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ABSTRACT
We tackle the problem of scheduling task graphs onto a het-
erogeneous set of machines, where each processor has a prob-
ability of failure governed by an exponential law. The goal
is to design algorithms that optimize both makespan and re-
liability. First, we provide an optimal scheduling algorithm
for independent unitary tasks where the objective is to max-
imize the reliability subject to makespan minimization. For
the bi-criteria case, we provide an algorithm that approxi-
mates the Pareto-curve. Next, for independent non-unitary
tasks, we show that the product {failure rate}× {unitary
instruction execution time} is crucial to distinguish proces-
sors in this context. Based on these results we are able to
let the user choose a trade-off between reliability maximiza-
tion and makespan minimization. For general task graphs
we provide a method for converting scheduling heuristics
on heterogeneous cluster into heuristics that take reliability
into account. Here again, we show how we can help the user
to select a trade-off between makespan and reliability.

Categories and Subject Descriptors
C.4 [Performance of Systems]: [Reliability, availability,
and serviceability]; C.2.4 [Computer-Communication Net-
works]: Distributed Systems—Distributed applications

General Terms
Algorithms, Reliability, Performance
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1. INTRODUCTION
Unlike homogeneous parallel machines, heterogeneous sys-

tems are composed of computers with different speeds. As
the number of interconnected heterogeneous resources is grow-
ing tremendously, the need for algorithmic solutions that ef-
ficiently use such platforms is increasing as well. One of the
key challenges of heterogeneous computing is the scheduling
problem. Given an application modeled by a dependence
graph, the scheduling problem deals with mapping each task
of the application onto the available heterogeneous resources
in order to minimize the application runtime (makespan).
This problem has been studied in the literature for years
and is known to be NP-hard. Several heuristics have been
proposed to solve this problem [8, 4, 2]. However, as hetero-
geneous systems become larger and larger, the issue of relia-
bility of such an environment needs to be addressed. Indeed,
the number of possible failures increases with the size of the
hardware. Therefore, nowadays, it is not possible to ignore
the fact that an application running on a very large system
can crash due to hardware failure. Several approaches can
be employed to solve this problem. One approach is based
on task duplication where each task is executed more than
once in order to decrease the probability of failure. The
main problem of this approach is that it increases the num-
ber of required processors. Alternatively, it is possible to
checkpoint the application and restart the application after
a failure [3, 1]. However, in case of failure, the application is
slowed down by the restart mechanism, which requires the
user to restart the application on a subset of processors and
repeat some communications and computations. Hence, in
order to minimize the impact of the restart mechanism, it
is important to reduce the risk of failure. Moreover, even
in the case where there is no checkpoint-restart mechanism,
it is important to guarantee that the probability of failure
of the application is kept as low as possible. Unfortunately,



as we will show in this paper, increasing the reliability im-
plies, most of the time, an increase of the execution time (a
fast schedule is not necessarily a reliable one). This justifies
the search for algorithms that both minimize makespan and
maximize reliability.

In this paper, we take on the problem of scheduling an ap-
plication modeled by a task graph on a set of heterogeneous
resources. The objectives are to minimize the makespan
and to maximize the reliability of the schedule. In the liter-
ature, this problem has been studied [5, 6, 7], but not from
a theoretical optimization point of view. In [5], Dogan and
Ozgüner proposed a bi-criteria heuristic called RDLS. In [6],
the same authors improved their solution using a genetic
algorithm based approach. In [7], Hakem and Butelle pro-
posed BSA, a bi-criteria heuristic that outperforms RDLS.
However all these results are focused on the general case
where the task graph is unstructured. We lack fundamental
solutions for this problem. Some unanswered questions are:

• Is maximizing the reliability a difficult (NP-Hard) prob-
lem?

• Is it possible to find polynomial solution of the problem
for special kind of task graph?

• Is it possible to approximate this problem?

• Can we build approximation schemes?

• How to help the user in finding a good trade-off be-
tween reliability and makespan?

