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Abstract—We consider the reachability problem for timed au-
tomata. A standard solution to this problem involves computing
a search tree whose nodes are abstractions of zones. These
abstractions preserve underlying simulation relations on the state
space of the automaton. For both effectiveness and efficiency
reasons, they are parametrized by the maximal lower and upper
bounds (LU-bounds) occurring in the guards of the automaton.
We consider the a!LU abstraction defined by Behrmann et

al. Since this abstraction can potentially yield non-convex sets,
it has not been used in implementations. We prove that a!LU

abstraction is the biggest abstraction with respect to LU-bounds
that is sound and complete for reachability. We also provide
an efficient technique to use the a!LU abstraction to solve the
reachability problem.

I. INTRODUCTION

Timed automata are finite automata extended with clocks
whose values can be compared with constants and set to 0. The
clocks measure delays between different steps of execution of
the automaton. The reachability problem for timed automata
asks if there exists a path from its initial state to a given
target state. This problem cannot be solved by a simple
state exploration since clocks are real-valued variables. The
standard solution to this problem involves computing the zone
graph of the automaton that in principle could be infinite.
In order to make it finite, zones are approximated using
an abstraction operator. Till recently it has been generally
assumed that for reasons of efficiency an abstraction of a zone
should always be a zone. Here we avoid this assumption. We
show a rather unexpected fact that a!LU approximation defined
by Behrmann et al. [3] is the biggest sound and complete
approximation. We also present a method of constructing
abstracted zone graph using a!LU approximation. Even though
this approximation can yield non-convex sets, we show that
our method is at least as efficient as any other currently known
method based on abstractions.

The reachability problem is a basic problem in verification.
It is historically the first problem that has been considered for
timed-automata, and it is still a lively subject of research [3],
[11], [14], [17]. Apart from being interesting by itself, the
advances on this problem may allow to give new methods for
verification of more complicated models, like priced timed-
automata [7], or probabilistic timed automata [6], [8], [12].

All approaches to solving the reachability problem for timed
automata should ensure termination. To tackle this, most of
them use abstractions to group together bisimilar valuations
of clock variables, that is, valuations not distinguishable by
the automaton. The first solution has been based on regions:

equivalence classes of clock valuations [1]. Their definition
is parameterized by a threshold up to which the clock values
should be considered. A great improvement in efficiency has
been obtained by adopting zones instead of regions. These
are sets of valuations defined by conjunctions of differences
between pairs of clocks. They can be efficiently implemented
using difference bound matrices (DBMs) [10]. A challenge
with zone based approach is that they are not totally com-
patible with regions, and moreover a forward exploration
algorithm can produce infinitely many zones. The union of
regions intersecting a zone is a natural candidate for a finitary
abstraction. Indeed this abstraction would make the forward
exploration algorithm terminate. However such an union of
regions is not necessarily a zone, so it is not clear how to
represent it. For this reason a number of abstraction operators
have been proposed that give an approximation of the union of
regions intersecting a zone. Bigger approximation makes the
abstracted zone graph smaller. So potentially it gives a more
efficient algorithm.

An important observation made in [3] is that if reachability
is concerned then we can consider simulation instead of
bisimulation. Indeed, it is safe to add configurations that are
simulated by those that we have already reached. Simulation
relations in question depend on the given automaton, and it is
EXPTIME-hard to calculate the biggest one [13]. A pragmatic
approach is to abstract some part of the structure of the
automaton and define simulation based on this information.
The most relevant information are the bounds with which
clocks are compared in guards of the automaton. Since lower
and upper bounds are considered separately, they are called
LU-bounds. In [3] the authors define an abstraction based on
simulation with respect to LU-bounds; it is denoted a!LU .
Theoretically a!LU is very attractive: it has clear semantics
and, as we show here, it is always a union of regions. The
problem is that a!LU abstraction of a zone is seldom a convex
set, so one cannot represent the result as a zone. In this
paper we give another very good reason to consider a!LU

abstraction. We show that it is actually the biggest abstraction
that is sound and complete with respect to reachability for
all automata with the same LU -bounds. In other words it
means that in order to get bigger (that is better) abstractions
one would need to look at some other structural properties of
automata than just LU -bounds.

