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parallel computers. It is based on the PlusPyr parameterized task graph
builder and a new dynamic scheduling algorithm whose computational com-
plexity and experimental performances are analyzed.
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1. Introduction

Today, it is possible to automatically generate eflicient scheduled code for
message passing machines if dependence information is available [26]. Cur-
rently available tools require that the source program is expressed as static
directed acyclic task graph. In such systems, it is the user’s responsibility to
construct the task graph by analyzing his program. He has to define tasks
with sufficient granularity, compute the associated computational load, find
dependences between tasks and determine the associated communication
volume. After that, if experiments show that the initial task partitioning is
not adequate, the user will have to iterate the whole process. This may be
tedious and error prone for real life applications. !

In this paper, we present a complete automatic coarse-grained paral-
lelization tool for most of the compute-intensive kernels found in numerical
scientific applications. Most of these modules have a static control flow
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with only restricted forms of DO loops [11] and IF-THEN-ELSE state-
ments. This enables us to use compile-time techniques in order to collect
the informations needed by the task graph construction. The techniques
involved are, among others, exact data-flow analysis [7, 8, 11, 19, 20] and
iteration counting.

In our system the user annotates his application source code with sim-
ple task definition directives. Then, the system automatically derives all
the informations needed by scheduled code generators: source code and
computational load associated with each task types, dependences and the
associated communication volume between tasks instances. All these in-
formations are computed in a symbolic form: the problem size parameters
are variables and informations specific to some task instances are given as
decision trees. Hence, the program analysis has not to be done for each
possible values of the problem parameters. If the scheduled code generator
requires that the task graph should be explicitly constructed then, given
the exact problem size parameter values, the system is able to construct it.
We are currently developing a back-end able to schedule and generate code
by only exploiting the symbolic knowledge provided by our front-end.

2. Previous results

A lot of work is being done for compiling parallel programs, mainly around
the HPF language [13, 4]. We shall not go into this direction in this pa-
per and HPF will not be taken as the target language for our automatic
parallelization tools. Related papers in this domain are [24, 3]. Our ideal-
istic aim is to take as input a program and to execute it on distributed
memory parallel computer with no human interaction. In order to auto-
matically parallelize a sequential program, a set of operations should be
performed on the input program. In fact, the program itself should satisfy
strong requirements. The bulk of the work has been done for automating
the parallelization of nested loops, where loop bounds and array indices
are affine expressions of the loop indices and parameters. For fine grain
parallelization techniques, the first step is the dependence analysis, where
the dependences between loop statements are analyzed. This results in the
reduced dependence graph. Few work has been done on models that may
be used as an intermediate representation for parallelization tools on dis-
tributed memory systems. One of the most used in the area of automatic
parallelization is the Data Flow Graph (DFG) [12]. The second phase is
the scheduling and mapping of these statements on an unbounded set of
virtual processors. The partitioning techniques allow the assignment of the
statements to a finite number of processors and hence to obtain SPMD
type code generation. Rajopadhye [21] has designed the LACS language
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for describing affine communications. Again, this model is fine grained but
it has many similarities with our model as it uses polyhedra and affine
transformations for specifying the communication volumes.

Yang and Gerasoulis have designed a graph description language for
their mapping and scheduling tool Pyrros [26]. In this system it is the user’s
responsibility to construct the task graph by analyzing his program. Lo et
al. [17] have proposed Temporal Communication Graphs (TGC) as a model
for mapping and scheduling. It integrates the DAG and the static process
graph models. The LaRCS language is used to describe TGCs graphs. This
model has been used in the OREGAMI programming environment.

Most of the mathematical machinery deals with integer programming.
For an introduction see [23]. Feautrier has proposed an algorithm for solving
parametric integer programs [10]. This method has been implemented into
the PIP software. Libraries for manipulating polyhedra are also available
[25].

A lot of work has been done in the dependence analysis area. For an
introduction, see [1]. We are only interested by exact dependences. Feautrier
was a pioneer in this field [11]. Recent results have shown that it is possible
to build fast dependence analyzers[20].

The parameterized task graph constructed by our method results in
efficient task graphs only if some optimizations are done in order to enable
the parallelism hidden by output and anti dependences or by an inadequate
loop nest structure. A solution to the first problem is array privatization [9].
The second problem may be solved by finding an appropriate schedule of
the operations [12]. The last problem is that the tasks should have sufficient
granularity. As far as we know, only partial solutions exist, mainly by using
data partitioning or tiling techniques [2, 15].

