AUTOMATIC MULTITHREADED PARALLEL PROGRAM
GENERATION FOR MESSAGE PASSING
MULTIPROCESSORS USING PARAMETERIZED TASK
GRAPHS

EMMANUEL JEANNQOT

LORIA, INRIA Lorraine, France
Emmanuel.Jeannot@loria.fr

In this paper we describe a code generator prototype that uses parameterized task
graphs (PTGs) as an intermediate model and generates a multithreaded code. A
PTG is a compact and a problem size independent representation of some task
graphs found in scientific programs. We show how, with this model, we can gen-
erate a parallel program that is scalable (it is able to execute million of tasks) and
generic (it works for all parameter values).

1 Introduction

In the literature a lot of work exists to help programmers write parallel pro-
grams. Various approaches have been taken such as: data parallelism language
with directives (HPF 1!); linear algebra libraries (ScaLAPACK ?2); communi-
cation libraries (MPI ?); shared memory programming environments (such as
Athapascan-14); compilers for automatic parallelization (for example SUIF ®)
or lastly, task parallelism languages (for example Pyrros). Our work is an
intermediate approach between the last two. In this paper we show how to
automatically generate a program when modeled by a task graph.

Parallel compilers 578 are, in general, based on a fine grain representation
of the program. Most of the time this implies that communication and com-
putation are considered as unitary. Fine grain analysis implies also that all
instructions are modeled. Our work is based on a coarse grain representation
of the program: instructions are grouped into tasks. We do not make any
assumptions about the duration of communications nor about the duration of
the tasks. Furthermore, since there are always fewer tasks than instructions
the modelization of a program is less complex.

A lot of tools have been developed for generating code from a task graph.
This is the case for Pyrros ¢, Hypertool ? or CASCH '°. They all work in the
same way. (1) they extract a task graph from a program, (2) they schedule
the task graph using various scheduling algorithms, (3) they build a program
that executes the found schedule. This approach has two major drawbacks.
First, the task graph can be built only when the parameters of the input

code gen: submitted to World Scientific on July 23, 2001 1

program are instantiated. Hence, it is required to recompute the schedule
and regenerate the program each time the parameter values change. Second,
the size of the task graph depends on the parameter values of the program.
Hence, this method does not work for large parameter values. Indeed, when
the parameter values are too large, the task graph becomes too large to be
stored in memory and scheduled (in general these tools are not able to schedule
task graphs containing more than a thousand tasks).

The main contribution of this paper is that we show how to overcome these
two drawbacks for some programs found in scientific applications. We have
designed a code generator prototype based on an intermediate model called
the parameterized task graph (PTG). This model is a symbolic representation
of task graphs. It requires a small amount of memory to be stored because it
is independent of parameter values. Thus, we can generate a parallel program
that works for all parameter values and that is able to execute million of
tasks. Our runtime system executes tasks in a multithreaded fashion for
computation/communication overlapping and time sharing execution.

2 Background

2.1 The Parameterized Task Graph

A parameterized task graph (PTG) is a compact representation of some task
graphs that can be found in scientific applications. It has been introduced by
Cosnard and Loi in *!2 to build automatically task graphs. It uses parame-
ters therefore its size is independent of the problem size.It is composed of three
parts: a set of communication rules, a set of generic tasks and a cost function
of each task. In the code, generic tasks are enclosed by keywords task and
endtask. The cost function gives, for each instance of a task, the number of
operations performed by the task. Communication rules symbolically describe
communications between tasks.

It is out of the scope of this paper to describe the PTG model more
precisely. For more details refer to: 11:12:13:14,

2.2 A Line of Semi-Automatic Parallelization

We have designed '® a line of semi-automatic parallelization. It starts from
a sequential program written in a FORTRAN-like language annotated with
task and endtask delimiters that partition the program into sequential tasks.

code gen: submitted to World Scientific on July 23, 2001 2

The program must have a static control 6. This means that all the array sub-
scripts and loop bounds must be affine functions of the program parameters
and enclosing loop indices. For-loops are the only control structure allowed
and all the instructions must be assignments.

