
A Probabilistic Approach for Fault Tolerant Multiprocessor Real-time

Scheduling

Vandy Berten1,∗, Joël Goossens1, Emmanuel Jeannot2

1Université Libre de Bruxelles 2Loria INRIA-Lorraine

CP 212 Campus scientifique

Av. F.D. Roosevelt, 50 54506 Vandœuvre les Nancy

1050 Bruxelles – Belgium France

{vandy.berten, joel.goossens}@ulb.ac.be emmanuel.jeannot@loria.fr

Abstract

In this paper we tackle the problem of scheduling
a periodic real-time system on identical multiprocessor
platforms, moreover the tasks considered may fail with
a given probability. For each task we compute its dupli-
cation rate in order to (1) given a maximum tolerated
probability of failure, minimize the size of the platform
such at least one replica of each job meets its dead-
line (and does not fail) using a variant of EDF namely
EDF

(k) or (2) given the size of the platform, achieve
the best possible reliability with the same constraints.
Thanks to our probabilistic approach, no assumption is
made on the number of failures which can occur. We
propose several approaches to duplicate tasks and we
show that we are able to find solutions always very close
to the optimal one.

1. Introduction

The use of computers to control safety-critical real-
time functions has increased rapidly over the past few
years. As a consequence, real-time systems — com-
puter systems where the correctness of a computation
is dependent on both the logical results of the computa-
tion and the time at which these results are produced
— have become the focus of much study. Since the
concept of “time” is of such importance in real-time
application systems, and since these systems typically
involve the sharing of one or more resources among
various contending processes, the concept of schedul-
ing is integral to real-time system design and analysis.

∗Vandy BERTEN is Research Fellow for FNRS (Fonds Na-
tional de la Recherche Scientifique), Belgium

Scheduling theory as it pertains to a finite set of re-
quests for resources is a well-researched topic. How-
ever, requests in real-time environment are often of a
recurring nature. Such systems are typically modelled
as finite collections of simple, highly repetitive tasks,
each of which generates jobs in a very predictable man-
ner. These jobs have upper bounds upon their worst-
case execution requirements, and associated deadlines.
In this work, we consider periodic task systems, where
each task makes a resource request at regular periodic
intervals and we consider fault tolerant systems, since
a job can fail due to either transient fault of a proces-
sor or internal error. We propose a technique, based on
task replication, in order that all jobs of each task meet
their deadline (in terms of probability), i.e., at least one
replica of each task job meets its deadline and does
not fail. Task replication requires either more powerful
processor[s] or additional processors (in order to sched-
ule the system). We choose the second approach here
and we consider the scheduling on identical multipro-
cessor platforms. Thus, the tasks are scheduled on an
identical multiprocessor platform using global EDF [6].
More precisely, we shall consider the scheduling algo-
rithm EDF

(k) (see [4]) in order to reduce significantly
the number of processors needed.

Reliability in hard-real time systems has been ex-
tensively studied in the literature. Two kinds of faults
have to be distinguished. A fault is called transient
when the processor on which the fault has occurred
can be considered for further scheduling. A fault is
said fail-stop, when the processor on which it has hap-
pened cannot be used later on.

After the detection of a fault, the task stopped by
the fault can be dynamically restarted [3, 5]. There
are several drawbacks of this approach. First, there

is a system overhead as it takes time to detect fault,
determine which task has been stopped and reschedule
the task. Second, the execution of the recovery task
may affect the predictability of the system.

In order to address this issue, static duplication have
been proposed. Each task is executed more than once
in order to increase the probability that at least one
copy meets its deadline (and does not fail). In [8],
periodic and aperiodic tasks are scheduled. The relia-
bility of the system is ensured in case of transient fault
by duplicating the number of processors and executing
backup copies on the duplicated processors. The main
problem of this approach is that the number of pro-
cessors required to schedule both primary and backup
copies is increased.