The content and the organization of this paper are as fol-
lows. In section 2, we introduce the notation and the defi-
nition of reliability and makespan. In section 3, we describe
the problem more precisely. In particular, we show that
maximizing the reliability is a polynomial problem and is
simply obtained by executing the application on the pro-
cessors that have the smallest product of {failure rate} and
{unitary instruction execution time} sequentially. This means
that minimizing the makespan is contradictory to the ob-
jective of maximizing the reliability. Furthermore, we show
that for the general case, approximating both criteria at the
same time is not possible. In section 4, we study the problem
of scheduling a set of unitary (each tasks have the same dura-
tion : one instruction) and independent tasks. For this case,
we propose an optimal algorithm for the problem that maxi-
mizes the reliability subject to makespan minimization. We
also propose an (1+ε,1) approximation of the Pareto-curve1

of the problem (these terms will be defined later). This
means that we can provide a set of solutions to the problem
(the size of this set being polynomial) that approximates, at
a constant ratio, all the optimal makespan/reliability trade-
offs. In section 5, we investigate the problem for non-unitary
independent tasks. We propose an approach to help the
user choose a suitable makespan/reliability trade-off driven
by the fact that, in order to favor reliability, it is necessary
to schedule tasks on a subset of processors that have the
smallest product of {failure rate} and {unitary instruction
execution time}. Based on that fact, in section 6 we show,
for the case where the task graph is unstructured, how to
easily transform a heuristic that targets makespan minimiza-
tion to a bi-criteria heuristic. Here again, we demonstrate

1Intuitively, the Pareto-curve divides the solution space be-
tween the feasible and the unfeasible.

how to help the user choose a suitable makespan/reliability
trade-off. We conclude the paper in section 7.

2. NOTATIONS
We model the application by a task graph: let G = (V, E)

be a Directed Acyclic Graph (DAG) with V the set of n =
|V | vertices (that represenst tasks) and E the set of edges
that represents precedence constraints among the tasks. Each
task vi ∈ V is given a number of operations oi. Each edge
ei = (i, j) is associated to li and the time to send data from
task vi to task vj if they are not executed on the same pro-
cessor. We are given a set P of m processors and processor
pi ∈ P is associated with two values: τi the unitary instruc-
tion execution time, i.e. the time to perform one operation,
and λi the {failure rate}. We assume that, during the exe-
cution of the DAG, the failure rate is constant. This means
that the failure model follows an exponential law. Hence,
each task vi executed on processor pj will last oi × τj and
the probability that this task finishes (correctly) its execu-
tion is given by e−oi×τj×λj .

A schedule is an assignment of the tasks to the proces-
sors such that, at most, one task is executed at a time on
any given processor and that the precedence constraints are
respected. We call proc(i) the processor assigned to task
vi and Ci its completion date. Cmax = max{Ci} is the
makespan.

The reliability of a schedule is the probability that it fin-
ishes correctly and is given by the probability that all the
processors be functional during the execution of all their as-

signed tasks, i. e., psucc = e−
Pm

j=1 C
j
maxλj , where Cj

max =
maxi|proc(i)=j{Ci} is the completion date of the last task
executed on processor j. Finally, the probability of failure
of a schedule is given by pfail = 1− psucc.

The problem we address is, that given a task graph and
a set of heterogeneous processors, find a schedule such that
psucc is maximized and Cmax is minimized.

3. A BI-CRITERIA PROBLEM
In this article we try to solve a bi-criteria problem. We

aim to minimize the makespan and to maximize the relia-
bility (or to minimize the probability of failure). Unfortu-
nately, these criteria are two conflicting objectives. More
precisely, as shown in Proposition 1, the optimal reliability
is obtained when mapping all the tasks to processor j such
that, j = argmin(τiλi), i.e., the one for which the product
of {failure rate} and {unitary instruction execution time} is
minimal. However, such a schedule, in the general case, can
be arbitrarily far from the optimal one.

Proposition 1. Let S be a schedule where all the tasks
have been assigned, in topological order, to a processor i such
that τiλi is minimal. Let psucc be the probability of successful
execution of schedule S. Then any schedule S′ = S, with
probability of success p′succ, is such that p′succ ≤ psucc.

