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ABSTRACT
In this paper, we tackle the problem of redistributing data
between clusters connected by a backbone. On distributed
environments, communications often take more time [12]
and thus lead to worse results than on local clusters. There
is therefore a strong need to optimize the time needed by
communications.Indeed, when an application composed of
several codes running on distant clusters is executing, data
are required to be redistributed between the clusters. We
propose a general solution to the problem when the plat-
form is fully heterogeneous platforms (each node of each
cluster can communicate at different speed) or when some
nodes have several network interface cards. We provide an
algorithm for scheduling the messages that gives a solution
at most twice as long as the optimal one. Simulation results
show that it is giving almost optimal schedules on large re-
distribution patterns, and very good results in the general
case.
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1 Introduction

In this paper, we study the problem of data redistri-
bution for heterogeneous cluster computing. This problem
arise in the context of code-coupling [14, 16] or compu-
tational steering [9]. In such an application, two paral-
lel machines (clusters) have to exchange data and redis-
tribute [1, 6] this data from each node of the sending cluster
to each node of the receiving one [15]. In general, the back-
bone that connects the two clusters is a bottleneck: it cannot
handle all the communications at the same time because the
aggregate bandwidth of each cluster exceeds its own band-
width. Think for instance of two clusters of 100 nodes with
100 Mbit/s network cards interconnected by a backbone of
1 Gbit/s: in this case the aggregate bandwidth of each clus-
ter is 100× 100 Mbit/s = 10 Gbits/s. In order not to exceed
the backbone bandwidth, no more than a given number of k

messages have to be sent at the same time. In the previous
example k = 10 because 10 communications at 100 Mbit/s
leads to a 1 Gbit/s aggregated bandwidth.

All previous works of the litterature [6, 13, 18], pro-
pose several algorithms for solving this problem when a

node operates in the 1-port model: at a given moment, each
node can send or receive at most one message. In this pa-
per, we extend previous results to the case where a node
can send or receive an arbitrary number of messages (δ-port
mode). The δ-port assumption is more general and is driven
by these very important remarks: (1) the one-port model
implies that all nodes of each cluster have the same net-
work interface cards (see [13] for the details). However a
distributed environment can be composed of heterogeneous
resources: the δ-port model is one way of dealing with clus-
ters composed of nodes with different network cards, (2)
a cluster node can have several network cards and there-
fore can send more than one message at a given moment.
Nowadays, this situation is very common as many clusters
are composed of bi/quadri processors each having its own
network interface card. This is not captured with the 1-port
model, (3) very fast network cards are sometimes not able
to communicate at full speed with one TCP socket. Several
sockets have to be opened for communicating at full speed.

The contribution of this paper is the following. We
propose a fast (polynomial) algorithm for solving the mes-
sages scheduling problem for data redistribution within the
δ-port model called DGGP. We provide new lower bounds
of the problem. We prove that this algorithm is an approxi-
mation algorithm (for any instance of the problem the given
solution is at most twice as long as the optimal one). Ex-
perimental results show that DGGP provides results close
to the optimal and, in most of the cases, outperforms our
previous algorithm that do not consider the delta-port con-
straint.

2 The Redistribution Problem

2.1 Background

The redistribution problem has been widely studied
in the case of homogeneous parallel programming. Indeed,
data placement/distribution on each parallel computing ele-
ment determine which algorithm can be applied and which
performance can be expected. When different parallel al-
gorithms have to be applied on the same data it is some-
times efficient to change the data placement and therefore
redistribute this data. Redistribution routines have been
implemented in many programming environments such as
Scalapack (P#TRMR2D BLACS function) [2] and HPF
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Figure 1. Exemple topology

(redistribute directive) [7]. Several steps are re-
quired to redistribute data:

1. Data identification. This step consists in determining
which data is to redistribute, what is it size, what is its
initial location what is its final location.

2. Messages generation. It consists, for each processor
pair, to determine the data to be exchange. The output
of this step is often call a redistribution matrix where
element (i,j) of this matrix gives the amount of data to
be exchanged between processor i and processor j as
well as some other useful informations (data address,
type, etc.).

3. Messages scheduling. This step computes in which
order the message will take place. This step has to take
into account the network topology in order to avoid
contention. It also needs to balance communications
in order to optimize the redistribution time.

4. Communication. The actual exchange of data be-
tween processors pair takes place during this step ac-
cording to the scheduling computed during the previ-
ous step.

In this paper we focus on the message scheduling
step. We assume that the communication matrix(see Fig. 2)
is given.