In order to decrease the number of processors, [10]
proposes that each task has only two copies: a pri-
mary (active) backup which is always executed and a
secondary (passive) backup copy. When the primary
copy finishes, the backup copy is forced to terminate
in order to save resources. Hybrid approach have also
been proposed in order to reduce the number of re-
quired processors. For instance in [2, 7] the backup
copy is only executed in case of failure. They consider
the fail-stop model and in case of failure the tasks are
rescheduled to the remaining processors.

In order to improve the reliability without increasing
too much the number of processors, probabilistic ap-
proaches have been recently proposed. In probabilistic
approaches hardware or software components are char-
acterized by a probability of failure. This probability
can depend on the task duration, task complexity, ex-
ternal sensors, etc. Then, given an overall reliability
(or tolerated probability of failure) a precise analysis
can determine for each task if duplication is required.
For instance in [1] each processor and communication
link is associated with a failure rate. The authors then
tackle the problem of scheduling a task graph with
deadline constraints and guarantying the best possible
reliability. An other advantage of the probabilistic ap-
proach is that, contrary to static or hybrid approach,
no assumption on the number of tolerated failures is
made.

In this paper, we discuss how to apply the proba-
bilistic approach for scheduling a set of periodic real-
time task. We shall study two symmetric problems.
First, given a target reliability (i.e., a probability)
find the smallest possible number of processors that
achieves this reliability. Second, given the number of
processors find the best achievable reliability.

The paper is organized as follows, in Section 2, we
introduce our model of computation and our reliability
problem. In Section 3, we study the two symmetric re-

liability problems. In Section 4, we present 5 heuristics
for increasing the number of task copies. In Section 5,
we present our simulation results in order to evaluate
our heuristics. In Section 6, we conclude.

2. Background

2.1. Model of computation

We consider the scheduling of periodic hard real-
time tasks, in the popular periodic task model ; a task
τi = (Ci, Ti) is characterized by two parameters – an
execution requirement Ci and a period Ti – with the
interpretation that the task generates a job at each
integer multiple of Ti, and each such job has an ex-
ecution requirement of Ci execution units, and must
complete by a deadline equal to the next integer mul-
tiple of Ti. We assume that preemption is permitted –
an executing job may be interrupted, and its execution
resumed later, with no loss or penalty. Moreover, we
assume that Ti and Ci are natural integer, represent-
ing for instance a number of CPU tics. A periodic task
system consists of several independent such periodic
tasks that are to be executed on a specified preemp-
tive processor architecture. Let τ = {τ1, τ2, . . . , τn}
denote a periodic task system. For each task τi, we
define its utilization Ui to be the ratio of τi’s exe-

cution requirement to its period: Ui
def
= Ci/Ti. We

define the utilization Usum(τ) of periodic task sys-
tem τ to be the sum of the utilizations of all tasks
in τ : Usum(τ)

def
=

∑

τi∈τ Ui. Furthermore, we define
the maximum utilization Umax(τ) of periodic task sys-
tem τ to be the largest utilization of any task in τ :

Umax(τ)
def
= maxτi∈τ Ui. We shall also define the hyper-

period P as follows: P
def
= lcm{Ti | τi ∈ τ} and ni the

number of τi’s requests in the interval [O, P) (an inte-

ger) as follows: ni
def
= P

Ti
. We shall also use the notion

of sporadic task systems. Sporadic tasks are similar
to periodic tasks, except that the parameters Ti de-
notes the minimum (rather than the exact) delay be-
tween successive jobs of τi. We assume that the switch-
ing times (which includes preemptions, migrations and
scheduling) may be neglected (they are negligible in
comparison with the task execution requirements.)

We consider in this work homogeneous multiproces-
sor platforms (all the processors are identical). The
scheduling is preemptive and follows the global EDF [6]
policy. “Global” scheduling algorithms, on the con-
trary to partitioned algorithms, allow different requests
of the same task (also called jobs or processes) to be
executed upon different processors. Each process can
start its execution on any processor and may migrate

at run-time from one processor to another if it gets
preempted by smaller-deadline processes.