Code and data structure generation techniques are also closely related
to our system. Rajopadhye and Wilde [22] have studied the problem of
allocating polytopes in memory in an efficient way with respect to mem-
ory space usage and access time. Chamski has studied the derivation of
optimized data structures for single assignment programs [5].

3. Parameterized task graph

The parameterized task graph has been proposed by Cosnard and Loi, [7] as
a solution for automatically deriving task graphs from sequential programs
involving the use of parameters, to be instantiated at execution time. It
is beyond the scope of this paper to present a detailed description of the
parameterized task graph. We shall only give a brief description of this
model. Let us present first the input language to be used by our automatic
task graph builder, called PlusPyr [18].
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param n
real a(n,n+1)
for k = 1 to n-1 do T
task /*T1x*/
for 1=k + 1 ton do
a(l,k)=a(l,k)
/a(k,k) /*S1x*/
endfor
endtask
for j =k + 1 to n+l do
task /*T2*/
for i =k + 1 ton do
a(i,j)=a(i,j)-alk,j)
*a(i,k)/*S2%/ * €
endfor |
endtask 2
endfor
endfor

0 )Output

Figure 1. Gaussian Elimination explicit task graph

3.1. THE INPUT PROGRAM MODEL

Variable data types are restricted to simple types, and n-dimensional arrays
of these types. We restrict also the control structure to static FOR-loops.
A statement is a variable assignment to an expression. A task specification
construct is also provided. The user (or an automatic preprocessor) may
use it in order to group statements into atomic execution units. Hence, a
task is nothing else than a set of statements. Figure 1 shows the source
program for the kji form of Gaussian Elimination in which two tasks T}
and T, are defined.

We assume that any valid input program complies with the following
rules :

— Task constructs cannot be nested.

— Every assignment statement is lexically included in a task construct.

— Loop counter names and parameter names may not be used as the left
hand side of an assignment.

— All the array subscript expressions and FOR-loop bound expressions
are integer-valued afline functions of program parameters, integer con-
stants and enclosing loop indices.
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3.2. TASK DEFINITIONS

< will denote the non-strict textual order in which statements appear in
the program text. A task 7T is defined by its task name T, its iteration
vector denoted by itv(7'), and its two delimiting statements first(7") and
last(7'). first(T) denotes the first statement of a task 7' (with respect to the
order <) and last(T) denotes the last one. A statement S is included in
task 7" iff first(7") < S < last(7') and it will be denoted S € T'. Simple con-
ditions ensure that task opening and closing and loop opening and closing
are correctly nested. In a valid program, each statement S is included in a
task T' = task(S). Thus, each operation S(s) is included in a task instance
task{S(s)} = T(s1. ). S1 < Sz will denote the fact that operation S; ex-
ecutes before operation S;, with respect to the sequential execution order
of the program. T} < T, will denote the fact that task instance T exe-
cutes before task instance T, with respect to the partial order of execution
induced by the program task graph.

A parameterized task graph is a set of statement definitions (iteration
vector, englobing task, enclosing loop bounds), a set of task definitions
(iteration vector, first and last statement) and a set of communication rules
which will be described later.

The specific execution of a statement will be called a statement instance
or an operation. Generally, a statement enclosed in some loop will be exe-
cuted several times, giving rise to many statement instances. In our input
language, the only repetitive construct is the FOR-loop. Assume that a
statement S has n surrounding loops Ly, ..., L,, and that the loop counter
of L; is x;. Hence, an instance of statement S is uniquely defined by S(z),
where z is the value of the column vector (zy,...,z,)" for that operation.
We call z the iteration vector of the statement S. itv(S) denotes the itera-
tion vector of S. For each S the function domain(S) returns the set of all
the possible values of the iteration vector z of S. This set will be called the
tteration domain of S.

A n dimensional integer polyhedron P is the set {z | z € N" Az >
b}, where A and b are respectively a matrix and a vector with integer
coefficients. All iteration domains are bounded polyhedra. | P | denotes the
dimension of the polyhedron P. proj(P,m,n) denotes a projection of the
polyhedron P such that proj(P,m,n) = {z,, ., | = € P}.