We consider here the following case: the topology is
composed of two distant clusters: the senders cluster and
the receivers cluster as shown in Figure 1. Each node in
the cluster is connected to the backbone via a switch. The
backbone may be a bottleneck where only a limited num-
ber of communications can take place at the same time.
Finally we allow preemption, that is any communication
can be executed in several steps i.e. splitted into smaller
communications.We associate a penalty to the preemption.

Data redistribution between distant cluster arise, for
instance, in the context of distributed cluster computing
such as code coupling [14, 16] when one part of the com-
putation is done on one cluster and the other part is done on
an other cluster. It arise also in the case of co-allocated par-
allel program, or in the case of execution of parallel tasks
with dependencies.

2.2 Modeling of the Problem

The redistribution problem we study here is modeled
by a weighted bi-partite graph: G = (V1, V2, E, w, δ) an
integer k, a rational β. V1 is the set of vertices on the left
part of G. V2 is the set of vertices on the right part of G.

Each vertex of V1 (resp . V2) represents one node of the
sending (resp. receiving) cluster. E is the set of edges.
There is an edge between two vertices if a communication
has to be issued between the two corresponding nodes dur-
ing the redistribution. w is the weight function of each edge
and represents the time needed to transfer the data between
the two nodes. δ is a function that for each vertex of V1∪V2

gives the number of communications that can be issued at
the same time from a given node. Note that the value of this
function can be different for each vertex. k, the maximum
number of communications that can be issued at the same
time. It comes from the fact that the backbone intercon-
necting the two clusters can be a bottleneck. In order not
to exceed its capacity k has to be computed such that the
aggregated bandwidth of any k simultaneous communica-
tions is never greater than the backbone bandwidth. Since
no node will be able to send more than k messages at the
same time, we impose that ∀n ∈ V1 ∪ V2, δ(n) ≤ k. β

is the time to set up a communication step (a synchronized
set of communications that all start at the same time).

2.3 Running Example

nodes A B
1 700 300
2 0 100

Figure 2. Exemple
communication ma-
trix (in Mbit)

Throughout this paper
we will use the following
example of the redistribu-
tion between two heteroge-
neous clusters. Let us take
the communication matrix
of Figure 2. For instance, we
see that node 1 of the first cluster has 700 Mbit to send to
node A of the second cluster. Let us suppose that node
1 and B have a 300 Mbit/s network card, node 2 has 200
Mbit/s network card and node A a 100 Mbit/s NIC. Let us
assume that the backbone has a 200 Mbit/s bandwidth1 .

In order to compute G, δ and k we need to introduce
the notion of base speed. The base speed is the greatest
common divisor of the backbone and all different network
card speeds. In this case the base speed is 100 Mbit/s. We
compute k, δ and w from the base speed that will be the
communication speed during the redistribution.

Since all communications will take place at 100
Mbit/s and the backbone speed is 200 Mbit/s we deduce
that k = 2. Concerning node 1 the network card is 300
Mbit/s and the base speed is 100 Mbit/s therefore δ(1) = 3.
For the same reason δ(B) = 3, δ(2) = 2 and δ(A) = 1.
We can see that δ(1) and δ(B) are greater than k = 2. We
therefore reduce δ(1) and δ(B) to 2.

Since the base speed is 100 Mbit/s the weight of the
edge connecting 1 to A in G is 700

100 = 7. The full graph G

obtained is shown on Figure 3.
β depends on the system and the network. It is mainly

the time to open a connection to a remote node plus the
network latency.

1These numbers are a little bit unrealistic but they show that we can
deal with a highly heterogeneous environment.
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Figure 3. Graph G modeling the exemple

Note that we would have obtained the same modeling
if node 1 and B had 3 network cards at 100 Mbit/s, node
2 two NIC at 100 Mbit/s and node A only one 100 Mbit/s
card.

2.4 Modeling of the Solution

Given a bipartite graph G = (V1, V2, E, w, δ) an in-
teger k and a rational β. We have to decompose G into s

communications steps. A communication step i is given by
a bipartite graph Gi = (V1i

, V2i
, Ei, wi, δ) that describes

which nodes are involved in this step, what communica-
tions are performed and what is the duration of each com-
munication. The union of all the s steps must give the orig-
inal graph: G = ∪s

i=1Gi. In order to be valid a step has to
respect the two following constraints:

1. The number of communications of the step must not
exceed k. ∀i : |Ei| ≤ k.

2. A node n cannot perform more than δ(n) communi-
cations. If we denote di(n) the degree of n at step i,
we have: ∀i, n : di(n) ≤ δ(n).