We consider in this work fault tolerant systems. A
task can fail due to either transient fault of a processor
or internal error. In the case of a transient processor
fault, the processor on which the fault has occurred can
be considered for further scheduling [7]. Task inter-
nal error can be caused for instance by erroneous data
transmitted from sensors and the processor on which
the failure has occurred can also be considered for fur-
ther scheduling. In any case, we assume that faults are
not correlated. We allow task’s replication and we re-
quest that at least one copy of each request does not fail
and meets its deadline. More precisely, we extend the
popular periodic task model and we consider, for each
task τi, two additional parameters: pi and ti, where pi

is the probability of a task’s request failure and ti the
number of copies of the task τi in the system. Conse-
quently in our model each task is characterized by the
4-tuple (Ci, Ti, pi, ti) (note that in this more general

case we have Usum(τ)
def
=

∑

τi∈τ
tiCi

Ti
).

For each task, the value pi is supposed given by the
user. For instance, in the case of transient fault occur-
ring according to the exponential law with µ being the

mean time between two failures, we have pi = 1−e−
Ci
µ

which does only depend on the task τi.

2.2. Schedulability

We show here how to compute the size of a platform
in order that all the tasks can be scheduled and meet
their deadline (i.e., all replica of each task job meet
their deadline if they do not fail).

We shall use the following result from [4], which
relates schedulability (feasibility) upon (non-identical)
multiprocessor platforms to EDF-feasibility upon iden-
tical multiprocessors.

Theorem 1 (Theorem 5 from [4]) Let I denote a
hard-real time instance of jobs generated by the spo-
radic task system τ , which is feasible on a multiproces-
sor platform with total computing capacity Usum(τ) in
which the fastest processor has a computing capacity
Umax(τ). Instance I is scheduled to always meet all
deadlines on m processors each of computing capacity
s by EDF, provided

Usum(τ) ≤ m · s− (m− 1)Umax(τ) (1)

We consider in this work the scheduling of periodic
tasks, the instance I is generated by a periodic task
system τ , moreover we know that τ is feasible upon a
(non-identical) multiprocessor platform with the total

computing capacity be at least Usum(τ), and the fastest
processor be of speed at least Umax(τ). Notice that in
our model of computation, the task execution require-
ments Ci consider unit-capacity processors (s = 1).

Consequently, from Equation 1, we can derive an
expression for the minimum number of processors: m ≥
⌈

Usum(τ)−Umax(τ)
1−Umax(τ)

⌉

Since ti is the number of τi replicas, we get:

m ≥

⌈

∑

τi∈τ
ti·Ci

Ti
− Umax(τ)

1− Umax(τ)

⌉

(2)

Algorithm 1 Computing the platform size

function size(τ ,n)
Input: τ a system of n periodic tasks sorted by

decreasing Ci

Ti

Output: m a sufficient number of processors to
schedule all the tasks

return mink∈[1,n]

(

(
∑k−1

`=1 t`) +
⌈

Usum(τk)−Umax(τk)
1−Umax(τk)

⌉)

Equation 2 gives a sufficient condition on the num-
ber of processors. However, if for some tasks Ci u Ti

we have Umax u 1 which leads to an infinite value
for m. Hopefully this problem can be overcame us-
ing the EDF

(k) scheduling policy which greatly re-
duces the number of required processors. Without
loss of generality let us assume that the tasks are
sorted by decreasing value of Ci

Ti
. Then compute

mmin(τ) = mink∈[1,n](
∑k−1

`=1 t`) +
⌈

Usum(τk)−Umax(τk)
1−Umax(τk)

⌉

where τk def
= {τk, τk+1, . . . , τn} is the system τ re-

stricted to the n− k + 1 last tasks (the n− k + 1 tasks
that have the lowest value of Ci

Ti
). One can check that

the system can be scheduled with mmin(τ) processors.
Indeed for each value of k, the k first tasks can be
schedule on

∑k−1
`=1 t` processors with EDF once each of

them is assigned −∞ as (virtual) deadline while the re-
maining n−k tasks can be schedule with EDF using the
number of processors given by Equation 2. The proce-
dure size in Algorithm 1 summarizes this approach.

