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Abstract. This paper addresses the problem of computing symbolically
the set of reachable configurations of a linear hybrid automaton. A solu-
tion proposed in earlier work consists in exploring the reachable config-
urations using an acceleration operator for computing the iterated effect
of selected control cycles. Unfortunately, this method imposes a period-
icity requirement on the data transformations labeling these cycles, that
is not always satisfied in practice. This happens in particular with the
important subclass of timed automata, even though it is known that the
paths of such automata have a periodic behavior.
The goal of this paper is to broaden substantially the applicability of hy-
brid acceleration. This is done by introducing powerful reduction rules,
aimed at translating hybrid data transformations into equivalent ones
that satisfy the periodicity criterion. In particular, we show that these
rules always succeed in the case of timed automata. This makes it possi-
ble to compute an exact symbolic representation of the set of reachable
configurations of a linear hybrid automaton, with a guarantee of termi-
nation over the subclass of timed automata. Compared to other known
solutions to this problem, our method is simpler, and applicable to a
much larger class of systems.

1 Introduction

Hybrid automata [Hen96] provide a convenient formalism for reasoning about
systems that combine discrete and continuous features. A hybrid automaton
is basically a finite-state machine extended with real variables, equipped with
a dual semantics: A configuration can evolve either in a continuous way by
spending some time at a control location (time step), or in a discrete way by
following a transition (discrete step).
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This paper considers linear hybrid automata, a subclass of hybrid automata
with a semantics essentially defined in terms of linear constraints. Linear hybrid
automata are well suited for modeling discrete systems operating in a real-time
environment. Indeed, their variables can be used not only as real-valued clocks
for dealing with continuous time, but also as general-purpose integer counters.

In order to analyze the reachability properties of a linear hybrid automaton,
a classical solution is to explore symbolically its state space [ACH+95]. This
consists in starting from the initial configuration, and then repeatedly applying
time steps and discrete steps to obtain new reachable configurations. Since a time
step generally leads to an uncountable number of configurations, one groups such
configurations into regions that can be manipulated implicitly, with the help of
a suitable data structure.

The drawback of this approach is that state-space exploration terminates
only if the reachable state space is covered by a finite number of regions, in
which case the hybrid automaton is essentially equivalent to a finite-state region
automaton. This prevents from analyzing models in which the expressive power
of linear hybrid automata is used for describing unbounded discrete features.
For instance, the model of an idealized communication protocol may define, in
addition to the clocks dealing with the timed aspects, variables for representing
unbounded message sequence numbers. A discrete variable may also be used as
a parameter for reasoning about an infinite family of similar models.

However, techniques are known for exploring symbolically the state space
of infinite discrete systems. A solution is to add to the semantics of a system
meta-transitions, which are objects that capture the effect of iterating control cy-
cles [Boi98]. With meta-transitions, state-space exploration algorithms are able
to compute in one step the reachable configurations obtained by following ar-
bitrarily many times some loops of the system under analysis. Meta-transitions
thus accelerate state-space exploration, and can make it terminate in some cases.

In order to add meta-transitions to a linear hybrid automaton, one needs
a data structure for representing sets of configurations, as well as a decision
procedure for checking whether the unbounded iteration of a given loop can be
computed over this data structure. For the former problem, a suitable repre-
sentation system, the Real Vector Automaton (RVA) [BBR97,BJW05] has been
developed. One can effectively represent with RVA all the sets that are definable
in the first order additive theory of the integer and real numbers 〈R,Z,+,≤〉.
This covers linear constraints, but also discrete unbounded periodicities.

The latter problem has also been investigated in earlier work. In [BBR97],
one adapts to linear hybrid automata the meta-transition computation algo-
rithms known for unbounded integer systems. With this method, only cycles
with a deterministic behavior can be turned into meta-transitions, which con-
flicts with the inherently branching nature of timed steps. Another technique
is developed in [BHJ03], which characterizes precisely the data transformations
that label paths of timed automata, and give a sufficient periodicity criterion for
constructing meta-transitions corresponding to the iteration of such paths.
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Unfortunately, this periodicity criterion is not always satisfied in practice.
This happens in particular with timed automata, which are a restricted sub-
class of linear hybrid automata. However, it is known that the data transforma-
tions labeling the paths of timed automata have a periodic behavior [CJ98],
and that their reachability set can be computed within 〈R,Z,+,≤〉 [CJ99].
Moreover, the shortcomings of finite-state approaches to exploring timed au-
tomata [Bou03,BY03,BLR05] provide an incentive to develop alternate solutions.

In [BHJ03], a simple reduction rule was introduced for translating linear
hybrid transformations into equivalent ones that satisfy the periodicity criterion.
In this paper, we generalize this idea to a much broader class of transformations,
by developing several new complementary reduction rules. In particular, we show
that the iteration of the multiple-counters systems studied in [CJ98] can be
systematically reduced to iterating periodic linear hybrid transformations. As a
secondary contribution, we provide a simpler proof of the central result of [CJ98].