The cost of each step is given by the cost to setup the
step (i.e. β) plus the duration of the longest duration (i.e.
Wi = maxe∈Ei

wi(ei)). Therefore, the cost of the solution
is: s × β +

∑s

i=1 Wi. Note that in this model we allow
preemption: a communication can be cut into pieces and
performed in several steps.

2.5 Example

Let us go back to our running example. For sake of
simplicity we assume that β = 1. The example can be
decomposed in a set of 3 steps as given Fig. 4. Thanks to
preemption the edge between node 1 and A is decomposed
in 3 edges. Steps cost are respectively 3, 1 and 3 and 3× β

are needed for initializing each steps. Therefore, the total
time needed for the redistribution is 3+1+3+3×1 = 10.

2.6 Related Works

Up to the best of our knowledge all previous works
deal with the 1-port constraint (∀n ∈ V1 ∪ V2, δ(n) = 1)
which is less general than the δ-port constraint. There-
fore, it generalizes several well known-problems of the lit-
erature. The problem of redistributing data inside a clus-
ter has been studied in the field of parallel computing for

years [6, 18]. In this case the modelization and the formu-
lation is the same except that the number of messages that
can be send during one step is only bounded by the num-
ber of nodes (k = min(|V1|, |V2|)). The problem has been
partially studied in the context of Satellite-Switched Time-
Division Multiple Access systems (SS/TDMA) [3, 10, 11].
The problem with β = 0 is studied in [3]. Finding
the minimum number of steps is given in [10].The prob-
lem when no preemption is allowed is studied in [11].
Packet switching in communication systems for optical net-
work problem also called wavelength-division multiplexed
(WDM) broadcast falls in this problem [4, 8, 17, 19, 10].
In [8, 10], minimizing the number of steps is studied.
In [4] and in [17], a special case the problem is stud-
ied when k = |V2|. The problem of finding an optimal
valid schedule has been shown NP-complete in [5]. In [13]
we have proposed an approximation algorithm called Op-
timized Generic Graph Peeling algorithm (OGGP) for the
problem with the 1-port constraint.

3 Algorithm

OGGP [13] provides a solution for the 1-port con-
straint. It is very important to note that, in this case, all
communication step is a matching. In an informal descrip-
tion, OGGP is subdivided into two parts:

• An initialization step: enhancing the input graph to
be able to match the constraints: (1) normalize all
weights by β to limit the use of preemption, (2) add
some new nodes and edges to enable the main step to
respect the constraint given by k.

• The heart of the algorithm: peeling the graph into the
final set of matchings.

We extend OGGP into Delta Generic Graph Peeling
Algorithm (DGGP) in order to take into account the δ-port
assumption. We start by normalizing all weights by β as in
OGGP. We then transform the graph G = (V1, V2, E, w, δ)
into the graph G′ = (V ′

1 , V ′
2 , E′, w′) using the algorithm

given Fig. 5.

Figure 6. Decomposition of G into G′ (top : after step 2;
bottom after step 3).
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Figure 4. Decomposition in communication steps

1. V ′
2 = V2

2. ∀s ∈ V1:

(a) compute w(s) =
∑

(s,s2)∈E w((s, s2))

(b) build (li)0≤i<δ(s) the list representing the share of all communications of s given to each new node.

We try to give an equal share of d to each new node. ∀i ∈ {1, . . . , w(s) mod δ(s)}, li =
⌈

w(s)
δ(s)

⌉

; ∀i ∈

{(w(s) mod δ(s)) + 1, . . . , δ(s)}, li =
⌊

w(s)
δ(s)

⌋

.

(c) add to V ′
1 the nodes obtained by splitting s: si0≤i<δ(s)

(d) now we split the edges: ∀i|0 ≤ i < δ(s)

i. while li 6= 0

A. take an edge a = (s, a2) ∈ E, such that a is of maximal weight

B. if w(a) ≤ li

• li = li − w(a) , remove a from E, add (si, a2) of weight w(a) to E ′

• else w(a) = w(a) − li, add (si, a2) to E′ with w′((si, a2)) = li, li = 0

3. issue the same operations to split edges from V2

Figure 5. Formal algorithm splitting the nodes and edges

This algorithm first split each node n of V1 into δ(n)
nodes. Then, it dispatches equally all communications of
node n to the new virtual nodes. Finally, the same proce-
dure is applied for the nodes of V2. The idea behind this
transformation is that a matching (a communication step
for OGGP) of G′ corresponds to a set of edges of G (when
merging back the nodes) having at most δ(n) edges adja-
cent to n. It is therefore a valid communication step for
DGGP. Fig. 6 shows the result of the decomposition on our
running example of Sec. 2.3.