Our main technical result is an effective algorithm for
dealing with a!LU abstraction. It allows to manipulate this
abstraction as efficiently as purely zone based ones. We
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Fig. 1. A comparison of abstraction operators for zones.

propose a forward exploration algorithm working with zones
that constructs the a!LU abstraction of the transition graph
of the automaton. This algorithm uses standard operations on
zones, plus a new test of inclusion of a zone in the a!LU

abstraction of another zone. The test is quadratic in the number
of clocks and not more complex than that for just testing an
inclusion between two zones. Since a!LU abstraction is the
coarsest sound and complete abstraction, it can potentially give
smallest abstract systems.

A. Related work
Forward analysis is the main approach for the reacha-

bility testing of real-time systems. The use of zone-based
abstractions for termination has been introduced in [9]. In
recent years, coarser abstractions have been introduced to
improve efficiency of the analysis [3]. An approximation
method based on LU-bounds, called Extra+

LU , is used in the
current implementation of UPPAAL [4]. In [11] it has been
shown that it is possible to efficiently use the region closure of
Extra+

LU , denoted Closure+LU . This has been the first efficient
use of a non-convex approximation. In comparison, a!LU

approximation has a well-motivated semantics, it is also region
closed, and the resulting inclusion test is even simpler than that
of Closure+LU . A comparison of these abstractions is depicted
in Fig. 1.

Let us mention that abstractions are not needed in back-
ward exploration of timed systems. Nevertheless, any feasible
backward analysis approach needs to simplify constraints. For
example [14] does not use approximations and relies on an
SMT solver instead. Clearly this approach is very difficult to
compare with the forward analysis approach we study here.

Another related approach to verification of timed automata
is to build a quotient graph of the semantic graph of the
automaton with respect to some bisimulation relation [8],
[16]. For reachability properties, this approach is not a priori
competitive with respect to forward exploration as it requires
to construct the whole state space of the automaton. It is more
adapted to checking branching time properties.

B. Organization of the paper
In the next section, we present preliminary definitions,

introduce the notion of sound and complete abstractions and
explain how these abstractions could be used to solve the

reachability problem. In Section III, we introduce the concept
of LU -bounds putting limits on the constants that can be used
in guards of automata. In the same section, we propose an
abstraction absLU and prove that it is the coarsest sound
and complete abstraction for all automata with given LU -
bounds. Subsequently, in Section IV we show that the a!LU

abstraction actually coincides with this biggest abstraction
absLU . Section V then presents the efficient inclusion test for
a!LU abstraction which allows for its use in implementations.

II. PRELIMINARIES

After recalling some preliminary notions, we introduce a
concept of abstraction as a means to reduce the reachability
problem for timed-systems to the one for finite systems. We
then observe that simulation relation is a convenient way of
obtaining abstractions with good properties.

A. Timed automata and the reachability problem
Let X be a set of clocks, i.e., variables that range over R≥0,

the set of non-negative real numbers. A clock constraint is a
conjunction of constraints x#c for x ∈ X , # ∈ {<,≤,=
,≥, >} and c ∈ N, e.g. (x ≤ 3 ∧ y > 0). Let Φ(X) denote
the set of clock constraints over clock variables X . A clock
valuation over X is a function v : X → R≥0. We denote
RX

≥0 the set of clock valuations over X , and 0 the valuation
that associates 0 to every clock in X . We write v ! φ when
v satisfies φ ∈ Φ(X), i.e. when every constraint in φ holds
after replacing every x by v(x). For δ ∈ R≥0, let v + δ be
the valuation that associates v(x) + δ to every clock x. For
R ⊆ X , let [R]v be the valuation that sets x to 0 if x ∈ R,
and that sets x to v(x) otherwise.