Proof of proposition 1.
Suppose without loss of generality that i = 0 (i. e., ∀j :

τ0λ0 ≤ τjλj). Then psucc = e−C0
maxλ0 . Call C

′j
max the

completion date of the last task on processor j with schedule

S′. Therefore, p′succ = e−
Pm

j=0 C
′j
maxλj . Let T be the set of

tasks that are not executed on processor 0 by schedule S′.



Then, C
′0
max ≥ C0

max − τ0

P
vi∈T oi (there are still tasks of

V \T to execute on processor 0). Let T = T1 ∪T2 ∪ . . .∪Tm,
where Tj is the subset of the tasks of T executed on processor
j by schedule S′ (these sets are disjoint: ∀j1 6= j2, Tj1∩Tj2 =

∅). Then, ∀1 ≤ j ≤ m, C
′j
max ≥ τj

P
vi∈Tj

oi. Let us

compare the exponent of psucc and p′succ. We have:

mX
j=0

C
′j
maxλj − C0

maxλ0

≥ C0
maxλ0 − τ0λ0

X
vi∈T

oi +

mX
j=1

0@τjλj

X
vi∈Tj

oi

1A− C0
maxλ0

=

mX
j=1

0@τjλj

X
vi∈Tj

oi

1A− τ0λ0

X
vi∈T

oi

=

mX
j=1

0@τjλj

X
vi∈Tj

oi

1A− τ0λ0

mX
j=1

0@ X
vi∈Tj

oi

1A
(because the Tj ’s are disjoint)

=

mX
j=1

0@(τjλj − τ0λ0)
X

vi∈Tj

oi

1A
≥ 0

(because ∀j : τ0λ0 ≤ τjλj)

Hence,

psucc

p′succ
= e

Pm
j=0 C

′j
maxλj−C0

maxλ0 ≥ 1

Since it is not possible to optimize both criteria at the
same time, we will tackle the problem as follows: we consider
maximizing the reliability subject to the condition that the
makespan is minimized ([10] Chap. 3, pp. 12). This means
that we will try to find the most reliable schedule among the
ones that minimize the makespan. However, since finding
the optimal makespan is most of the time NP-hard, we aim
at designing an (α, β)-approximation algorithm. In our
case an (α, β)-approximation algorithm is an algorithm with
which the solution found has a makespan at most α times
larger than the optimal one, and the probability of failure
is at most β times larger than the optimal probability of
failure (among the schedules that minimizes the makespan).
Before proceeding, we shall make two important remarks.

1. Proposition 1 shows that the problem of minimizing
the makespan subject to the condition that the relia-
bility is maximized is the problem of minimizing the
makespan using only processors having a minimal τiλi.
If there is only one single processor that minimizes
τiλi, it reduces to a trivial problem. In this case, the
reliability is maximized only if all the tasks are sequen-
tially executed on the processor whose λiτi is minimal.
However, in the case where there are several processors
that have the same minimal λiτi value, the problem is
NP-Hard as it requires minimizing the makespan on
all of these processors.

2. Theorem 1 (above) shows that the problem of optimiz-
ing both criteria is unapproximable. That is to say, in
general, there exists no solution which is not too far

from the optimal value on both criteria at the same
time. Our study is related to the search of one Pareto
optimum2 when the makespan is minimized. There-
fore, the problem we tackle here may be seen as giving
the priority to the makespan, and trying to optimize
the reliability as a secondary criteria. It is a useful ap-
proach for many cases as it can lead to approximating
the Pareto-curve of the problem. An approximation
of a Pareto curve is presented in Section 4.2 on UET
independent tasks.

Theorem 1. The problem of minimizing the Cmax and
maximizing psucc is unapproximable within a constant fac-
tor.

Proof of Theorem 1.
We consider the instance of the problem involving two

machines such that τ2 = τ1/k and λ2 = k2λ1 (k ∈ R+∗).
Consider a single task t1. Only two solutions are feasible
S1 in which the task is scheduled on processor 1 and S2 in
which the task is scheduled on processor 2. Note that S2 is
optimal for Cmax and that S1 is optimal for the reliability.