For the particular case of timed automata, our algorithms make it possi-
ble to carry out symbolic state-space exploration without resorting to abstrac-
tion, and with a guarantee of termination, which solves the problems reported
in [Bou03,BY03,BLR05]. Although this result was already achievable as a con-
sequence of [CJ99], our method is simpler, and applicable to a much larger class
of systems.

2 Linear Hybrid Automata

2.1 Syntax and Semantics

We use the term convex linear constraint to denote a finite conjunction of linear
constraints with integer coefficients, i.e., a set {x ∈ Rn | Px#q}, with P ∈
Zm×n, q ∈ Zm, and # ∈ {<,≤,=,≥, >}m. The term linear transformation
denotes a relation of the form {(x,x′) ∈ Rn×Rn | x′ = Ax+b}, with A ∈ Zn×n

and b ∈ Zn.

Definition 1. A Linear Hybrid Automaton (LHA) [ACH+95,Hen96] is a tuple
(x, V, E, v0, X0, G,A, I,R), where

– x is a vector of n real-valued variables, or clocks, with n > 0;
– (V,E) is a finite directed control graph, the vertices of which are the loca-

tions of the automaton. The initial location is v0;
– X0 is an initial region, defined by a convex linear constraint;
– G and A respectively associate to each edge in E a guard, which is a convex

linear constraint, and an assignment, which is a linear transformation;
– I and R respectively associate to each location in V an invariant, which is a

convex linear constraint, and a rectangular activity (l,u) ∈ Zn ×Zn, which
denotes the constraint l ≤ ẋ ≤ u, where ẋ is the first derivative of x.

The semantics of a LHA (x, V, E, v0, X0, G,A, I,R) is defined by the transi-
tion system (Q,Q0, (→δ ∪ →τ )), where
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– Q = V ×Rn is the set of configurations;
– Q0 = {(v,x) ∈ Q | v = v0 ∧ x ∈ X0 ∩ I(v0)} is the set of initial configura-

tions;
– The discrete-step transition relation →δ ⊆ Q × Q is such that (v,x) →δ

(v′,x′) iff x′ ∈ I(v′) and there exists e ∈ E such that e = (v, v′), x ∈ G(e)
and (x,x′) ∈ A(e). Such a transition can also be denoted (v,x) e→δ (v′,x′)
when one needs to refer explicitly to e;

– The time-step transition relation →τ ⊆ Q×Q is such that (v,x) →τ (v′,x′)
iff v′ = v, there exists t ∈ R≥0 such that x + tl ≤ x′ ≤ x + tu, with
(l,u) = R(v), and x′ ∈ I(v).

Let → denote the relation (→δ ∪ →τ ), and let →∗ be the reflexive and tran-
sitive closure of →. A configuration (v′,x′) ∈ Q is reachable from a configuration
(v,x) ∈ Q iff (v,x) →∗ (v′,x′). A configuration is reachable iff it is reachable
from some configuration in Q0. The reachability set of a LHA is the set of its
reachable configurations.

2.2 Linear Hybrid Relations

Let H = (x, V, E, v0, X0, G,A, I,R) be a LHA, and let σ = e1; e2; . . . ; ep, with
p > 0 and ∀i ∈ [1, . . . , p] : ei ∈ E, be a path in its control graph. Let v1, v2, . . . ,
vp+1 ∈ V be the locations successively visited by σ.

Following σ from a configuration (v1,x) to a configuration (vp+1,x
′), denoted

(v1,x) σ→ (vp+1,x
′), amounts to performing a time step at location v1, followed

by a discrete step through e1, then a time step at v2, . . . , ending with a time step
at vp+1. This can only be done provided that x, x′, and all intermediate clock
values visited along σ, satisfy some linear constraints derived from the semantics
of time steps and discrete steps. Projecting out all intermediate variables from
these constraints, one obtains that (v1,x) σ→ (vp+1,x

′) iff x and x′ are linked
by a relation θσ that has the following form [BHJ03].

Definition 2. A Linear Hybrid Relation (LHR) is a relation

θ =
{

(x,x′) ∈ Rn ×Rn
∣∣∣ P

[
x
x′

]
� q

}
,

with n > 0, P ∈ Zm×2n, q ∈ Zm, �∈ {<,≤}m,and m > 0.

Note that a LHR is fully characterized by its linear system (P, q,�), and
that P can be decomposed into [P1;P2], with P1, P2 ∈ Zm×n. In the sequel, we
will denote such a LHR as either (P, q,�), or (P1, P2, q,�). We will also write
θ(S) as a shorthand for {x′ | ∃x ∈ S : (x,x′) ∈ θ}.