2.3. Reliability

Let us first characterize the probability to meet the
deadline (and not fail) of at least one replica of each
task’s request in the interval [0, P).

Theorem 2

P =

n
∏

i=1

(1− pti

i)ni ,

where P is the probability that all tasks meet their
deadline in the interval [0, P), i.e., at least one copy of
each task’s request meets its deadline and does not fail
in [0, P).

Proof. Please notice that we assume that faults are
independent (not correlated) and that the processor on
which the fault has occurred can be used for further
scheduling. First we characterize the probability P1

i

that a single request of the task τi successes, which is
1 − qi, where qi is the probability that all the copies
of the request of τi fail. Hence, qi =

∏ti

j=1(pi), hence

P1
i = 1− pti

i .
Now we characterize the probability Pni

i that the
ni requests of τi success in the interval [0, P), Pni

i =
(1− pti

i)ni . Consequently, P =
∏n

i=1(1− pti

i)ni . �

The probability P gives the probability of success
during an hyper-period. This value makes the compar-
isons between different systems difficult. It would be
natural that a system is “as reliable as” another one if,
for a same period of time, the probability of failure is
the same. This is why, users often express the proba-
bility of failure over a period of time: for instance in
commercial flight-control system the required probabil-
ity of failure have to be approximately 10−10/hour [9].

Moreover, in real systems, hyper-period is often very
large and leads to numerical issues. It is then conve-
nient to use smaller observation periods.

Let us now consider the success probability of the
system τ over a time frame F (large in comparison
with the task periods), which we note PF . We have:

Theorem 3

n
∏

i=1

(1− pi
ti)

d F
Ti

e
≤ PF ≤

n
∏

i=1

(1− pi
ti)

b F
Ti

c

Proof. We will use a reasoning close to the Theo-
rem 2. Let PF

i be the success probability of all copies
of task τi in the interval [0, F). We can see that PF

i

can be splitted into two parts:

1. success probability of all copies of all requests of
τi having their deadlines before F ,

2. success probability of all copies of the request (if
such a request exists) of τi starting before F and
having its deadline after F .

The first part can be obtained in the same way as in

Theorem 2, and is equal to (1 − pi
ti)

b F
Ti

c
. We cannot

compute exactly the second part if we do not know the
error time distribution and the scheduling algorithm.
But we know that this value is between 1 (if there is

no such request, which is the case is b F
Ti
c = F

Ti
), and

1− pi
ti if F

Ti
is just below d F

Ti
e. We have then that

(1− pi
ti)

d F
Ti

e
≤ PF

i ≤ (1− pi
ti)

b F
Ti

c
, ∀i

The property follows directly from this inequality. �

In the following, we will use the approximation:

PF '

n
∏

i=1

(1− pi
ti)

F
Ti (3)

We justify this approximation in the following way:
the difference (in product) between the two terms of the
inequality is lower than

∏n

i=1(1− pi
ti) (and is equal to

this value if d F
Ti
e 6= F

Ti
∀i). This value can be neglected

if the ratio F
Ti

is large in comparison to 1. Our ap-
proximation is a kind of interpolation (or an average)
between the two bounds of our range.

In conclusion, we can choose a time frame F , and ε
the maximum tolerated probability of failure on [0, F),

and check that 1 − PF ' 1−
∏n

i=1(1 − pi
ti)

F
Ti ≤ ε or

check that 1−
∏n

i=1(1−pi
ti)

d F
Ti

e
≤ ε to be sure that 1−

PF ≤ ε since
∏n

i=1(1−pi
ti)

F
Ti is only an approximation.

3. Algorithms

In this section we tackle two symmetric problems.
First, given a target reliability, find the smallest possi-
ble number of processors that achieves this reliability.
Second, given the number of processors, find the best
achievable reliability. For both problems we assume
that the periodic task system is given and that tasks
are sorted by decreasing value of Ci

Ti
. Therefore we have

to find ti the number of copies of each task.