Cmax(S1) = o1τ1 and Cmax(S2) = o1τ1/k. This leads to
Cmax(S1)/Cmax(S2) = k. This ratio goes to the infinity
with k. Thus, S1 is not a constant-factor approximation for
this instance.

psucc(S1) = e−o1τ1λ1 and psucc(S2) = e−o1τ1λ1k. This

leads to psucc(S1)/psucc(S2) = eo1τ1λ1(k−1). This ratio goes
to the infinity with k. Thus, S2 is not a constant-factor
approximation for this instance.

None of the solutions can approximate both criteria within
a constant-factor.

We aim at finding a solution for which probability of suc-
cess is at most β times the optimal probability of failure
(again, subject to makespan minimization). However, in
some cases, such a bound might not be very useful. For
instance imagine that for a given algorithm β = 5 and
the optimal probability of failure p̃fail = 0.3, then we have
pfail ≤ β · p̃fail = 5 × 0.3 = 1.5, which means that we have
no useful information on the probability of failure since, as
for any probability, pfail ≤ 1. One way to tighten the bound
is given by proposition 2.

Proposition 2. Let psucc (resp. pfail) be the probability
of success (resp. of failure) of a schedule S. Let p̃succ (resp.
p̃fail) be the optimal probability of success (resp. of failure)
for the same input as S. Let β be a real in [1, +∞[. Then

psucc = p̃β
succ ⇒ pfail ≤ β · p̃fail.

Proof of proposition 2.
The proof is based on the Bernoulli’s inequality where,
∀x ∈ [0, 1], ∀n ∈ [1, +∞[, (1− x)n ≥ 1− nx.

pfail = 1− psucc = 1− p̃β
succ = 1− (1− p̃fail)

β

≤ 1− (1− β · p̃fail) = β · p̃fail

Based on that proposition, in the remainder of the paper,
we will target solutions where the probability of success is
bounded by a power of the optimal probability of success.
2In a multi-criteria problem, a solution is called Pareto opti-
mal if any other solution increases at least one of the criteria.



4. UNITARY INDEPENDENT TASKS

4.1 Optimal Algorithm
Given a makespan objective M , we show how to find a

task allocation that is the most reliable for a set of N unitary
independent tasks (∀vi ∈ V, oi = 1 and E = ∅).

We consider minimizing the probability of failure subject
to the condition that the makespan is constrained. Since
tasks are unitary and independent, the problem is then to
find for each processor pj , j ∈ [1, m] a positive integer nj

such that the following constraints are met: (1)
P

j∈[1,m] nj =

n = |V |. (2) The makespan is α-constrained njτj ≤ αMopt, ∀j ∈
[1, m], α ∈ [1, +∞[, and α is given by the user. (3) Subject to
the previous constraints, the probability of success is maxi-
mized: e−

P
j∈[1,m] njλjτj is maximized, i.e.,

P
j∈[1,m] njλjτj

is minimized.
First, it is important to note that finding a schedule whose

makespan is smaller than a given objective M can be found
in polynomial time. Indeed, Algorithm 1 finds the minimal
makespan allocation for any given set of independent unitary
tasks as shown in [9], pp. 161.

Algorithm 1 Optimal allocation for independent unitary
task

for i=1:m

ni ←
j

1/τiP
1/τi

k
× n

while
P

ni < n
k = argmin(τk(nk + 1))
nk ← nk + 1

Second, we propose Algorithm 2 to solve the problem. It
finds an optimal allocation as proved by Theorem 2. It is a
greedy algorithm that simply allocates tasks to the proces-
sors taken in the increasing λiτi value up to the makespan
objective M .

Algorithm 2 Optimal reliable allocation for independent
unitary task

Input: α ∈ [1, +∞[
Compute M = αMopt using algorithm 1.
Sort the processor by increasing λiτi

X ← 0
for i=1:m

if X < N

ni ← min
“
N −X,

j
M
τi

k”
else

ni ← 0
X ← X + ni

Theorem 2. At the end of Algorithm 2, all the constraints
are fulfilled.