3 Acceleration

3.1 Meta-Transitions

The idea behind acceleration is to capture the effect of selected cycles in the
control graph (V,E) of the LHA H being analyzed, i.e., paths that start and end
in the same control location.
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Let σ be such a cycle, starting from the location v1 ∈ V . The meta-transition
[Boi98] corresponding to σ is defined as the relation σ∗

→ such that (v,x) σ∗

→ (v′,x′)
iff v = v′ = v1 and (x,x′) ∈ θ∗σ, where θ∗σ = ∪i≥0 θi

σ.
Intuitively, following a meta-transition once leads in one step to all the con-

figurations that could be reached by iterating its underlying cycle arbitrarily
many times. Adding meta-transitions to the transition relation of a system thus
preserves its semantics, but speeds up, or accelerates, state-space exploration,
making it possible to explore in finite time some infinite region automata (though
not all of them).

The practical use of meta-transitions requires a decision procedure for check-
ing whether the closure θ∗ of a given transformation θ can effectively be con-
structed and computed over sets of data values that are symbolically repre-
sentable. We describe in the next section a symbolic representation system suited
for analyzing linear hybrid automata.

3.2 Real Vector Automata

In order to explore symbolically the state-space of a linear hybrid automaton,
one needs a data structure for representing the sets of configurations that have
to be handled. Since hybrid automata have a finite number of control locations,
it is actually sufficient to represent symbolically sets of clock values, that is,
subsets of Rn.

When only time steps and discrete steps are performed, the sets to be rep-
resented are characterized by conjunctions of linear constraints, and thus cor-
respond to convex polyhedra. However, following meta-transitions may produce
sets that cannot be expressed as finite unions of polyhedra. For instance, think
of a cycle that has the effect of adding a constant set of values S0 to the current
clock value. The meta-transition associated to this cycle would transform a set
S of clock values into the set ∪i∈NS + iS0. We say that sets of this form have a
periodic structure.

Real Vector Automata (RVA) [BBR97] have been introduced as effective data
structures for representing convex and non convex polyhedra, as well as sets with
a periodic structure. A RVA is, essentially, a finite-state automaton recognizing
the infinite-word encodings of real vectors in some base r > 1. It is shown
in [BJW05] that RVA are able to represent all the sets that are definable in
〈R,Z,+,≤〉, i.e., the first-order additive theory of integer and real numbers. It
is known that these sets essentially correspond to those that have a periodic
structure [Wei99]. Efficient algorithms have been developed for constructing and
manipulating RVA, that do not rely on the costly mechanisms usually associ-
ated to infinite-word automata. An implementation of RVA is available in the
framework of the LASH toolset [LASH].

3.3 Acceleration of Linear Hybrid Relations

Let σ be a cycle of a LHA H, and let θσ be its associated LHR. This cycle
can be turned into a meta-transition if unbounded iterations of θσ preserve

5



the representable nature of sets. This property is formalized by the following
definition.

Definition 3. The LHR θσ is iterable iff, for each set S ⊆ Rn definable in
〈R,Z,+,≤〉, the set θ∗σ(S) is definable in the same theory.

The following sufficient criterion for iterability is given in [BHJ03].

Theorem 1. Let θσ = (P, q,�). If the system (P, q,�) over x and x′ is only
composed of constraints of the form p.x#q, p.x′#q, and p.(x′ − x)#q, with
p ∈ Zn, q ∈ Z, and # ∈ {<,≤}, then θσ is iterable.

LHR that satisfy the hypotheses of Theorem 1 are said to be periodic. In-
tuitively, if a LHR θσ is a conjunction of constraints of the form p.(x′ − x)#q,
then its effect consists in adding a constant convex polyhedron Π to the current
clock value, i.e., θσ(S) = S + Π for all sets S ⊆ Rn. One thus has, for each
k ≥ 0, θk

σ(S) = S + kΠ, hence θk
σ is a conjunction of constraints of the form

p.(x′ − x)#kq. One can then compute θ∗σ within 〈R,Z,+,≤〉 by quantifying k
over the natural integers. For any set S ⊆ Rn, we thus have θ∗σ(S) = ∪i∈NS+iΠ,
which has a periodic structure.

Constraints of the form p.x#q or p.x′#q are handled using a convexity argu-
ment. When a system of periodic constraints is iterated k times from a clock value
x to a value x′, one can always place the intermediate values x1,x2, . . . ,xk−1

produced by the successive iterations onto the straight line joining x and x′.
Since the constraints are convex, it is thus sufficient to enforce them on x1 and
xk−1, which can be done by a simple construction [BHJ03].

4 Reduction Rules

The iterability criterion expressed by Theorem 1 is not sufficient for identifying
all LHR θ such that θ∗(S) has a periodic structure for any S ∈ Rn. This re-
striction is problematic in practice, since simple case studies such as the classical
leaking gas burner [ACH+95] cannot be handled.