3.1. Minimizing the number of processors

Algorithm 2 Minimizing the platform size

Input: τ : a sorted system of periodic tasks
ε: maximum tolerated probability of failure
F : a time frame of study

Output: m the size of the platform
∀i ti the number of copies of task τi

1 ∀i ti ← 1

2 while 1−
∏n

i=1(1− pti

i)
F
Ti > ε do

3 increase copies of some tasks according
to one of the heuristics of Section 4.

4 m←size(τ ,n)

For minimizing the size of a platform we propose the
Algorithm 2. In entry it takes, a periodic system τ , ε a
maximum tolerated probability of failure and F a time
frame. It outputs ti the number of copies of each tasks
τi and m the size of the platform such as the following
constraints are met: (1) m is small as possible, (2)
in the interval [0, F) the probability of failure of the
proposed solution is approximately lower than ε, and
(3) the task set is EDF-schedulable on m unit-capacity
processor (if we do not consider job failures).

At the beginning of the Algorithm 2 the number of
copies of every tasks is set to 1. Then, while 1−PF > ε,
we increase the number of copies of the tasks until the
probability of failure of the system is smaller than ε.
Then using Algorithm 1, we compute a sufficient num-
ber of processors such that the system is schedulable.

In Section 4 we will discuss the different ways to
increase the number of copies of the tasks.

3.2. Optimizing reliability

Algorithm 3 Minimizing the failure probability

Input: τ : a sorted system of periodic tasks
m: the size of the platform
F : the time frame of study

Output: ε: maximum tolerated probability of failure
∀i ti the number of copies of task τi

1 ∀i ti ← 1
2 while size(τ ,n)< m do
3 increase copies of some tasks according

to one of the heuristics of Section 4.
4 cancel the last increase of copies

5 ε← 1−
∏n

i=1(1− pti

i)
F
Ti

For minimizing the probability of failure we propose
the Algorithm 3. It takes, a periodic system τ , m the
size of the platform and F the time frame of study.
The output is the number of copies of each task and
ε the probability of failure in [0, F). It meets the fol-
lowing constraints: (1) ε is as small as possible, (2) the
required size of the platform is not greater than m and
(3) the task set is EDF-schedulable on m unit-capacity
processor (if we do not consider job failures).

At the beginning of the Algorithm 3 the number of
copies of all the tasks is set to 1. Then as long as
the system is schedulable, we increase the number of
copies of the tasks. Schedulability is checked using Al-
gorithm 1. Then we compute the probability of failure
of the system using eq. (3).

Note that again, there is several ways to increase the
number of copies of the tasks (see next section).

4. Duplicating tasks

By definition of PF we know that PF increases as ti
increases. This means that duplicating tasks increases
the probability that at least one copy of each task job
meets its deadline and does not fail, or symmetrically,
that the probability of failure decreases.

Moreover, we see that from Equation 2 increasing ti

may lead to an increase of m. This means that dupli-
cating tasks increases the required size of the platform.

Therefore, in order to solve our problem, we need to
carefully choose which task to duplicate. Moreover the
way we choose how to duplicate the task will influence
the speed of convergence of each algorithm. The con-
vergence of each algorithm is guaranteed by ensuring
that any task can potentially be duplicated infinitely.

We propose 5 heuristics for choosing how to increase
task’s number of copies.

Increase all The simplest solution consists in in-
creasing the number of copies of all the tasks:

∀i ti ← ti + 1.

We do not expect that this heuristic will give good
results in general but it will be a very fast one.

Min utilization In Equation 2 the number of pro-
cessors increases with Usum =

∑

τi∈τ
tiCi

Ti
. With this

heuristic we increase ti for the task where

i = argmin

(

tiCi

Ti

)

.

This heuristic aims at choosing the task that, once
duplicated, will increase minimally the number of pro-
cessors. The drawback is that it does not take into
account the probability of failure of tasks.