Proof of Theorem 2.
Let X be the number of tasks already assigned. Since

when X < N we allocate at most N−X tasks to a processor,
at the end X = N . For each processor i we allocate at most

bM
τi
c tasks, hence niτi ≤M = αMopt. Since in algorithm 1,

the order of the tasks and the order of the processors is not
taken into account, algorithm 2 is valid (i.e., all tasks are
assigned using at most the m processors). We need to show
that

P
i∈[1,m] niλiτi is minimum. First let us remark that

algorithm 2 fills the processors with tasks in the increasing
order of the λiτi values. Hence, any other valid allocation
{n′1, . . . , n′N} is such that n′i < ni and n′j > nj for any i < j.
Without loss of generality, let us assume that n′1 = n1 − k,
n′i = ni + k and n′j = nj for k ∈ [1, ni], j 6= 1 and j 6= i.
Then the difference between the two objective values is

D = n1λ1τ1 + . . . + niλiτi + . . . nNλNτN

− n′1λ1τ1 − . . .− n′iλiτi − . . . n′NλNτN

= λ1τ1(n1 − n′1) + λiτi(ni − n′i)

= −kλ1τ1 + kλiτi

= k(λiτi − λ1τ1)

≥ 0 because λiτi ≥ λ1τ1.

Hence, the first allocation has a smaller objective value.

4.2 Pareto curve approximation
When multi-criteria problems are unapproximable within

a constant factor of all criteria with a single solution, we
usually look for a set of solutions that are interesting trade-
offs. The Pareto curve of an instance is the set of all
Pareto-optimal solutions. Remember that a Pareto-optimal
solution is such that there exists no other solution having a
better or equal value on all criteria and improving at most
one criterion. Therefore, intuitively, the Pareto-curve di-
vides the solution space between feasible and unfeasible so-
lutions. Unfortunately, the cardinality of the Pareto curve
of an instance is often exponential with respect to the size of
the instance. Thus, we look for an approximation of Pareto-
curve. Informally, P is a ρ = (ρ1, ρ2, . . . , ρk) approximation
of the Pareto-Curve P∗ if each solution S∗ ∈ P∗ is ρ ap-
proximated by a solution S ∈ P. Formally, for minimization
∀S∗ ∈ P∗, ∃S ∈ P, ∀i, fi(S) ≤ ρifi(S

∗).
A generic method to obtain an approximated Pareto curve

is given in [13]. The idea is to partition the solution space
by geometrically increasing the size of ratio 1 + ε among
all criteria (see Fig. 1. The set formed by one solution in
each partition (if any) is an ε-approximation of the Pareto
curve of the problem. We use the same idea to construct an
(1+ ε, 1)-approximation of the Pareto-curve of the problem.

Let M be a feasible makespan under constraints of opti-
mal reliability. We can compute Mmax using Proposition 1
in scheduling all tasks on processors minimizing τiλi. Algo-
rithm 3 constructs a set of solutions S = {S1, . . . , Sk} such
that Si is constructed by Algorithm 2 using α = (1 + ε)i

and k is the first integer such that (1 + ε)kMopt ≥ Mmax.
Theorem 3 shows that S is an (1 + ε, 1)-approximation of
the Pareto-curve of the problem.

Theorem 3. Algorithm 3 returns an (1+ε, 1)-approximation
of the Pareto-curve of the problem of minimizing the makespan
and maximizing the reliability for independent unitary tasks
on heterogeneous speed-related processors.



First criteria to minimize

Se
co

nd
 C

ri
te

ri
a 

to
 m

in
im

iz
e

Figure 1: Approximating the pareto curve. An ex-
ample with two criteria to minimize. The set of
the solution is partitioned.Crosses are possible solu-
tions, bold crosses are approximations of partitions.

Algorithm 3 Pareto approximation algorithm for indepen-
dent unitary task

Input: ε ∈ [0, +∞[
Compute Mopt using Algorithm 1.
Compute Mmax using Proposition 1.
S ← ∅
for i=1:dlog1+ε

Mmax
Mopt

e
let Si be the result of algorithm 2 with α = (1 + ε)i

S ← S ∪ Si

return S

Proof of Theorem 3.
Let σ be a Pareto-optimal schedule. Then, there exists

k such as (1 + ε)kMopt ≤ Cmax(σ) ≤ (1 + ε)k+1Mopt. We
show that Sk+1 is an (1 + ε, 1)-approximation of σ.

• Reliability. The reliability of a Pareto-optimal sched-
ule increases with the makespan. Thus, psucc(Sk+1) ≥
psucc(σ).