In this section, we develop reduction rules aimed at broadening substantially
the scope of Theorem 1. The approach consists in considering LHR θ that are not
periodic, such as those given in Figure 1, and then try to express their iterated
effect in terms of that of a periodic LHR θ′. Precisely, we say that θ is reducible
to θ′ if θk(S) can be expressed in terms of (θ′)k(S) within 〈R,Z,+,≤〉, for any
S ⊆ Rn and k > 0. Concretely, that θ reduces to θ′ entails that an algorithm for
computing (θ′)∗ can straightforwardly be transformed into one computing θ∗.

We first generalize in Section 4.1 a reduction rule introduced in [BHJ03], and
then propose new rules in Sections 4.2 and 4.3.

4.1 Subspace Reduction

Consider the non-periodic LHR θ1 in Figure 1. This relation transforms R2 into
a set of smaller dimension, namely E1 = θ1(R2) = {(x, x− 1) | x ∈ R}. Hence,
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θ1 ≡
{

x′
1 + x′

2 = 2x1 + 1
x′

1 − x′
2 = 1

θ2 ≡
{

x′
1 + x′

2 = 2x1 + 1
x1 − x2 = 1

θ3 ≡
{

x′
1 + x′

2 = x1 + x2 + 1
x′

1 − x′
2 ≥ x1 + x2

θ4 ≡

{
x′

1 + x′
2 ≤ 2x1 + 1

x′
1 + x′

2 ≥ x1 + x2

x′
1 + x′

2 ≥ x1 − x2

θ5 ≡


x′

1 + x′
2 ≤ 2x1 + 1

x′
1 + x′

2 ≥ x1 + x2

x′
1 + x′

2 ≥ x1 − x2

x′
1 − x′

2 ≤ 2

θ6 ≡


x′

1 + x′
2 ≤ 2x1 + 1

x′
1 + x′

2 ≥ x1 + x2

x′
1 + x′

2 ≥ x1 − x2

x1 − x2 ≤ 2

θ7 ≡
{

x′
1 ≥ x2 + 1

x′
2 ≥ x1 + 2

θ8 ≡

{
x′

1 ≥ x2 + 1
x′

2 ≥ x1 + 2
x′

3 + x′
4 ≤ x3 + x4 + 3

θ9 ≡

{
x′

1 + x′
2 ≥ x1 − x2 + 1

x′
1 − x′

2 ≥ x1 + x2 + 2
x′

1 + x′
3 ≤ x1 + x3 + 3

Fig. 1. Examples of non-periodic LHR.

for any set S ⊆ R2, the images θ1(S), θ2
1(S), θ3

1(S), . . . , are all subsets of E1. It
is thus sufficient to study the iterations of θ1 in this subspace, in which it turns
out to be periodic.

Formally, restricting a LHR θ ⊆ Rn×Rn to a subspace E such that dim(E) =
m, with m < n, is done by a variable change operation. Let u0 ∈ Zn be an
arbitrary element of E, let u1,u2, . . . ,um ∈ Zn be a vector basis of E−u0, and
let U ∈ Zn×m = [u1; . . . ;um]. We introduce new variables y1, y2, . . . , ym and
y′1, y

′
2, . . . , y

′
m, such that (x1, . . . , xn) = U(y1, . . . , ym) + u0 and (x′1, . . . , x

′
n) =

U(y′1, . . . , y
′
m)+u0. Adding these constraints to the underlying system of θ, and

then projecting out the variables xi and x′i for all i ∈ [1, . . . , n], one obtains a
transformation θ′ ⊆ Rm×Rm that has the same iterative behavior as θ. Indeed,
for any S ⊆ Rn and k > 0, we have θk(S) = U(θ′)k−1(S′) + u0, where S′ ⊆ Rm

is the solution of θ(S) = US′ + u0. It is worth emphasizing that computing S′

from S and θk(S) from (θ′)k−1(S′) can be done within 〈R,Z,+,≤〉. We thus
have the following rule.

Reduction Rule 1 If a LHR θ ⊆ Rn ×Rn is such that dim(θ(Rn)) = m with
m < n, then θ is reducible to a computable LHR θ′ ⊆ Rm ×Rm.

In the case of our example θ1, we have dim(E1) = 1, which prompts the
definition of new variables y1, y

′
1 such that x1 = y1, x2 = y1 − 1, x′1 = y′1, and

x′2 = y′1−1. The LHR θ1 then translates into θ′1 ≡ y′1 = y1 +1, which is periodic.
Rule 1 admits a dual form. The LHR θ2 in Figure 1 is such that θ2(R2) = R2,

hence Rule 1 does not apply. Notice however that θ2 produces a nonempty result
only when it is applied to values that belong to E2 = θ−1

2 (R2) = {(x, x−1) | x ∈
R}. In order to study the iterations of θ2, one can therefore ignore the values
that are outside of this subspace. This leads to the following rule.

Reduction Rule 2 If a LHR θ ⊆ Rn × Rn is such that dim(θ−1(Rn)) = m
with m < n, then θ is reducible to a computable LHR θ′ ⊆ Rm ×Rm.