A Timed Automaton (TA) is a tuple A = (Q, q0, X, T,Acc)
where Q is a finite set of states, q0 ∈ Q is the initial state, X
is a finite set of clocks, Acc ⊆ Q is a set of accepting states,
and T ⊆ Q × Φ(X) × 2X × Q is a finite set of transitions
(q, g, R, q′) where g is a guard, and R is the set of clocks that
are reset on the transition.

The semantics of A is a transition system of its config-
urations. A configuration of A is a pair (q, v) ∈ Q × RX

≥0
and (q0,0) is the initial configuration. We have two kinds of
transitions:
Delay: (q, v) →δ (q, v + δ) for some δ ∈ R≥0;
Action: (q, v) →α (q, v′) for some transition (q, g, R, q′) ∈ T
such that v ! g and v′ = [R]v.

In this paper we are interested in the reachability problem
that asks if there exists a configuration (q, v) with accepting
state q ∈ Acc that is reachable from (q0,0) by any finite
sequence of delay and action transitions.

The class of TA we consider is usually known as diagonal-
free TA since clock comparisons like x−y ≤ 1 are disallowed.
Notice that if we are interested in state reachability, consid-
ering timed automata without state invariants does not entail
any loss of generality as the invariants can be added to the
guards. For state reachability, we can also consider automata
without transition labels.
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B. Abstractions
Since the transition system determined by the automaton is

infinite, we usually try to find a finite approximation of it by
grouping valuations together. In consequence we work with
configurations consisting of a state and a set of valuations.
The transitions are then defined by:

(q,W ) ⇒α (q′,W ′)

where W ′ = {v′ : ∃v ∈ W. v →α v′}, and

(q,W ) ⇒τ (q′,W ′)

where W ′ = {v′ : ∃v ∈ W. ∃δ ∈ R≥0 v →δ v′}.
So ⇒α transition is the existential lifting of →α transition

to sets, similarly for ⇒τ transition but it moreover permits
any delay. We will write ⇒ without superscript to denote the
union of the two relations.

An abstraction operation [2] is a convenient way of express-
ing a grouping of valuations. It is a function a : P(R|X|

≥0 ) →

P(R|X|
≥0 ) such that W ⊆ a(W ) and a(a(W )) = a(W ). An

abstraction operator defines an abstract semantics:

(q,W ) ⇒a (q′, a(W ′))

when a(W ) = W and (q,W ) ⇒ (q′,W ′).
If a has a finite range then this abstraction is finite. Analo-

gously we define ⇒α
a

and ⇒τ
a
. We write ⇒∗ for the transitive

closure of ⇒, similarly for →∗.
Of course we want this abstraction to reflect some proper-

ties of the original system. In order to preserve reachability
properties we can require the following two properties (where
→ denotes the union of →α and →δ):
Soundness: if (q0, {v0}) ⇒∗

a
(q,W ) then there is v ∈ W such

that (q0, v0) →∗ (q, v).
Completeness: if (q0, v0) →∗ (q, v) then there is W such that
v ∈ W and (q0, {v0}) ⇒∗

a
(q,W ).

It can be easily verified that if an abstraction satisfies
W ⊆ a(W ) then the abstracted system is complete. However
soundness is more delicate to obtain.

Naturally, it is important to be able to efficiently compute
the abstract transition system. A standard way to do this
is to use zones. A zone is a set of valuations defined by
a conjunction of two kinds of constraints: comparison of
difference between two clocks with an integer like x − y#c,
or comparison of a single clock with an integer like x#c,
where # ∈ {<,≤,=,≥, >} and c ∈ N. For instance
(x − y ≥ 1) ∧ (y < 2) is a zone. Zones can be efficiently
represented using difference bound matrices (DBMs) [10].
This suggests that one should consider abstractions that give
zones. This is an important restriction: zones are convex, and
abstractions based on regions are usually not convex.