• Makespan. Cmax(Sk+1) ≤ (1+ε)k+1Mopt and Cmax(σ)

≥ (1+ ε)kMopt. Thus, Cmax(σ) ≤ (1+ ε)Cmax(Sk+1).

5. NON-UNITARY INDEPENDENT TASKS
We extend the above problem to the case where tasks

are not unitary (∀vi ∈ V, oi ∈ N∗). As before, we fix the
makespan objective and try to find the best possible relia-
bility. However, since the problem of finding if there exists
a schedule whose makespan is smaller than a target value
given a set of processors and non-unitary independent tasks
is NP-complete, it is not possible to find an optimal schedule
unless P=NP.

In Proposition 1, we have proved that the most reliable
schedule is obtained by assigning tasks to a processor that

has the smallest λτ ({failure rate} times {unitary instruction
execution time}). We can improve this proposition for the
independent tasks case.

Theorem 4. Let’s schedule a set of independent tasks
without exceeding a makespan of a given value M on m pro-
cessors. Then, the best possible (but not necessary achiev-
able) reliability among all the schedules of makespan at most
M is obtained when tasks are mapped to m̃ ≤ m processors
in increasing order of λiτi. The m̃ − 1 first processors exe-
cute tasks up to the date M (Ci = M) and the last processor
executes the remaining tasks (Cm̃ ≤M).

Proof of Theorem 4.
Let S = (T1, . . . , Tm) be the schedule described in the

proposition: Tj is the set of tasks assigned to processor
j by S, (for j > m̃ + 1, Tj = ∅) . We need to show

that
Pm

j=1

“
τjλj

P
vi∈Tj

oi

”
is minimum. Let us call ωj =P

vi∈Tj
oi and λjτj = γi. For any other valid allocation

S′ = (T
′
1 , . . . , T

′
m), let us call ω

′
j =

P
vi∈T

′
j

oi.

We have two cases, ω
′
m̃ ≥ ωm̃ or ω

′
m̃ ≤ ωm̃. Let us first

consider the case ω
′
m̃ ≤ ωm̃. This means that the duration

of the tasks of the m̃ processors have not decreased with the
new schedule S′. In this case, passing from schedule S to
schedule S′ implies that:

∀j ∈ [1, m̃]), ω
′
j ≤ ωj (1)

and

∀j ∈ [m̃ + 1, m], ω
′
j ≥ ωj (2)

Moreover, since we schedule the same tasks in S and S′,
we have:

m̃X
j=1

ωj − ω
′
j = 0 (3)

Equations (1), (2) and (3) imply that:

m̃−1X
j=1

ωj − ω
′
j = −

mX
j=m̃

ωj − ω
′
j (4)

Let us compute the difference between the exponent of
the probability of success of S and S′

X = n1λ1τ1 + . . . + niλiτi + . . . + nNλNτN

− n′1λ1τ1 − . . .− n′iλiτi − . . . + n′NλNτN

= λ1τ1(n1 − n′1) + λiτi(ni − n′i)

= kλ1τ1 − kλiτi

= k(λ1τ1 − λiτi)

≤ 0 because λiτi ≥ λ1τ1.

Hence, S has a greater reliability than S′. Since the case

where ω
′
m̃ ≥ ωm̃ is handled similarly, the theorem is proved.

This theorem indicates that, among the schedules that do
not exceed a given makespan objective M , the most reliable
schedule is obtained when scheduling tasks to a subset of



processors. This subset is such that the λτ values of these
processors are the smallest ones.

Note that such a schedule is not always achievable. It
might require more than m̃ processors to schedule the tasks
or it might not be possible to schedule the tasks with a
makespan M .

What highlights this theorem is that if one wishes to use
less than the total number of available processors (say k) one
can still achieve the optimal reliability if he or she chooses
machines with smallest λτ products.

