 Results

We have implemented a task graph execution simulator
for testing various heterogeneous topology. We use another
task scheduling algorithm: HEFT [9] (Heterogeneous Ear-
liest Finish Time) to make a performance comparison with
our triplet algorithm. The HEFT algorithm is based on eval-
uating the shortest path of execution to a terminal task.

We define the processor heterogeneity and network het-
erogeneity as follows:

� proc � standard deviation of CPU power
average of CPU power

� net � standard deviation of network bandwidth
average of network bandwidth

If we take 10 PCs at 333Mhz, 5 PCs at 800Mhz and 5 PCs
at 1GHz, then � proc # f%$
f'& d�() d)�& * #,+ -/. + � If we replace the
10 PCs at 333Mhz by others at 166MHz, the heterogeneity
reaches 0 ���
These definitions allow to compare the heterogeneity of re-
cent workstation network with older ones, because we have
the average value in the formula that has a normalization
effect. For our benchmarks we have generated + � � � � task
graphs, and + � � � � different topologies with varying het-
erogeneity. We have fixed the heterogeneity of the band-
width at 1 � � , on the other hand the processor heterogene-
ity takes the following values: - i � , -�2 � , + � � , + 3 � . Val-
ues indicated in Figure 3 correspond to the middle of the
interval inside which each parameter is randomly chosen.
We expose here only a part of our results, we have in facti 2 histograms with various task graph heterogeneity. As
they are quite similar we chose not to present them. The
y-axis of the results shown Figure 3 is the time our solution
is faster than HEFT solution : we outperform HEFT each
time the bargraph is greater than 1. At the first look we see
that the performance of our triplet algorithm increases with
the heterogeneity. Our algorithm manages the heterogeneity
better than HEFT does, thanks to our multi-step approach:
clustering then mapping. We have evaluated our metric by
checking wether or not there could be schedules that have
poor efficiency and utilization but produce good makespan.
We conducted - � � � tests for HEFT and triplet on various
DAGs of different heterogeneity and got the result that the
algorithm that have the best makespan always have the best
product of efficiency by utilization.

8 Conclusion and Future Work

We have presented a new algorithm for scheduling task
graph on a heterogeneous system of workstations. Our con-
tribution is three-fold. First, The algorithm is based on a
multi-step approach that allows global optimizations. Sec-
ond, we have presented a new metric that express require-
ments a good scheduling algorithm must have and we have
shown that our algorithm fulfills these requirements. Lastly,
we have compared our algorithm to the well-known and ef-
ficient HEFT algorithm. In most of the cases, our algorithm
outperforms HEFT.

We want our execution scheme to adapt to load unbal-
ance that appears when other users run applications on the
cluster. In order to do that we plan to migrate tasks within its
machine clusters – a machine cluster is composed of similar
machines – during execution.

Finally, we plan to incorporate this algorithm to Scilab ���

in order to execute Scilab script on clusters of worksta-
tions.

References

[1] E. Caron, S. Chaumette, S. Contassot-Vivier, F. Desprez,
E. Fleury, C. Gomez, M. Goursat, E. Jeannot, D. Lazure,
F. Lombard, J. Nicod, L. Philippe, M. Quinson, P. Ramet,
J. Roman, F. Rubi, S. Steer, F. Suter, and G. Utard. Scilab
to Scilab ��� , the OURAGAN Project. To appear in Parallel
Computing, 2001.

[2] P. Chretienne and C.Picouleau. Scheduling Theory and its
Applications, chapter 4, Scheduling with Communication
Delays: A Survey, pages 65–89. John Wiley and Sons Ltd,
1995.

[3] M. Cosnard and M. Loi. Automatic Task Graph Genera-
tion Techniques. Parallel Processing Letters, 5(4):527–538,
1995.

[4] H. El-Rewini, T. Lewis, and H. Ali. Task Scheduling in Par-
allel and Distributed Systems. Prentice Hall, 1994.

[5] M. M. Eshagian and Y. C. Wu. Mapping heterogeneous
task graphs onto heterogeneous system graphs. Hetero-
geneous Computing Workshop (HCW’97), pages 147–160,
April 1997.

[6] A. Gerasoulis and T. Yang. On the Granularity and Cluster-
ing of Direct Acyclic Task Graphs. IEEE Transactions on
Parallel and Distributed Systems, 4(6):686–701, June 1993.

[7] C. Gomez, editor. ”Engineering and Scientific Computing
with Scilab”. Birkhäuser, 1999.

[8] M. Haldar, A. Nayak, A. Kanhere, P. Joisha, N. Shenoy,
A. Choudhary, and P. Banerje. Match Virtual Machine: An
Adaptive Runtime System to Execute MATLAB in Parallel.
In International Conference on Parallel Processing (ICPP-
2000), Toronto, Canada, Aug. 2000.

[9] S. H. Haluk Topcuoglu and M.-Y. Wu. Task scheduling al-
gorithms for heterogeneous processors. 8th IEEE Hetero-
geneous Computing Workshop (HCW’99), pages 3–14, April
1999.

[10] M. Kafil and I. Ahmad. Optimal task assignment in heteroge-
neous computing systems. Heterogeneous Computing Work-
shop, pages 135–146, April 1997.

[11] Y.-K. Kwok and I. Ahmad. Dynamic Critical-Path Schedul-
ing: An Effective Technique for Allocating Task Graphs to
Multiprocessors. IEEE Transactions on Parallel and Dis-
tributed Systems, 7(5):506–521, May 1996.

[12] J.-C. Liou and M. A. Palis. A New Heuristic for Schedul-
ing Parallel Programs on Multiprocessor. In IEEE Intl.
Conf. on Parallel Architectures and Compilation Techniques
(PACT’98), pages 358–365, Paris, Oct. 1998.

[13] A. Radulescu and A. van Gemund. Fast and effective task
scheduling in heterogeneous systems. In Proceeding of Het-
erogeneous Computing Workshop, 2000.

[14] V. Sarkar. Partitionning and Scheduling Parallel Program
for Execution on Multiprocessors. MIT Press, Cambridge
MA, 1989.

[15] T. Yang and A. Gerasoulis. DSC Scheduling Parallel Tasks
on an Unbounded Number of Processors. IEEETPDS,
5(9):951–967, Sept. 1994.

[16] V. Yarmolenko, J. Duato, D. K. Panda, and P. Sadayap-
pan. Characterization and Enhancement of Static Mapping
Heuristics for Heterogeneous Systems. Technical Report
OSU-CISRC-02/00-TR07, Dept. of computer science, Ohio
State University, Feb. 2000. To be presented in HiPC’2000.

30 35 40 45 50

1

3

6

times faster than HEFT

processor heterogeneity
100 tasks , 8processors

2

4

5

30 35 40 45 50

1

3

6

times faster than HEFT

processor heterogeneity
1000 tasks , 8processors

4

5

2

30 35 40 45 50

1

3

6

times faster than HEFT

processor heterogeneity
100 tasks , 64 processors

4

5

2

30 35 40 45 50

1

6

times faster than HEFT

processor heterogeneity
1000 tasks , 64 processors

3

2

4

5

Figure 3. Average values: Communication
50Ko, Task 1 � � � � � instructions, Bandwidth
10 Mbits/s, CPU 300MHz