We propose a way to use non-convex abstractions and
zone representations at the same time. We will only consider
sets W of the form a(Z) and represent them simply by Z .
This way we can represent states of an abstract transition
system efficiently: we need just to store a zone. In order for

this to work we need to be able to compute the transition
relation on this representation. We also need to know when
two representations stand for the same node in the abstract
system. This is summarized in the following two requirements:
Transition compatibility: for every transition (q, a(Z)) ⇒a

(q′,W ′) and the matching transition (q, Z) ⇒ (q′, Z ′) we
have W ′ = a(Z ′).
Efficient inclusion test: for every two zones Z,Z ′, the test
Z ′ ⊆ a(Z) is efficient.

The first condition is quite easy to satisfy. Every abstraction
relation coming from time-abstract simulation [15] is transition
compatible (cf. Appendix A) This paper is essentially about
how to satisfy the second condition and get as good abstraction
as possible at the same time.

III. THE BIGGEST LU ABSTRACTION

We introduce the concept of LU bounds: maximal constants
used in lower and upper bounds. These can be used to define
simulations and abstractions independently of automata. The
goal of this section is to come up with the coarsest possible
abstraction if the only a priori knowledge we have about an
automaton is LU-information. To this regard, we propose an
abstraction operation absLU and prove that it is the biggest
such (Theorem 7).

One way to obtain abstractions is to group together valua-
tions that are not distinguishable by an automaton, i.e. consider
a bisimulation relation. If we are after reachability proper-
ties then one can even consider (time abstract) simulation
relation [15]. For a given automaton it can be computed if
two configurations are in a simulation relation. It should be
noted though that computing the coarsest simulation relation
is EXPTIME-hard [13]. Since the reachability problem can be
solved in PSPACE, this suggests that it may not be reasonable
to try to solve it using the abstraction based on the coarsest
simulation.

We can get simulation relations that are computationally
easier if we consider only a part of the structure of the
automaton. The simplest is to take a simulation based on
the maximal constant that appears in guards. More refined
is to take the maximum separately over constants from lower
bound constraints, that is in guards of the form x > c or
x ≥ c, and those from upper bound constraints, that is in
guards x < c or x ≤ c. If one moreover does this for every
clock x separately, one gets for each clock two integers Lx and
Ux. The abstraction that is currently most used is a refinement
of this method by calculating Lx and Ux for every state of the
automaton separately [2]. For simplicity of notation we will
not consider this optimization but it can be incorporated with
no real difficulty in everything that follows. We summarize
this presentation in the following definition.

Definition 1 (LU-bounds) The L bound for an automaton A
is the function assigning to every clock a maximal constant
that appears in a lower bound guard for x in A. Similarly U
but for upper bound guards. An LU-guard is a guard where

3



lower bound guards use only constants bounded by L and
upper bound guards use only constants bounded by U . An
LU-automaton is an automaton using only LU-guards.

Using LU bounds we define a simulation relation on valua-
tions without referring to any particular automaton; or to put it
differently, by considering all LU-automata at the same time.

Definition 2 (LU-simulation) Let L, U be two functions
giving an integer bound for every clock. The LU-simulation
relation between valuations is the biggest relation +LU such
that if v +LU v′ then for every LU-guard g, and set of clocks
R ⊆ X we have

• if v
g,R
−→ v1 for some v1 then v′

g,R
−→ v′1 for v′1 such that

v1 +LU v′1.

where v
g,R
−→ v1 means that for some δ ∈ R≥0 we have v+δ !

g and v1 = [R](v + δ).

One can check that +LU is the biggest relation that is a time-
abstract simulation for all automata with given LU bounds.

Simulation relation permits to define an abstraction operator.
Basically, to the abstraction of Z we can add all valuations that
can be simulated by a valuation in Z . This way we guarantee
soundness of the abstraction as the added valuations cannot
do more than the valuations already present in Z .

Definition 3 (Abstraction based on LU-simulation) For a
zone Z we define: absLU (Z) = {v : ∃v′ ∈ Z. v +LU v′}.