Technically, the reduction of θ is performed in the following way. Let E =
θ−1(Rn). We first transform θ into θ′′ = θ ∧ (x′ ∈ E), so as to systematically
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discard output values that do not belong to E. Then, we define a variable change
(x1, . . . , xn) = U(y1, . . . , ym) + u0, with U ∈ Zn×m and u0 ∈ Zn, from Rn to
E. Applying this variable change to θ′′ yields a LHR θ′ ∈ Rm ×Rm. For each
S ⊆ Rn and k > 0, we then have θk(S) = θ(U(θ′)k−1(S′) + u0), where S′ is the
solution of S ∩ E = US′ + u0.

4.2 Rank Reduction

Rules 1 and 2 are not able to capture all sources of periodicity. For instance, they
cannot be applied to the LHR θ3 in Figure 1, since θ3(R2) = θ−1

3 (R2) = R2.
However, remark that applying θ3 to two vectors (a1, a2) and (b1, b2) such

that a1 +a2 = b1 + b2 produces identical output values. Therefore, the iterations
of θ3 can be studied with respect to a single variable y1 = x1 + x2. Like in
the previous case, this variable change transforms θ3 into a LHR of smaller
dimension.

Formally, consider a LHR θ ∈ Rn×Rn. The system of constraints (P1, P2, q,
�) of θ can be rewritten as P2x

′ � −P1x + q. Let p = ρ(P1) be the rank of
P1. If p < n, then the possible values of P1x, and hence also of x′, can be
described in terms of only p independent variables. We express P1 as a prod-
uct P1 = P ′

1U , with P ′
1 ∈ Zm×p and U ∈ Zp×n, and introduce new variables

y1, . . . , yp, y
′
1, . . . , y

′
p such that (y1, . . . , yp) = U(x1, . . . , xn) and (y′1, . . . , y

′
p) =

U(x′1, . . . , x
′
n). Adding these constraints to (P1, P2, q,�), and then projecting

out x1, . . . , xn and x′1, . . . , x
′
n, yields a LHR θ′ ∈ Rp × Rp. For each S ⊆ Rn

and k > 0, we have θk(S) = θ′′((θ′)k−1(US)), where θ′′ ∈ Rp ×Rn ≡ P2x
′ �

−P ′
1y + q. Thus, θ is reducible to θ′, which leads to the following rule.

Reduction Rule 3 If a LHR θ ⊆ Rn×Rn = (P1, P2, q,�) is such that ρ(P1) =
p with p < n , then θ is reducible to a computable LHR θ′ ⊆ Rp ×Rp.

A similar reduction can also be applied if the rank of P2 is less than the
number of variables. Consider the LHR θ4 in Figure 1. If the vector (a1, a2)
belongs (resp. does not belong) to θ4(S) for some S ⊆ R2, then for all (b1, b2) ∈
R2 such that b1 + b2 = a1 + a2, we have (b1, b2) ∈ S (resp. (b1, b2) 6∈ S). Thus,
the behavior of θ4 can be studied with respect to a single variable defined as
y1 = x1 + x2.

More generally, let θ ∈ Rn × Rn be a LHR, and let (P1, P2, q,�) be its
underlying system of constraints. If p = ρ(P2) is such that p < n, then we
decompose P2 into P2 = P ′

2U , with P ′
2 ∈ Zm×p and U ∈ Zp×n, and introduce

new variables y1, . . . , yp, y
′
1, . . . , y

′
p such that (y1, . . . , yp) = U(x1, . . . , xn) and

(y′1, . . . , y
′
p) = U(x′1, . . . , x

′
n). This variable change transforms θ into a LHR

θ′ ∈ Rp×Rp. For each S ⊆ Rn and k > 0, we have θk(S) = θ′′((θ′)k−1(Uθ(S))),
where θ′′ ∈ Rp ×Rn ≡ Ux′ = y. We therefore have the following rule.

Reduction Rule 4 If a LHR θ ⊆ Rn×Rn = (P1, P2, q,�) is such that ρ(P2) =
p with p < n , then θ is reducible to a computable LHR θ′ ⊆ Rp ×Rp.

8



4.3 Static Reduction

None of the reduction rules obtained so far can handle the LHR θ5 in Figure 1.
One nevertheless observes that the linear system of θ5 contains a constraint
x′1 − x′2 ≤ 2 that is solely expressed over the output variables. Requiring that
the value produced at the end of an iteration of θ5 satisfies this constraint is
actually equivalent to imposing x1 − x2 ≤ 2 on the input value of the next
iteration. Hence, the LHR θ6 in Figure 1, on which Rule 4 can be applied, has
essentially the same iterative behavior as θ5.