We extend the notion of iteration vectors and iteration domain to tasks
and use the term task instance to designate a specific task execution 7'(¢).
Note that a task instance is nothing else than a set of operations. task(S)
denotes the enclosing task of a statement S. vcalc{T(t)} denotes the arith-
metic cost of task instance 7'(¢). We will assume that for any statement S,
veale(S) > 0. veomm (7} (¢1),T2(t2)) denotes the number of data items sent
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by task instance T3 (¢;) to task instance T5(Z2).

Optimizing the constructed parameterized task graph is beyond the
scope of this paper. Hence, we make two hypotheses. First, we do not
address computation replication. See Kruatrachue and El-Rewini [16] or
Colin and Chretienne [6] for an attempt to lift this restriction. Second, the
memory requirement of the parameterized task graph execution should be
of the same order as the one of the sequential execution. In particular, we
do not perform array privatization [9].

4. Construction of parameterized task graphs

In this section we propose techniques automating the construction of the
tasks and the communication rule set, starting from an annotated sequential
program.

4.1. FLOW, ANTI AND OUTPUT DEPENDENCES

There is a dependence between operations R(r) and S(s) only if both op-
erations reference variable M, if at least one of the references is a write, if
R(r) < S(s) and if M is not written between the execution of R(r) and S(s).
There are three kinds of dependences based on the type of the reference.
It is a flow dependence if R writes M and S reads it, an anti dependence if
R reads M and S writes it and it is an oulpul dependence if both R and S
write M. Each dependence is characterized by an integer, the dependence
depth d, defined as follow: if itv(R) Nitv(S) = § then d = 0, else d is the
maximum integer such that ry_; = s; 4. Moreover, if | itv(R) Nitv(S) |[> d
then rypq > Sqq1.

Such dependences are generally computed by a two step method [11].
First, one has to compute the so-called direct dependences: for a fixed S and
a candidate R at depth d express that R(r) and S(s) both reference variable
M and that R(r) < S(s) at depth d as a parametric linear integer program
where the components of itv(R) are parameters and the components of
itv(S) are unknowns. Then s is the lexicographic maximum of the set of
feasible points, that is the last operation satisfying the constraints. This lin-
ear program is solved by using parametric linear programming techniques,
see [10]. Then it is necessary to combine the direct dependences together
because some of them may hide others, at least partially.

In this paper, we will only assume that the result of dependence anal-
ysis may be represented as degenerate communication rules denoted as
{R(r) | re€ Pr} <« {S(fs(r))}: {M(fp(r))}. Note that for such rules each
task is a statement, and thus each task instance is an operation. Moreover,
for a particular operation R(r), for each RHS reference M (fp(r)) there



AUTOMATIC PARALLELIZATION

-~

{Si(k, ) |2<k<n—1,k+1<I1<n}+ {So(k—1,kk)}
| }

{81 (k,1) | k(: i k+1 <1< n} « {S-INPUT-A(kk)} :

{A(k, k)}

{Si(k, ) |2<k<n—1,k+1<I1<n} e {S(k—1,k1)}
{A(LK)}

{S1(k,0) | k=1,k+1<1<n}« {S-INPUT-A(Lk)}
{A(LK)}

{S2(k 7],)|1<k<n—1 k+1<j<n+1,k+1<i<n}
— {S1(k, i)} - {AG, k)}

{S2(k 7],)|2<k<n—1 k+1<j<n+1,k+1<:<n}
— {S2(k— 1,4, k)} : {A(k,5)}

{S2(k,7,7) | k=1, k—|—1<]<n+1 k+1<:<n}
— {S-INPUT-A(kj)} : {A(k,5)}

{S2(k,j,7) |2<k<n—-1, k+1<]<n+1 k+1<:<n}
F{52(16_17.772)} {A(vj)}

{Sa(k,7,7) | k=1,k+1<j<n+1,k+1<7i<n}
« {S-INPUT-A(i,j)} : {A(4, 1)}

(S-OUTPUT(i,j) |i=1,1< j <n+1} « {S-INPUT-A}
{A(,5)}

(S-OUTPUT(i,j) | 2<i<n1<j<i—1}
« {51(4,2)} : {AG,5)}

(S-OUTPUT(ij) |2<i<ni<j<n+1}
— {82t —1,5,0)}: {AG, 5)}

Figure 2. Result of the dependence analysis for the Gaussian Elimination

is an unique operation S(fs(r)) that writes the corresponding value. Such
rules are called dependence rules, or simply dependences.