Min failure In this heuristic we duplicate the task
that have the highest probability to fail: increase ti

such that
i = argmax

(

pti

i

)

.

This duplication scheme is only based on probability
and not on utilization.

Min failure-request In this heuristic we duplicate
the task for which the probability to fail times its num-
ber of requests is the highest: increase ti such that

i = argmax

(

F

Ti

pti

i

)

.

The idea is to duplicate tasks with the largest proba-
bility such that at least one of its request fails in [0, F).

Min failure-utilization The idea of this heuristic
is to duplicate tasks that have a high probability of
failure and low utilization: increase ti such that

i = argmin

(

Ci

Tip
ti

i

)

.

The idea is to duplicate tasks that have a high failure
probability. As the previous heuristic, this one aims at
taking into account all the tasks characteristics.

5. Simulation results

We have implemented the 5 variants of each pro-
posed algorithm (10 heuristics in total). In order to
evaluate each heuristic we have generated several sce-
narios composed of a random periodic systems and a
random value of ε (in the case of minimizing the num-
ber of machines) or m (in the case of optimizing the
reliability). We have used the following parameters:
Nmax the maximum number of tasks, Tmax the maxi-
mum period and F the time frame of study (i.e. the
duration during which we compute the probability of
failure according to Eq. (3). We denote by U [a, b] a
random number chosen uniformly in [a, b]. For build-
ing a periodic system we first compute the number of
tasks in U [1, Nmax]. Then for each task τi we com-
pute its period Ti in U [1, Tmax]. Its duration Ci is
randomly chosen in U [1, Ti]. Finally, in order to have
a fine control of the heterogeneity of the system, we
use three classes of probability of failure. We pick up
a class c in U [1, 3] and choose pi in U [10−12, 10−10] for
the first class, in U [10−8, 10−6] for the second class, or
in U [10−2, 10−1] for the third class. In the following
experiments are done on a powerpc G4 at 1GHz with
1GB of RAM running MacOSX 10.4.4 and we will have:
Nmax = 30, Tmax = 50 and F = 360000 (if a unit of
time is 10 ms, then F is 1 hour).

5.1. Minimizing the number of processors

In Table 1, we compare the heuristics over 1000
scenarios for 3 classes of tasks and ε is chosen in
U [10−8, 10−6]. Column nbwin displays the number of
times the heuristics have given the best results (against
the other heuristics), column msum gives the sum of
all the platform sizes computed by the heuristics and
column time displays the cumulative run-time of each
heuristic. Table 2 displays the same data but for only
one class of task (the first one).

Table 1 Comparing heuristics for the platform mini-
mization problem (3 classes of tasks)

Heuristic nbwin msum time (s)

Increase all 65 139273 0.219
Min utilization 60 240388 11.002
Min failure 607 58260 1.416
Min failure-request 972 57544 1.466
Min failure-utilization 554 58529 1.480

Table 2 Comparing heuristics for the platform mini-
mization problem (1 class of tasks)

Heuristic nbwin msum time (s)

Increase all 189 26664 0.0515
Min utilization 83 39491 1.200
Min failure 670 25112 0.353
Min failure-request 972 24698 0.331
Min failure-utilization 599 25250 0.351

From these tables we see that the heuristics which do
not take into account probability are less efficient that
the others. We see that the Increase all heuristic is
the fastest one, and that the heuristics which take into
account probability (the last three one) give similar
results, Min failure-request being the best of the 3. We
also see that Min utilization is the slowest heuristic.
The main reason is that, in many cases, it does not
choose the right task to duplicate and therefore it takes
a longer time to find a duplication scheme that meets
the reliability requirements.