Formally, let θ be a LHR. We call a constraint of θ static if it involves only
either x1, . . . , xn, or x′1, . . . , x

′
n, and dynamic otherwise. A static constraint is

said to be explicit if it is not implied by the dynamic constraints of θ. We denote
by θ the conjunction of explicit static constraints in θ. The LHR obtained from
θ by rewriting over x1, . . . , xn (resp x′1, . . . , x′n) all constraints in θ is denoted
θx (resp. θx′).

For all S ⊆ Rn and k > 1, we have θk(S) = (θ ∧ θx)((θx)k−2(θ(S))) and
θk(S) = θ((θx′)k−2(θ(S) ∧ θx′)). We thus have the following rule.

Reduction Rule 5 Every LHR θ is reducible to θx and θx′ .

In practice, Rule 5 is only useful when it can be followed by another reduc-
tion. A simple guideline consists of reducing systematically LHR θ to θx before
attempting to apply Rules 2 and 4, and to θx′ before Rules 1 and 3.

5 Multiple Counters Systems

The combination of Rules 1 to 5 suffices for many applications. However, these
rules are unable to handle relations such as θ7 in Figure 1. This LHR is actually
an instance of a Multiple Counters System (MCS). It is known [CJ98] that all
such relations θ are iterable within 〈R,Z,+,≤〉.

In this section, we give a simpler proof of that result, and use it to derive
an expression of θk(S) in terms of k ∈ N and S ⊆ Rn. We then show that the
acceleration of MCS can be reduced to that of periodic LHR. MCS are formally
defined as follows.

Definition 4. A Multiple Counters Systems (MCS) [CJ98] is a relation θ(x,x′)
⊆ Rn×Rn, defined by a finite conjunction of constraints of the form z1#z2 + c,
where z1, z2 ∈ {x1, . . . , xn, x′1, . . . , x

′
n}, # ∈ {<,≤,≥, >}, and c ∈ Z.

5.1 Acceleration of MCS

Let θ ⊆ Rn × Rn be a MCS. We assume w.l.o.g. that the explicit static con-
straints of θ are expressed over both x1, x2, . . . , xn and x′1, x

′
2, . . . , x

′
n.

Our goal is to construct within 〈R,Z,+,≤〉 an expression for θk(x0,xk) in
terms of the variables x0, xk and k. For a fixed value of k, such an expression
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can be obtained by projecting x1,x2, . . . ,xk−1 out of θ(x0,x1)∧θ(x1,x2)∧· · ·∧
θ(xk−1,xk), which can be done by Fourier-Motzkin elimination.

In this operation, the dynamic constraints of θk(x0,xk) are all obtained
as combinations of constraints in θ(x0,x1), θ(x1,x2), . . . , θ(xk−1,xk). Each
dynamic constraint of θk results from combining a sequence of constraints of θ
that links a variable x0

i to a variable xk
j , with i, j ∈ [1, . . . , n], hence it takes

the form xk
j #x0

i + c, where # ∈ {<,≤,≥, >} and c ∈ Z. Likewise, the static
constraints of θk correspond to sequences of constraints of θ that link either x0

i

to x0
j , or xk

i to xk
j , for some i, j ∈ [1, . . . , n].

This leads to a simple way of characterizing the constraints of θk. Inspired
by [Rev93,CJ98], we build two directed graphs Gθ

< and Gθ
> in the following

way. The vertices of these graphs correspond to the variables x1, . . . , xn. The
edges of Gθ

< (resp. Gθ
>) are labeled by tuples (#, c, d), where # ∈ {<,≤} (resp.

# ∈ {>,≥}) is a strictness marker , c ∈ Z is a cost , and d ∈ {−1, 0, 1} is a depth.
The edges of Gθ

< and Gθ
> are created as follows:

– For each constraint xj � xi + c in θ, with �∈ {<,≤}, we add the edge
(xi, (�, c, 0), xj) to Gθ

<, and the edge (xj , (�,−c, 0), xi) to Gθ
>;

– For each constraint x′j � xi + c in θ, we add the edge (xi, (�, c, 1), xj) to
Gθ

<, and the edge (xj , (�,−c,−1), xi) to Gθ
>;

– For each constraint x′j � xi + c in θ, we add the edge (xj , (�,−c,−1), xi) to
Gθ

<, and the edge (xi, (�, c, 1), xj) to Gθ
>.

For each path π in Gθ
< or Gθ

>, we define its strictness s(π) as the strongest
marker labeling the transitions followed by π, and its cost c(π) and depth d(π) as
the sums of the individual cost and depth of all these transitions. The absolute
depth of π is |d(π)|. The minimum (resp. maximum) depth d−(π) (resp. d+(π))
of π is defined as the smallest (resp. largest) depth among all prefixes of π.
Intuitively, a path π of Gθ

< or Gθ
> linking a variable xi to a variable xj represents

constraints xd′

j #xd
i + c, where # corresponds to the strictness of π, d′ − d to its

depth, and c to its cost. The minimum and maximum depth of π then bound
the superscripts of the intermediate variables that are visited by π, and that are
thus projected out when the constraints of θ are combined.