Figure 2 shows the result of the dependence analysis for the Gaussian
Elimination.

4.2. FROM DEPENDENCES TO COMMUNICATION RULES

For transforming dependences into communication rules, we should gather
dependences involving statements belonging to the same tasks. In other
words, we should go from a fine grain analysis to coarse grain communica-
tion rules. The dependence analysis specifies for each communication rule
i a positive integer depth(f%), the depth of the dependence. If itv(R) N
itv(S) = 0 then depth(fs) = 0 and fs is an arbitrary affine function.
Else, let n = depth(fs). Then Vr € Pg, r1 , = fs(r); ,. Moreover if
|itv(R) Nitv(S) |> n then r,41 > fs(7)n41-

There are only two types of dependences: intra-task dependences are
such that Vr € Pg, task(R(r)) = task(S(fs(r))), and intertask dependences
are such that Vr € Pg, task(R(r)) # task(S(fs(r))). Intertask dependences
involve data transfer operations between task instances, it is not the case
for intra-task dependences.

— If task(R) # task(S), then Vr € Pg, task(R(r)) # task(S(fs(r))) (inter-
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task),
— else task(R) = task(S) = T. Let n = depth(fs) and m =[itv{T'} |. Then,

either

e m = (0 and then there is only one task instance for task 7" and thus

task{R(r)} = task{S(fs(r))} (intra-task),

e or n < m and then Vr € Pg, 71 m # fs(r)1 m, and thus task{R(r)} #
task{S(fs(r))} (intertask),

e or n > m and then Vr € Pgr,7ry , = fs(r)1 m and thus task{R(r)} =
task{S(fs(r))} (intra-task).

Thus, rules corresponding to intra-task dependences may be safely ig-
nored when building the communication rules. Transforming a dependence
such as {R'(r) | r€ Pg} < {S'(f's(r))} : {M(f'p(r))} into a commu-
nication rule: {R(r) | r € Pr} « {S(fs(s)) | s€ Ps(r)} : {M(fp(d))
| d € Pp(s)} with R = task{R'} and S = task{S’} is done as follows.

Let m =| itv{R} | and n =| itv{S} |. Then Pr = proj(Pg, 1, m) and
Ps(r)y=A{z |z € Ph,z1 y=r}.If fi(r) =C"xr+d and fs(s) = Cxs+d
then C' is equal to the n first rows of C” and d is equal to the n first rows
of d . Last, Pp(s) = {s} and fp = f}.

Note that the constructed graph has no cycle. Let T'(¢) be a task in-
stance. The task definition ensures that if 51,5, € T'(¢) and S; < S5 < 53
then S; € T'(t). This property and the dependence definitions ensure that
a path into the constructed graph from T'(¢) to 7'(#') may exist only if
first{T'(t)} < first{7"(¢')}. Hence, by contradiction, the constructed graph
is acyclic.

4.3. DETERMINING THE COMPUTATIONAL LOAD AND THE
COMMUNICATION VOLUME

The restricted form of our source language ensures that each simple state-
ment S has a constant computational load denoted by vcalc(S). PlusPyr
is able to compute this load simply by summing up an estimated elemen-
tal arithmetic cost of each operator involved in the right hand side of S.
Hence, each statement instance S(s) for any valid iteration vector s has
the same execution cost. Hence the computational load of task 7'(¢) is
veale{T (1)} = Yoger veale(S) * V({z | @, jitygpy =1 @ € domain{S}}).

For a given communication rule {R(r) | r € Pg} < {S(fs(s)) | s €
Ps(r)} :{M(fp(d)) | d € Pp(s)} and for a given value of r € Pg and s €
Ps(r) the communication volume associated to the edge (S(fs(s)), R(r)) is
simply V(Pp(s)).
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5. Pyrros

Once the parameterized task graph (PTG) is built, it is very easy, by giving
values to the parameters, to derive the direct acyclic task graph of the
application [18]. That representation of the source code can now be used,
as an entry of Pyrros [26], to schedule and to map the tasks, and then to
produce the parallel code.