The first step of our line is to derive the parameterized task graph. This
part is done by the PlusPyr tool '2. Since PlusPyr is only able to treat static
control program, our approach is suitable for regular and static computation
only. The second step of the line consists in finding a symbolic allocation of
the tasks. This means that we build a function that tells on which processor
the instance of a task will be executed. Our algorithm 713, called SLC
(Symbolic Linear Clustering) guarantee that, for any parameter values, the
allocation is a linear clustering. A linear clustering is a set of disjoint paths of
the instantiated task graph. The advantage of building a linear clustering is
that it reduces unnecessary communications while preserving parallelism 8.
The last step of the line is the code generation and is described in this paper.

3 Overview of the Method

Execution of the tasks follows the macro-dataflow model: each task first,
receives data, second executes the code and finally sends data. In order to
avoid global management of data, data that are used by a task are stored
within this task.

We use a multithreaded runtime system for executing tasks. This means
that each task is going to be executed by a thread. We use a thread library
called PM2 '9. Tt uses Light Remote Procedure Call (LRPC) for transmitting
data between processes. Sending messages with LRPC works as follows: when
process P needs to transmit data to process P’ it calls a procedure on process
P'. This procedure is executed by a thread and manages the data transmitted
as parameters.

The multithreaded approach allows communication/computation overlap-
ping because the sender is not blocked during data transmission. moreover,
using LRPC allows a fully asynchronous transmission of messages. The re-
ceiver does not wait for data : a thread is launched each time a new message
arrives.

Message reception: when a tasks send a data it calls (with an LRPC) a re-
ceiving procedure that stores data within the corresponding task. It manages
two sets: A set of waiting tasks which are the tasks that have already received
messages but are waiting for other one(s). A set of ready tasks which are the
tasks that have received all their messages and are ready to be executed.

Task execution: the number of threads that execute tasks is fixed at the

code gen: submitted to World Scientific on July 23, 2001 3

beginning of the execution. Each thread takes a ready task execute this task
and send the data using communication rules. If the ready task set is empty
it blocks until a task becomes ready. Concurrent access to the ready task
set is managed with a semaphore. For executing a task, the thread calls the
procedure that contains the task code. Parameters of this procedure are the
data that have been sent to the task.

Sending messages: for sending a message a thread checks the communi-
cation rules set and determine which rule(s) have to be executed. The data
are copied to a buffer and sent to the receiving process (We will see in the
optimization section how to avoid the copying of data when possible).

4 The Parallel Program

4.1 Communication Rule Analysis

First, we determine if an communication rule describes a point — to — point
communication or a broadcast 3. Second, we analyze communication rules
to determine which data are transmitted by a task. Third , we determine,
for each transmitted data, if this data is read and/or written. Once this is
done we are able to determine the memory location required for storing data
within tasks.

4.2 Static Part

There are some parts of the program that do not depend on the input sequen-
tial program, such has the receiving procedures that store data within tasks,
data structure management procedures, etc. . .

4.8 Generated Part

The code generation is done after the analysis of the rules and a simple anal-
ysis of the source program. We describe here the different parts of the code
that depend on the source program.

Task code: first, we “functionalize” the tasks. Functionalization is the op-
posite of inlining, a well-known optimization feature of compilers. This means
that we decompose the sequential program in functions. Each function being
a task. Parameters of these function are the accessed data of the correspond-
ing task.

Allocation and deallocation task functions: a task is created when it
receives data for the first time. When data has finished its execution all these
informations are freed.

code gen: submitted to World Scientific on July 23, 2001 4

Packing data: For each rule we generate a code that extracts the data de-
scribed by this rule within the sending task and build the message.
Unpacking data: when a message arrives, the data is to be stored within
the receiving task. For each reception rule we generate a code that copies the
input buffer into the attached data.

5 Optimizations

In order to generate an efficient parallel program, optimizations are necessary.
Our code generator performs two types of optimizations. The first type con-
cerns the code speed, the second type concerns memory utilization.
Merging rules: some communication rules describe the transmission of con-
tiguous data. Sometime it is possible to merge these rules into one rule that
send the union of the two data.