In order to let the user choose a better trade-off, we pro-
pose that the user gives the number of processors he wishes
to use, say k. Then we compute a schedule (using any heuris-
tic that targets makespan optimization) of the tasks on the
k processors that have the smallest λτ product. The idea is
that the less processors one uses the larger the makespan,
but thanks to Theorem 4, the better the reliability. For in-
stance, if k = 1 (the user chooses to use only one processor),
then any reasonable scheduling heuristic will map the tasks
sequentially on the processor with the smallest λτ and from
proposition 1 this will lead to an optimal schedule in terms
of reliability. Conversely, if k = m (the user chooses to
use all the processors), a scheduling heuristric that targets
makespan minimization will use all the processors and lead
to a schedule with a small makespan and a high relaibility.

6. GENERAL CASE
In this section,we study the general case where no re-

striction is given to the task graph. Based on the char-
acterization of the role of the λτ value ({failure rate} times
{unitary instruction execution time} product), we propose a
simple way to extend scheduling heuristics that targets the
makespan optimization to bi-criteria heuristics.

6.1 Generalizing Scheduling Heuristics : the
HEFT case

In [8], Topcuoglu et al. proposed the HEFT (Hetero-
geneous Earliest Finish Time) heuristic to schedule a task
graph on a set of heterogeneous processors. HEFT works as
follows. At each step, it considers all the ready tasks and
simulates the mapping of each of those tasks on all the pro-
cessors. Then it chooses the tasks that finishes the earliest
and maps it to the processor on which it finishes the earliest.

We propose to change HEFT into RHEFT (Reliable-HEFT)
by emphasizing the importance of the product λτ . Let us
call Tend

i
j the finish time3 of task i on processor j. For all

the ready tasks i and all the processors j, instead of choos-
ing the task for which Tend

i
j is minimum (HEFT case), we

choose the tasks for which Tend
i
jλj is minimum and allocate

them on processor j.
To illustrate the difference between HEFT and RHEFT,

consider the example of Figure 2. In this example we have
two processors with a unitary processing time τ of respec-
tively 1 and 2 and failure rate λ of respectively 2 and 1.
Suppose that when the independent task i is schedulable,
processor 1 is ready at time 4 and processor 2 is ready at
time 5. Hence we have:

• Tend
i
1 = 6, Tend

i
1 × λ1 = 12

3Tend
i
j is computed by adding the duration of task i on

processor j (oi × τj) to the maximum of the end time of
the all predecessors of i say i′ plus the communication time
between j and j′ (lj′,j) and the ready time of processor j.
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Figure 2: Illustration of the difference between
HEFT (that will map task i on processor 1) and
RHEFT (that will map task i on processor 2)
.

• Tend
i
2 = 9, Tend

i
2 × λ2 = 9

This means that HEFT will map task i on processor 1 and
RHEFT will map it on processor 2.

It is important to note that if a task i′ is submitted again
after i has been mapped on processor 2, with the same char-
acteristic (oi′=2) then RHEFT will map it on processor 1
because

Tend
i′

1 × λ1 = 6× 2 = 12 and Tend
i′

2 × λ2 = 13× 1 = 13.

6.2 Toward a better trade-off
RHEFT tends to favor processors with high reliability but

have a fairly good speed. It may happen that the user wants
to choose various trade-offs between speed and reliability.
In this case we can generalize the approach presented in
section 5. Again, one idea here is to limit the usage to k
processors (k given by the user) among the m available.

We have experimentally tested several ways to sort pro-
cessors in order to choose k out of the m available. As
suggested by Theorem 4, experiments have shown that we
have to choose the k processors that have the smallest λτ
product first. For instance, in Figures 3, 4 and 5, we have
tested the HEFT and RHEFT on the Strassen task graph
with more than 4800 tasks (corresponding to the matrix
multiply of 1000 blocks by 1000 blocks). We have generated
randomly a set of 100 machines where λ is chosen uniformly
in [10−2, 10−3] and τ is chosen uniformly in [10−5, 10−7].
These numbers are not very realistic but provide compre-
hensive results that are easy to read on the graphs. Experi-
ments made with different values lead to similar results. In
each of these figures, we plot the makespan (y axis on the
left) and the reliability (y-axis on the right) when we use
between one and 100 processors (x-axis). In Fig. 3 (resp.
Fig. 4, Fig. 5), when we use less than 100 processors we
choose the most reliable (resp. the fastest, the ones with
the smallest λτ value) first.