5.1. ARCHITECTURE OF PYRROS

As shown in figure 3, the Pyrros software is composed of 3 parts:

1. The first part checks if the input graph is correct, generates a correct
DAG and computes the real communication and computation costs. In
order to compute such costs the user has to give the following target
machine parameters : «, the startup time, § the transmission rate, for the
communication cost, w the time taken for one elementary operation, for
the computation cost.

2. The second part schedules and maps each task of the DAG. Pyrros uses a
two-step scheduling method: clustering on an unbounded number of pro-
cessor, then merging the clusters to obtained p virtual processors. The
next step of this part is mapping the virtual processors onto real proces-
sors. The mapping heuristic used by Pyrros takes into account the distance
between real processors.

3. Once each processor is assigned to a set of tasks, Pyrros generates the
parallel code for the target machine. Pyrros makes some optimizations to
improve code performance. Those optimizations address memory utiliza-
tion and communication.

5.2. DSC, THE SCHEDULING ALGORITHM

One of the most interesting part of Pyrros, is its static scheduling algorithm:
Dominant Sequence Clustering (DSC [27]). The Dominant Sequence (DS),
is the longest path in the scheduled graph. Initially each task is a cluster.
In order to decrease the parallel time DSC tries to zero an edge in the DS.
Each time an edge is zeroed, DSC merges the two clusters on the extremities
of that edge. Then DSC recomputes the new DS until all edges of the DAG
have been examined. The computational complexity of this algorithm is
O(e + v)logv where v is the number of vertices of the DAG and e is the
number of edges. Furthermore, DSC has been shown to behave very well,
in terms of parallel time, for real life application, as for random graphs.
DSC can be considered as one of the best scheduling algorithms. Since the
whole DAG has to be in memory during the execution of DSC, the space
complexity of that algorithm is O(e + v).
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Figure 3. Pyrros and PlusPyr schemes

6. Dynamic scheduling of parameterized task graphs

We present a dynamic algorithm that schedules PTG. This work originates
from two remarks:

1. DSC, in Pyrros, requires that the program be expressed as a static direct
acyclic task graph, which is memory costly. In the Gaussian elimination of
a matrix of order 1000, the associated task graph as about 500000 nodes
and 1000000 edges. With 20 bytes for each node and 12 bytes for each
edge, the graph requires at least 22 M-bytes of memory,

2. it is necessary to know parameters values at compile-time to use Pyrros.
But those values may not be known at compile-time, or in a case of a
generic program, it is required to give those values at run-time.

Our dynamic scheduling algorithm, called PTGDS, is based on the pa-
rameterized task graph, and hence solves those two problems. As a matter
of fact, a PTG is problem-size independent, and only needs the parameter
values at run-time.
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6.1. GENERAL OVERVIEW

PTGDS has the following characteristics:

— the entry of the algorithm is a PTG, i.e. the communication rules, the
code of each generic task, and the parameters
— the PTG is executed by an SPMD program, composed of two parts:

1. the first part is executed by a supervisor. The supervisor explores the
DAG using the communication rules of the PTG. It locally schedules
each task. Once a task T is assigned to a processor p, it orders dy-
namically processor p to execute task T,

2. the second part is executed by the processors, it is called the processor
part. The processor part is composed of the task code, and receives
order from the supervisor. This part executes the task, and handles
the communications,

— the values of the parameters are given at run-time,

— only a small part of the DAG is known at any given time. But the DAG
can virtually be explored entirely. That allows an important improvement
in term of the space complexity.

6.2. THE SUPERVISOR ALGORITHM

This part of the algorithm is executed by a dedicated processor. The su-
pervisor schedules the tasks: it determines on which processor and when
each task has to be executed. For each task T, after instantiation of the
parameters, the analysis of the code performed by PlusPyr, and the param-
eterized task graph allow to know the duration of T, all the sons of T, all
the fathers of T', and the volume of communications between fathers and
sons.

Figure 4, gives the general scheme of the supervisor algorithm.

Before scheduling a task T, PTGDS checks that all the predecessors of
T have already been assigned to a processor. If some predecessors of T' need
to be scheduled, it calls recursively the procedure for these tasks and then
allocates T to the processor that minimizes its start time.