Proposition 1. Each dynamic constraint xk
j #x0

i + c of θk(x0,xk), with # ∈
{<,≤,≥, >} and c ∈ Z, corresponds to a path π from xi to xj in either Gθ

<

or Gθ
>, such that s(π) = #, c(π) = c, d(π) = k, d−(π) = 0, and d+(π) = k.

Similarly, static constraints x0
j#x0

i + c correspond to paths π from xi to xj such
that s(π) = #, c(π) = c, d(π) = 0, d−(π) = 0, and d+(π) ≤ k. Finally, static
constraints xk

j #xk
i + c correspond to paths π from xi to xj such that s(π) = #,

c(π) = c, d(π) = 0, d−(π) ≥ −k, and d+(π) = 0.

The problem of computing the constraints of θk(x0,xk) has thus been re-
duced to that of characterizing, in terms of k, the costs of the paths of depths
0 and k that link two given variables in Gθ

< and Gθ
>, without exceeding some

minimum and maximum depths. Note that, in the case of multiple paths, it is
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sufficient to consider the strongest constraints, which correspond to the paths
with the minimal cost in Gθ

< and with the maximal cost in Gθ
>.

We now show that this characterization can be carried out with a bounded
construction. Let π be a path of Gθ

< (the graph Gθ
> is handled symmetrically).

– If π contains occurrences of a simple loop σ, i.e., π = π1σ
k1π2 with k1 > 0,

such that d(σ) = 0 and c(σ) ≥ 0. Then the path π′ = π1π2 has the same
depth as π, but a smaller or equal cost.

– If π contains occurrences of a simple loop σ such that d(σ) = 0 and c(σ) < 0.
Then π represents an unsatisfiable constraint.

– If π contains occurrences of two simple loops σ1 and σ2, i.e., we have π =
π1σ

k1
1 π2σ

k2
2 π3 or π = π1σ

k2
2 π2σ

k1
1 π3, such that either d(σ1) > 0 and d(σ2) >

0, or d(σ1) < 0 and d(σ2) < 0, and c(σ1)/|d(σ1)| ≤ c(σ2)/|d(σ2)|. Then,
removing |d(σ1)|/g occurrences of σ2 and adding |d(σ2)|/g occurrences of
σ1, with g = gcd(|d(σ1)|, |d(σ2)|), transforms π into a path with the same
depth, but a smaller or equal cost.

– If π contains occurrences of two simple loops σ1 and σ2 such that d(σ1) < 0,
d(σ2) > 0, and c(σ1)/d(σ1) ≥ c(σ2)/d(σ2). Then removing −d(σ1)/g occur-
rences of σ2 and d(σ2)/g occurrences of σ1 from π, where g = gcd(−d(σ1),
d(σ2)), yields a path that has the same depth as π, but a smaller or equal
cost.

– If π contains occurrences of two simple loops σ1 and σ2 such that d(σ1) < 0,
d(σ2) > 0, and c(σ1)/d(σ1) < c(σ2)/d(σ2). For any l > 0, adding −l.d(σ1)/g
occurrences of σ2 and l.d(σ2)/g occurrences of σ1, with g = gcd(−d(σ1),
d(σ2)), transforms π into a path that has the same depth, but a smaller or
equal cost. In this case, we thus obtain the strongest constraint by selecting
the largest value of l for which the minimum and maximum path depths are
not exceeded. The path π is then split into π = π1π2, such that each subpath
π1 or π2 contains only iterations of either σ1 or σ2, and the split point
maximizes the depth of the subpath π1 or π2 that contains the iterations of
σ2. Since the constraints represented by π are implied by those corresponding
to π1 and π2, these two paths can now be considered individually.

Let l< (resp. l>) be the least common multiple of the absolute depths of the
simple cycles in Gθ

< (resp. Gθ
>). Applying repeatedly the above transformations,

the paths of Gθ
< are eventually replaced by ones in which all occurrences of

simple loops but one have an absolute depth less than l<. We thus have a simple
algorithm for iterating θ:

1. Compute l = lcm(l<, l>). Since l is fixed, θ is reducible to θl;
2. In order to obtain the constraints of (θl)k(x0,xk), it is sufficient to consider

the paths of Gθl

< and Gθl

> with a depth d ∈ {0, k}, that are either acyclic or of
the form π1σ

d−d(π1)−d(π2)π2, where π1 and π2 are acyclic, and σ is a simple
cycle of absolute depth 1. These paths can be inspected in bounded time.
For each of them, one must also ensure that the minimum and maximum
depth constraints imposed by Proposition 1 are satisfied.
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Recall that σ represents a constraint of the form x′i#xi+c, hence σk−d0 , with
d0 = d(π1)+d(π2), corresponds to x′i#xi+(k−d0)c. The dynamic constraints
of (θl)k(x0,xk) are thus obtained in the form k ≥ q ⇒ xk

j #x0
i +kδ +γ, with

δ, γ ∈ Z, and q ∈ N.