Figure 1 epsilon vs. m/mmin (3 classes of tasks)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1e-40 1e-35 1e-30 1e-25 1e-20 1e-15 1e-10 1e-05 1

op
tim

um
 r

at
io

 (
m

/m
_m

in
)

epsilon

increase of the platform against epsilon (n=30)

Increase all
Min utilization

Min failure
Min failure-request

Min failure-utilization

In Figure 1 and 2 we plot how varies the ratio
m/mmin, where m is the solution of a heuristic and
mmin is the minimum size of the platform (when ε = 1

Figure 2 epsilon vs. m/mmin (1 class of tasks)

 1

 2

 3

 4

 5

 6

 7

 8

 1e-40 1e-35 1e-30 1e-25 1e-20 1e-15 1e-10 1e-05 1

op
tim

um
 r

at
io

 (
m

/m
_m

in
)

epsilon

increase of the platform against epsilon (n=11)

Increase all
Min utilization

Min failure
Min failure-request

Min failure-utilization

and no task is duplicated). We have n = 30 for Fig. 1
and n = 11 for Fig. 2.

These figures corroborate the previous results. It
shows that the 3 heuristics Min failure, Min failure-
request, Min failure-utilization have about the same
performance, Min failure-request being slightly the best
one.

Figure 3 epsilon vs. m−mopt

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1e-40 1e-35 1e-30 1e-25 1e-20 1e-15 1e-10 1e-05 1

m
-m

_o
pt

epsilon

Difference between m and optimal m (n=11)

Increase all
Min failure

Min failure-request
Min failure-utilization

Moreover we see that it is required to have about a
platform 10 times larger than the case ε = 1 to have
a failure probability of 10−40 for the 3 classes of task
problem. When the probability of failure of the task is
small enough, for ε = 10−40, we see that the reliability
is ensured by having a platform 5 times larger than the
original one. This number might seem large. In order
to counter this intuition we plot in Figure 3, the differ-
ence m −mopt, where m is the solution of a heuristic
and mopt is the optimal solution (found by exhaustive

search). We see that, for our 3 best heuristics, the dif-
ference between the heuristic and the optimal is most
of the time 0, moreover, it never exceeds 3 for these
heuristics.

5.2. Optimizing Reliability

In Tables 3 and 4 we show the results of the com-
parison of our heuristics for the reliability optimization
problem. For each experiment the target size of the
platform is chosen in U [mmin, 3 ·mmin] where mmin is
the size of the platform assuming that no duplication is
allowed. In column εavg we plot the geometric average
of the found probability of failure given the target size.

Table 3 Comparing heuristics for the reliability opti-
mization problem (3 classes of tasks)

Heuristic nbwin εavg time (s)

Increase all 317 6.228·10−01 0.083
Min utilization 321 6.066·10−01 1.487
Min failure 574 7.998·10−02 0.942
Min failure-request 881 7.028·10−02 0.931
Min failure-utilization 598 8.276·10−02 1.021

Table 4 Comparing heuristics for the reliability opti-
mization problem (pi ∈ U [10−12, 10−10])

Heuristic nbwin εavg time (s)

Increase all 71 1.260·10−10 0.094
Min utilization 71 7.582·10−07 1.906
Min failure 282 1.943·10−11 1.030
Min failure-request 863 1.271·10−11 1.047
Min failure-utilization 318 2.195·10−11 1.121

We see that once again, Min failure, Min failure-
request, Min failure-utilization provide similar perfor-
mances Min failure-request being the best one. We also
see that for this problem Min utilization is the slowest
heuristic while Increase all is fastest one.

In Fig. 4 (resp. 5) we plot the evolution of the com-
puted reliability against the m/mmin where m is the
target size of the platform and mmin is the size of the
platform with no duplication, for 30 (resp. 11) tasks
system with 3 (resp. 1) classes of tasks. We see that (as
the y axes is logarithmic) that the probability of failure
decreases exponentially with the size of the platform.
Once again we see that Min failure, Min failure-request,
Min failure-utilization provide the best reliability for
any size of the platform.

Figure 4 epsilon vs. m/mmin for 3 classes of tasks.

 1e-300

 1e-250

 1e-200

 1e-150

 1e-100

 1e-50

 1

 10 20 30 40 50

ep
si

lo
n

m/m_min

decrease of epsilon against m/m_min (n=30)

Increase all
Min utilization

Min failure
Min failure-request

Min failure-utilization

Figure 5 epsilon vs. m/mmin for 1 class of task.