In the DAG, let T-OUTPUT be the last task to be executed. So, the call
schedule(T-OUTPUT) ensures that all the predecessors of T-OUTPUT (all
the tasks needed for the computation of the final result) will be scheduled,
and executed.

Lines 7 and 8 are justified as follows: each time a task 7" is scheduled we
put allocated(T')=true. Thus, we need a data structure (in our case an AVL
tree [14]), to store all the values of allocated(I’). When all the sons of task
T have been scheduled the test of the line 3 will never be performed again
for T. Then, we can remove from the AVL, all the informations about 7.
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schedule(task T){
for each task T’ in father(T) do
if not(allocated(1’)) then schedule(T’);
endfor
allocate T to the processor that minimize its starting time;
for each task T’ in father(T) do
if T is the last son of T’ it has to be scheduled then
remove from memory all information on T’
9 endif
10 endfor
11 allocated (T)=true;
12 }

0~ O UL W=

Figure 4. The supervisor algorithm

Finally, lines 7 and 8 allow a major reduction of the memory used during
execution of the algorithm.

When a task T is assigned to processor P, the other processors have to
send to P the data needed to the computation of T'.

6.3. THE PROCESSOR ALGORITHM

Each processor executes the same algorithm. It waits for orders and exe-
cutes them. Orders can be of 3 types: Execute a task, send data to another
processor, receive data from another processor. The execution orders are
queued in a FIFO manner. Thus PTGDS ensures that each processor ex-
ecutes tasks in the order given by the supervisor. The sending orders are
put in a pool. When a task 7T is finished the algorithm checks, if in that
pool, there are data to be sent that has just been computed by T'. If so, the
algorithm sends those data to the corresponding processor.

6.4. THE AVL TREE

As long as there are some sons of a given task T that have to be scheduled,
we store in an AVL tree informations about 7. Informations stored on a
node of an AVL are: state of the task (scheduled/ unscheduled), number of
sons to be scheduled, processor where the task is mapped, starting time of
the task. The search, the insertion and the deletion of a node in a AVL of
size s are done in O(log s).
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7. Experiments and performances

In this section we study the general performances of PTGDS. The goal of
PTGDS is to minimize the memory required for scheduling the DAG, in
order to be able to deal with large graphs. First we present a theoretical
result concerning its computational complexity, second we present results
concerning real parameterized task graphs, and then, since scheduling is
an NP-complete problem, we study the memory required by PTGDS for
random graph.

7.1. COMPUTATIONAL COMPLEXITY

We show here that PTGDS is, in term of computational complexity, com-
parable to DSC.

Theorem 1 The computational complexity of the scheduling algorithm is
O((e+v)logv), where e is the number of edges and v the number of vertex

in the DAG.

Proof: We use an AVL tree, tostore information about tasks. Let us assume
there are s nodes in the AVL tree.

The proof of this theorem is done by computing the number of time each
line is executed from the beginning to the end of the algorithm execution.
We multiply that total number of executions by the cost of one execution
to obtain the total cost of each line. Then, we add the total cost of each
line to derive the computational complexity of the algorithm.

Let us consider figure 4. The procedure schedule is called once per task
T. Each task is represented by an node in the DAG, so there are v calls
schedule(task T).

Line 2 (and 6), we use the PTG to find all the fathers of 7. Thus,
finding the next father of a task is done in constant time. During the whole
execution of the algorithm, all the fathers of all the tasks are explored, this
means that all the edges of DAG are examined. Hence, the total cost of line
2 and 6 is O(e).

Let us compute how many time the test of line 3 is performed. For a
given task 7 this test is performed a number of time equal to the total
number of fathers of T. So, for all the tasks in the DAG this test is done
a number of time equal to the number of edges of the DAG. PTGDS uses
the AVL tree to determine if allocated(I”) is true. This is done in O(logs).
Hence, the total cost of the line 3 test is O(elog s).

Let us consider the allocation of all the tasks. We do a greedy allocation
of each task (we choose the processor that minimizes the starting time of
a given task), so we need to examine each edge once for the allocation of
all the tasks. Each time an edge is examined it costs O(logs) to find the
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informations, in the AVL, concerning the father. We compute the duration
of a task, using the PTG, in constant time. So the total cost of the whole
allocation process (line 5) is O(elogs).