5.2 MCS and Periodic LHR

The results of the previous section give an interesting insight into the iterative
behavior of MCS. For any MCS θ, we now know that there exists l > 0 such that
(θl)k can be decomposed into (θl)k = θ0 ∪

⋃
1≤i≤p θi ◦ (θ′)k−ki ◦ θ′i, where p ≥ 0,

θ′ is a periodic LHR, θ0, θ1, . . . , θp, θ
′
1, . . . , θ

′
p are LHR, and k1, . . . , kp ∈ N. We

therefore have the following result.

Reduction Rule 6 Every MCS θ is reducible to a periodic LHR θ′.

In practice, we iterate a given LHR θ by first applying all possible reductions
rules from 1 to 5, and then checking whether the resulting system forms a periodic
LHR, a MCS, or a conjunction of both. In the last situation, we can iterate θ
provided that the periodic LHR θP and the remaining MCS θM that compose θ
are defined over distinct subsets of variables. Indeed, assuming w.l.o.g. that the
variables of θP precede these of θM , we have θk(S) = θk

P (SP )× θk
M (SM ), for all

S ⊆ Rn and k > 0, where SP and SM are the projections of S over the variables
of θP and θM . The LHR θ8 in Figure 1 provides an example of relation that can
be handled in this way.

This approach has the shortcoming that the class of LHR that can be iterated
is not closed under linear transformations, e.g., the LHR θ9 in Figure 1, which
is functionally equivalent to θ8, cannot be handled. A method that lifts this
restriction will be investigated in another paper.

6 Application to Timed Automata

Definition 5. A Timed Automaton (TA) is a LHA (x, V, E, v0, X0, G,A, I,R)
such that

– its initial region X0, guard G(e) of each edge e ∈ E, and invariant I(v) of
each location v ∈ V are conjunctions of constraints of the form xi#c and
xi − xj#c, with # ∈ {<,≤,=,≥, >} and c ∈ Z;

– the assignment A(e) of each edge e ∈ E has the form
∧n

i=0 x′i = dixi, with
∀i ∈ [1, . . . , n] : di ∈ {0, 1}. In other words, a transition can either reset a
clock, or leave it unchanged;

– the activity R(v) of each location v ∈ V equals ((1, . . . , 1), (1, . . . , 1)), i.e.,
all clocks increase uniformly with time.

It is shown in [Fri98,CJ98] that the LHR that label arbitrary paths of timed
automata can be turned into MCS by a simple variable change operation. Let π
be such a path. The idea consists in defining one new global clock t that is never
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reset, and that will serve as a reference for relating the values of other variables.
Then, for each clock xi of the TA that is reset along π, or that is evaluated
without having been reset, one introduces a new variable ti such that xi = t− ti.
Let t0, t01, t

0
2, . . . denote the initial values, and t′, t′1, t

′
2, . . . the final values, of

t, t1, t2, . . . with respect to π. Intuitively, each t′i gives the date, expressed with
respect to the reference timeframe, at which the corresponding clock xi has been
last reset. Expressed over t0, t01, t

0
2, . . . and t′, t′1, t

′
2, . . ., the LHR induced by π

takes the form of a MCS [Fri98,CJ98].
Together with Rule 6, this result gives an effective algorithm for turning

any cycle of a TA into a meta-transition. We now recall a property established
in [CJ99].

Theorem 2. For any TA, there exists a finite choice of meta-transitions for
which symbolic state-space exploration terminates.

Algorithms are given in [Boi98,BLFP03] for discovering automatically such
a choice of meta-transitions whenever one exists. It is thus possible to guaran-
tee that exploring symbolically the state-space of timed automata with hybrid
acceleration terminates.

7 Conclusions

The contribution of this paper is to show that, for a large class of linear hybrid
relations θ, computing θ∗ reduces to iterating the periodic relations considered
in [BHJ03]. This broadens substantially the applicability of hybrid acceleration,
and provides a powerful framework for reasoning about linear hybrid automata.

A secondary contribution is to provide a simpler proof of the acceleration
result for multiple counters systems given in [CJ98]. We have established that
the iterative behavior of such systems reduces to that of periodic relations, which
brings their acceleration algorithm closer to an actual implementation.

For the particular case of timed automata, an exact state-space exploration
algorithm was already known [CJ99]. Compared to this method, the advantage
of our approach is to be applicable to a much larger class of systems (although
obviously without a general guarantee of termination). For large systems, we
also expect our technique to scale up much more nicely than [CJ99]. Indeed,
iterating a periodic hybrid relation in 〈R,Z,+,≤〉 is fundamentally very close to
iterating a linear transformation within 〈Z,+,≤〉, as done by the NDD package
of LASH [LASH]. Although this conjecture remains to be substantiated with
actual experiments, we believe that adding timed constraints to the case studies
performed with LASH will not significantly complicate their analysis.
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