We give the graph G′ to OGGP and then merge back
its nodes to obtain the final schedule.

Complexity. To split the edges, we iterate on each node
s. For each of them we have δ(s) ≤ k new nodes. This is
done by iterating at most once on each edge. Hence split-
ting the edges is done at worst in O(n × k × m). We cre-
ate at most δ(s) edges when splitting s. This means that
|E′| ≤ |E|+k×(|V1|+ |V2|) hence m′ ≤ m+kn. Finally
it is clear that n′ ≤ kn. OGGP being in O((m + n)

5

2 ) we
can see that this new algorithm is in O((m+kn+kn)

5

2 ) =

O((m + kn)
5

2 ).

Approximability DGGP is an approximation algorithm.
It means that whatever is the input, the solution is never too

long compare to the optimal solution (See [20] for a formal
proof).

4 Simulation Results

We study the behavior of DGGP under different situ-
ations, by simulations. All simulations consist in executing
DGGP or OGGP on some random input pattern, computing
the lower bound on the communication time and comput-
ing the optimum ratio defined as the time achieved by the
algorithm divided by the lower bound [20]. Thus a value
of 1 means we achieved optimal result. The value of δ for
each node is randomly generated between 1 and 5.

We present several graphs detailing the obtained re-
sults. Each point in a graph is obtained as the average of
computations on 100 random graphs. The number of pa-
rameters of the algorithm being pretty high, for all graphs
mostly all parameters are fixed in order to obtain a 2D
graph. Only the most significant results are presented here.

At first, we evaluated the performance of DGGP. We
choosed here to execute DGGP on random graphs with 14
nodes in each set, with k = 10 and k = 3. We then plotted
Figure 7 which shows that the results are getting better as
the number of edges increases, with the variation on graphs
of same size decreasing in the same way. Worst result is
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Figure 7. DGGP Evaluation
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Figure 8. DGGP- Comparisons

of approximately 1.7 while for large graphs we are close
from the optimum. This is explained because it is easier
for the algorithm to compute matchings with edges of the
same size if the graph has a high number of edges. As
the variation in time is kept the same and the lower bound
increases, the variation of the ratio decreases. The behavior
is the same for graphs of another size.

We then compared DGGP with our previous OGGP
algorithm. Figure 8 shows on the left side the optimum ra-
tios for OGGP and DGGP as k increases. The input pattern
is a random graph of 18 nodes in each set, with a random
number of edges. We can see that OGGP starts as being
slightly better than DGGP, but as k increases, results ob-
tained for OGGP worsen with peaks at more than 20 %
degradation. DGGP is slightly worse than OGGP for small
k because we are dividing more edges than with OGGP,
which we cannot really schedule in parallel as k is small.
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Figure 9. DGGP Improvements

The graph on the right side of Figure 8 plots the schedule
ratio: the schedule time found by OGGP divided by the
schedule time found by DGGP. We plot 3 graphs, the av-
erage case, the worst case and the best case. When this
ratio is greater than 1 this means that DGGP outperforms
OGGP. We see that on the average DGGP is slightly better
than OGGP when k is large. On some cases it outperforms
OGGP up to a factor of 240 % and this factor grows with δ

while OGGP never outperforms DGGP to a factor greater
than 10%.

Finally, we computed on Fig. 9 the number of times
DGGP performs better than OGGP for each value of k.
This confirms the results displayed in previous figures.
DGGP is performing better than OGGP in 65% of cases
for high value of k.

5 Conclusion

Data transmission is an important feature for clus-
ter computing applications. Performance depends on how
communications between resources are performed. This is
especially true on a distributed environement where net-
work performances are often poorer than on local clusters.

Here, we study the message scheduling problem for
redistribution: a cluster has to send data to an other cluster
through a backbone. When this backbone is a bottleneck, it
is required to schedule the messages in order not to exceed
its capacity.
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As none of the previous works we allow the use of the
δ-port model. This model enables us to take into account
the heterogeneity of the nodes within a given cluster, the
fact that there is more than one network card on some nodes
or the necessity to perform multi-socket data transfer.

We proposed DGGP, an approximation algorithm,
Simulation results show that it can achieve nearly optimal
results on complex input patterns while improving results
of OGGP in general.
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