 1e-300

 1e-250

 1e-200

 1e-150

 1e-100

 1e-50

 1

 5 10 15 20 25

ep
si

lo
n

m/m_min

decrease of epsilon against m/m_min (n=11)

Increase all
Min utilization

Min failure
Min failure-request

Min failure-utilization

6. Conclusion

In this paper, we considered the scheduling of hard
real-time periodic task sets on identical multiprocessor
platforms using EDF

(k). We considered fault tolerant
systems, since jobs can fail due to either transient fault
of a processor or internal error. We proposed a tech-
nique based on task replication in order that all jobs
of each task meet their deadline (in terms of probabil-
ity), i.e., at least one replica of each task job meets its
deadline and does not fail. We studied two symmet-
ric problems. First, given a target reliability find the
smallest possible number of processors that achieves
this reliability. Second, given the number of processors
find the best achievable reliability. We proposed first a
technique, based on EDF

(k) [4], for minimizing the size
of the multiprocessor platform (i.e., the number of pro-
cessors) and based on that we proposed various heuris-

tics for choosing the number of copies of each task.
Simulation results showed that the heuristics based on
the probability failure of task are significantly more ef-
ficient than the others. The experiments showed also
that the heuristic Min failure-request is the best one.
We also showed that our 3 best heuristics (based on
the failure probability) are nearly optimal.

In further work we plan to tackle the problem where
processor speed are different or where probability of
failure depends on the processors. For the first case
this requires to extend our schedulability test, while for
the second case a new characterization of the reliability
has to be found.

References

[1] I. Assayad, A. Girault, and H. Kalla. A Bi-Criteria
Scheduling Heuristics for Distributed Embedded Sys-
tems under Reliability and Real-Time Constraints.
In Proc. Intl. Conf. on Dependable Sys. and Net.
(DSN’04), Firenze, Italy, June 2004.

[2] A. A. Bertossi, A. Fusiello, and L. V. Mancini. Fault-
Tolerant Deadline-Monotonic Algorithm for Schedul-
ing Hard-Real-Time Tasks. In Proc. 11th Intl. Parallel
Proc. Symp., 1997.

[3] S. Ghosh, R. Melhem, and D. Mossé. Fault-Tolerant
Scheduling on a Hard Real-Time Multiprocessor Sys-
tem. In Proc. 8th Intl. Parallel Proc. Symp., pages
775–782, 1994.

[4] J. Goossens, S. Funk, and S. Baruah. Priority-driven
scheduling of periodic task systems on uniform multi-
processors. Real Time Systems, 25:187–205, 2003.

[5] C. M. Krishna and K. G. Shin. On scheduling Tasks
with a Quick Recovery from failure. IEEE Trans.
Computer, C-35(5):448–455, 1986.

[6] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment.
Journal of the ACM, 20(1):46–61, January 1973.

[7] G. Manimaran and C. Siva Ram Murthy. A Fault-
Tolerant Dynamic Scheduling Algorithm for Multi-
processor Real-Time Systems and its Analysis. IEEE
Trans. on Parallel Dist. Syst., 9(11):1137–1152, Nov.
1998.

[8] Y. Oh and S. H. Son. An Algorithm for Real-Time
Fault-Tolerant Scheduling in Multiprocessor Systems.
In Fourth Euromicro workshop on Real-Time Systems,
pages 190–195, 1992.

[9] S. Shatz, J. Wang, and M. Goto. Task Allocation for
Maximizing Reliability of Distributed Computer Sys-
tems. IEEE Trans. on Computers, 41:156–168, Sept.
1992.

[10] T. Tsuchiya, Y. Kakuda, and T. Kikuno. A New Fault-
Tolerant Scheduling Technique for Real-Time Multi-
processor Systems. In Proc. 2nd International Work-
shop on Real-Time Computing Systems and Applica-
tions, pages 197–202, 1995.