Use of global communications: when a message is a broadcast, we send
only one message per node that executes some of the receiving tasks.
Merging messages: when a task generates two different messages for the
same receiving task, this messages are merged before sending.
Transmission of data on the same node: We have optimized packing
and unpacking of data in order to avoid the creation of temporary buffers.
The data is directly copied from the sending task to the receiving task.
Pointer transmission of data: In order to avoid data copy, we have opti-
mized the reception of broadcasts: when possible, each receiving task of the
same node points to the same data. When all tasks have finished using this
data, it is freed from memory.

6 Results

We have run generated programs on a 16 nodes IBM SP2 and a cluster of 14
Motorola PowerPC (The POM: Pile Of Motorola) linked with BIP 20. Since
we obtain similar performances we only show the results for the POM cluster.

6.1 Speedup Results

Fig. 1 shows speedup results for the POM for the Gaussian Elimination and
the Jordan Diagonalization. The linear clusters built by SLC are mapped on
the physical processor in a cyclic fashion®. The matrix sizes are between 1000
and 4000. The baseline of the speedup is a straightforward C translation of

@The way clusters are mapped on the processors is fixed at the beginning of execution. The
user has four choices: cyclic, bloc, bloc-cyclic or reflect

code gen: submitted to World Scientific on July 23, 2001 5

Gaussian Elimination - POM

Jordan Diagonalization ~ POM

N : Matrix size
10+

¥ N=3000
N=2000

+N=1000

N : Matrix Size
¥ N=3000

N=2000

+N=1000

8
NB procs

8
NB procs

Figure 1. Speedup results for some compute intensive kernels

the original sequential code. For the Gaussian elimination with matrix size
4000 the program executes more than 8 million of tasks and checks more than
16 million of edges. We obtain a speedup of more than 12.28 on 16 processors.

Results for the Jordan Diagonalization are not as good as for the Gaussian
Elimination because the Jordan Diagonalization algorithm has more commu-

nication.

6.2 Timing Different Parts of the Program

Fig. 2 shows the proportion of
the duration of each part of the
Gaussian Elimination program for
N=2000 on the POM. Results
show that the time proportion in
executing tasks decreases as the
number of processors increases.
On the other hand the time pro-
portion for selecting ready task in-
creases as the number of processor
increases.

This is due to the fact
that, for a constant problem size,
threads have fewer task to execute
when processor number increases:

Gauss 2000 on the POM

—
© Task execution T

+ Building messages

°
o

v Sending messages

* Tasks destruction

°
IS

O Selecting ready tasks

°
©

Total execution time proportion

© Misc.

NB procs

Figure 2. Time Proportion of Different Parts
of the Program for the G.E.

they spend more time blocked, waiting for ready tasks.

code gen: submitted to World Scientific on July 23, 2001

6.3 Remark

It has not been possible to compare these results with those obtain by static
scheduling tools. Indeed, due to memory constraint static scheduling tools
are not able to schedule task graphs larger than a thousand task. However we
have shown, in our previous work '3, that SLC obtains similar performances
than very good static scheduling algorithm, for small task graphs.

7 Conclusion

In this paper we have described the back-end of a complete line of semi-
automatic parallelization based on coarse grain decomposition of the program.
Our contribution is the following. We use the parametrized task graph as an
intermediate model, hence the generated code works for all parameter values.

The parallel program executes the symbolic allocation found by SLC,
hence this allows to execute a very large program. Indeed, (1) the allocation
does not depend of the parameter values, (2) computing the processor where
to execute a task takes a constant time and memory size. We are able to
execute task graph containing million of tasks and edges. In order to ob-
tain performances, we have described various optimization features. We have
demonstrated that multithreading is well suited for task computation.

Our future works are directed towards the automatic placement of task
delimiters. This is the only part that is not automatic in the proposed line.
We also would like to extend the input language in order to treat more sophis-
ticated program and extend the class of program that can be automatically
parallelized.

References

1. C. H. Koelbel, D. B. Loveman, R. S. Schreiber, G. L. Steel Jr., and M. E. Zosel.
The High Performance Fortran Handbook. The MIT Press, 1994.