Since we maintain in the AVL the number of sons that have to be
scheduled for each task, The test line 7 is done in O(logs). With the same
argument than for the line 3 test, we see that total cost of line 7 is O (e log s).

Line 8 is the deletion of informations on T" in the AVL. This deletion
occurs at most once for all the v tasks 7’. The cost of one deletion is
O(log s), so the total cost of line 8 is O(vlog s).

Finally, the cost of one line 11 assignment is O(logs) (it’s an insertion
in the AVL). It is done once for all the v tasks 7. So the total cost of line
11is O(vlog s).

That proves, finally, that the total computational cost of PTGDS is
O((e 4 v)logs). To prove the theorem, we upper-bound ? the size of the
AVL tree by v , the total number of tasks in the DAG.

7.2. EXPERIMENTS ON REAL DAG

Figure 5 shows the value of the speedup versus the number of processors
for the Gaussian elimination of order 1000. This result is a simulation,
i.e. we just run the supervisor part of PTGDS. The communication and
computation costs are computed with the same model as in the section 5.1.
This figure shows that for 32 processors the speedup is around 26.

Figure 6 shows the value of the speedup versus the number of processors,
for computing the Mandelbrot set. This has been done using an SPMD
program implementing the two parts of PTGDS. The execution of that
program has been performed on a cluster of SPARC 5 workstations linked
by Ethernet. The DAG corresponding to this program is a “join DAG”,
where all the tasks are independent and send there results to the task T-
OUTPUT. We see that for 4 processors we obtain a speedup slightly greater
than 3.5.

The memory cost of PTGDS is directly proportional to the maximum
number of edges and of nodes in memory during its execution, and the
maximum size of the AVL tree. Thus during the execution of the supervisor
part we have recorded these values and compared them to the total number

of edges and nodes of the DAG.
Figure 7 shows that the total number of edges and nodes increases
quadratically with respect to the matrix order. Figure 8 shows that the

maximum number of edges and nodes in memory increases linearly with

2As proved in the next sections this bound is not very tight, since for the Gaussian
elimination s = {/v.
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7.3. EXPERIMENTS ON RANDOM GRAPHS

Table 1 shows the results of experiments we have done on random graphs.
Each graphs has an average number of layers (column layers), an average
number of tasks per layers (column tasks) and an average number of sons
per tasks. The sons are chosen among the tasks on the two next layers.
Each row represents a type of graph. We have built 10 graphs of each type
and computed the average value of the number of nodes (column # nodes)),
tasks (column # edges), the average maximum number of nodes and edges
in memory (column maz nodes and maz edges), and finally the average
maximum number of nodes in the AVL.

TABLE 1. Experiments on weakly linked random graphs

layers tasks # nodes max nodes # edges max edges max nodes AVL

100 40 3819.9 255.3 12686.2 1309.6 43.2
100 80 6438.3 334.2 21725.4 2488.7 32.6
200 40 4884.4 117.4 17069.7 2462.7 56.3
200 80 11824.4 408.2 40540.0 5156.2 46.0
400 40 16977 .4 468.2 56650.1 5823.9 76.2
400 80 38606.0 866.3 128621.8  12914.0 93.6

In the weakly linked random graphs, each task has an average number
of son equal to 1.5 .

Whatever the type of the graph is, there is always less nodes or edges
in memory that the respectively total number of nodes and edges, in the
DAG. We see that the size of the AVL is always very small with regards
to the number of nodes. Nevertheless, it is not obvious that the memory
required to scheduled such graphs increases linearly when the number of
task increases quadratically.

8. Concluding remarks

In this paper we have presented two tools allowing the automatic coarse
grain parallelization of sequential programs and their execution on dis-
tributed memory parallel computers. Many constraints have to be imposed
on the input programs. These tools are independent and hence can be used
in relation with other tools. PlusPyr, a parameterized task graph builder,
can serve as front-end program analyzer for scheduling algorithms. PT-
GDS is dynamic scheduling algorithm taking as input a parameterized task
graph.
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Our current investigations are directed towards the generalization of the
use of PlusPyr and also in deriving a symbolic static scheduling algorithm
with performance of the same order as PTGDS.

Finally we would like to thank Michel Loi for providing us with the
PlusPyr software and for many fruitful discussions.
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