Results show that when we order the processor by reli-
ability, we get a very bad makespan when we use a small
number of processors, and the reliability is also low. We
can improve the makespan by ordering processors by speed
but, in this case, the reliability increases when we add some
processors (it reaches 0.8 for 15 processors). When we order
the processors by increasing λτ , we notice that the reliability
slowly decreases from the optimal one (with one processor),
to 0.6 with 100 processor. In this case, the makespan is a
little smaller than the one obtained when we order the pro-
cessors by speed. But the ratio of the two makespans is not
very large. Hence, here again, we see that we can provide a
good way to choose a trade-off between makespan and relia-
bility if we order the processor by increasing value of the λτ
product and use as few as possible processors to meet the
makespan goal.
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Figure 3: Ordering the processors: most reliable first.
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Figure 4: Ordering the processors: fastest first.
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Figure 5: Ordering the processors: smallest λτ first.
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In each figure we have also plotted the reliability and the
makespan given by the HEFT heuristic when using between
one and 100 processors. We find that when we use one
processor we get the same value of the makespan and the
reliability, while the difference increases up to 100 processors
where MHEFT = 5.28 when MRHEFT = 8.33 and RHEFT =
0.51 when RRHEFT = 0.63.

If a user wants RHEFT to have a behavior closer to HEFT,
we can modify the RHEFT heuristic with a trade-off vari-
able α, such that when α = 1 we switch to HEFT and when
α = 0 we switch to RHEFT, and for any value α between 0
and 1 the heuristic builds an intermediate solution. In Fig-
ure 6, we show how the makespan and the reliability change
when α varies from 0 to 1. Here we have expended α by
putting α = e1−1/α when α 6= 0 for visualizing the influance
of small value of the trade-off variable.

We see that by setting the α trade-off variable to a value
between 0 and 1, the user can choose a heuristic with a
behavior between the HEFT and RHEFT.

6.3 Extending to other heuristics
It is easy to extend other scheduling heuristics for hetero-

geneous system to take reliability into account. It appears
to be straight forward for heuristics such as for the BIL [12],
PCT [11], GDL [14] or CPOP [8]. For instance, in CPOP
it requires to change the notion of critical path by multiply-
ing the duration of the tasks by the failure rate (λ) of the
processor on which it is mapped.

Here, also, we can use less than all the available processors
to increase the reliability and decrease the makespan. We
can also use the trade-off variable to choose a different com-
promise between the original heuristic and the reliability-
enabled one.

7. CONCLUSION
In this paper, we have studied the problem of scheduling

tasks graph on heterogeneous platforms. We have tackled
two metrics: reliability and makespan. As these two objec-
tives are unrelated and sometimes contradictory, we need to
search for bi-criteria approximation algorithms.

In previous work, some heuristics have been proposed to
solve this problem [8, 4, 2]. However, none of them discuss
the fundamental properties of a good bi-criteria scheduling
algorithm. In this paper, we have tackled important sub-
problems in order to see how to efficiently solve this prob-
lem.

We have shown that minimizing the reliability is a poly-
nomial problem and we have shown that optimizing both
the makespan and the reliability is not approximable.

For the case where we schedule independent unitary tasks,
we have proposed an approximation algorithm that finds,
among the schedules that do not exceed a given makespan,
the one with the best reliability. For the case of independent
non-unitary tasks and uniform processors, we have high-
lighted the role of the {failure rate} × {unitary instruc-
tion execution time} (λτ). Based on the importance of this
product, we are able to let the user choose a trade-off be-
tween makespan and reliability by scheduling the tasks on
a given subset of the processors (the ones with the smallest
λτ value). For general task graphs, we have shown that it
is easy to extend most of the heuristics designed for opti-
mizing the makespan by taking into account the reliability.
Here again, based on our experiments, we have shown the

importance of the λτ product. This helps the user to choose
a trade-off by selecting a subset of the available processors.
The strategy is the following: schedule tasks on your fastest
and most reliable processors and use as few processors as
possible to meet the makespan goal.

If required, we also propose adjusting the compromise be-
tween the original heuristic and the reliability-enabled one.

All these results are based on the fact that, for each re-
source, the product λτ gives the best compromise between
speed and reliability.
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