2. L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon,
J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and
R. C. Whaley. ScaLAPACK Users’ Guide. SIAM, 1997.

3. W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Program-
ming with the Message Passing Interface. The MIT Press, 1994. ISBN 0-262-
57104-8.

4. F. Gallilée, J.-L. Roch, G. Cavalheiro, and M. Doreille. Athapascan-1: On-line
Building Data Flow Graph in a Parallel Language. In IEEE Intl. Conf. on
Parallel Architectures and Compilation Techniques (PACT’98), Paris, October
1998.

5. S.P. Amarasinghe, J. M. Anderson, M. S. Lam, and C.W. Tseng. The SUIF

code gen: submitted to World Scientific on July 23, 2001 7

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Compiler for Scalable Parallel Machines. In seventh SIAM Conference on Par-
allel Processing for Scientific Computing, February 1995.

T. Yang and A. Gerasoulis. Pyrros: Static Task Scheduling and Code Genera-
tion for Message Passing Multiprocessor. In Supercomputing’92, pages 428-437,
Washington D.C., July 1992. ACM.

Alain Darte and Frédéric Vivien. Parallelizing Nested Loops with Approxima-
tion Distance Vectors: a Survey . Parallel Processing Letters, 7(2):133-144,
1997.

P. Feautrier. Toward Automatic Distribution. Parallel Processing Letters,
4(3):233-244, 1994.

M. Wu and D. Gajsky. Hypertool a programming aid for message-passing
systems. IEEE Transactions on Parallel and Distributed Systems, 1(3):330-
343, 1990.

I. Ahmad, Y.-K. Kwok, M.-Y. Wu, and W. Shu. Automatic Parallelization and
Scheduling on Multiprocessors using CASCH. In ICPP’97, August 1997.

M. Cosnard and M. Loi. Automatic Task Graph Generation Techniques. Par-
allel Processing Letters, 5(4):527-538, 1995.

M. Loi. Construction et exécution de graphe de tiches acycliques a gros grain.
PhD thesis, Ecole Normale Supérieure de Lyon, France, 1996.

M. Cosnard, E. Jeannot, and T. Yang. SLC: Symbolic Scheduling for Executing
Parameterized Task Graphs on Multiprocessors. In International Conference
on Parallel Processing (ICPP’99), Aizu Wakamatsu, Japan, September 1999.

M. Cosnard and E. Jeannot. Compact DAG Representation and Its Dynamic
Scheduling. Journal of Parallel and Distributed Computing, 58(3):487-514,
September 1999.

Emmanuel Jeannot. Allocation de graphes de taches paramétrés et génération
de code. PhD thesis, Ecole Normale Supérieure de Lyon, France, October 1999.
ftp://ftp.ens-Lyon.fr/pub/LIP/Rapports/PhD/PhD1999/PhD1999-08.ps.Z.
P. Feautrier. Dataflow analysis of array and scalar references. International
Journal of Parallel Programming, 20(1):23-53, 1991.

M. Cosnard, E. Jeannot, and T. Yang. Symbolic Partitionning and Scheduling
of Parameterized Task Graphs. In IEEE International Conference on Parallel
and Distributed Systems (ICPADS’98), Tainan, Taiwan, December 1998.

A. Gerasoulis and T. Yang. On the Granularity and Clustering of Direct
Acyclic Task Graphs. IEEE Transactions on Parallel and Distributed Systems,
4(6):686-701, June 1993.

R. Namyst and J.-F. Méhaut. PM2: Parallel Multithreaded Machine. A
computing environment for distributed architectures. In Parallel Computing
(ParCo’95), pages 279-285. Elsevier Science Publishers, September 1995.

Loc Prylli and Bernard Tourancheau. BIP: a New Protocol Designed for High
Performance Networking on Myrinet. In Parallel and Distributed Processing,
IPPS/SPDP’98, volume 1388 of Lecture Notes in Computer Science, pages
472-485. Springer-Verlag, April 1998.

code gen: submitted to World Scientific on July 23, 2001