The definition of LU-simulation is sometimes difficult to
work with since it talks about infinite sequences of actions.
In the next lemma we present a useful characterization im-
plying that actually we need to consider only very particular
sequences of transitions that are of length bounded by the
number of clocks (Corollary 6). For this discussion let us
fix some L and U functions. We start with a preparatory
definition.

Definition 4 For a valuation v we define its LU-region,
denoted rLU (v), to be the set of valuations v′ such that:

• v′ satisfies the same LU -guards as v.
• For every pair of clocks x, y with ,v(x)- = ,v′(x)-,

,v(y)- = ,v′(y)-, v(x) ≤ Ux and v(y) ≤ Ly we have:
– if {v(x)} < {v(y)} then {v′(x)} < {v′(y)}.
– if {v(x)} = {v(y)} then {v′(x)} ≤ {v′(y)}.

The first condition roughly says that the integer parts of the
two valuations are the same. Observe that we cannot require
that they are exactly the same for values between L and U
bounds. The second part says that the order of fractional
parts should be the same, but once again we restrict only to
inequalities that we can express within our LU -bounds. Notice
that if Lx = Ux = M , for some M and all clocks x, then we
get just the usual definition of regions with respect to M .

Lemma 5 For every two valuations v and v′:

v +LU v′ iff there is δ′ ∈ R≥0 with v′ + δ′ ∈ rLU (v).

Proof: First let us take v and define a sequence of abstract
transitions that reflect the definition of rLU (v). We define
some guards. Let gint be the conjunction of all LU guards that
v satisfies. For every pair of clocks x, y such that v(x) ≤ Ux,
v(y) ≤ Ly we consider guards:

• if {v(x)} < {v(y)} then we take a guard gxy ≡ (x <
,v(x)-+ 1) ∧ (y > ,v(y)-+ 1).

• if {v(x)} = {v(y)} then we take a guard gxy ≡ (x ≤
,v(x)-+ 1) ∧ (y ≥ ,v(y)-+ 1).

Finally for every y with v(y) < Ly we put gy =
∧

{gxy :
v(x) ≤ Ux}. Note that the guards that are defined are
consistent with the LU bounds.

Consider all the clocks y with v(y) ≤ Ly and suppose that
y1, . . . , yk is the ordering of these clocks with respect to the
value of their fractional parts: {v(y1)} ≤ · · · ≤ {v(yk)}. Let
seq(v) be the sequence of transitions gint−→

gyk−→ . . .
gy1−→; since

the resets are empty we have not represented them in the labels
of the sequence.

The sequence seq(v) can be performed from v:

v
gint−−→ v

τ
−→ v + δk

gyk−−→ v + δk
τ
−→ v + δk−1

gyk−1
−−−−→ . . .

. . .
τ
−→ v + δ1

gy1−−→ v + δ1

when choosing δi = (1−{v(yi)}) or δi = (1−{v(yi)})+ε for
some sufficiently small ε > 0; depending on whether we test
for non-strict or strict inequality in gyi

. Delay δi makes the
value of yi integer or just above integer. It is also easy to check
that if it is possible to do this sequence of transitions from
some valuation v′ then there is δ′ ∈ R≥0 such that v′ + δ′ ∈
rLU (v). This shows left to right implication.

For the right to left implication we show that the relation
S = {(v, v′) : v′ ∈ rLU (v)} is an LU-simulation relation. For
this we take any (v, v′) ∈ S, any LU guard g, and any reset
R such that v g,R

−→ v1. We show that v′ g,R
−→ v′1 for some v′1

with (v1, v′1) ∈ S. The argument is very similar to the one for
standard regions.

The sequence seq(v) introduced in the above proof will be
quite useful. In particular the proof shows the following.

Corollary 6 For two valuations v, v′:

v +LU v′ iff v′ can execute the sequence seq(v).

We are now ready to prove the first main result of this
section showing that absLU (Z) is the biggest sound and
complete simulation that uses solely LU information

Theorem 7 The absLU abstraction is the biggest abstraction
that is sound and complete for all LU-automata.

Proof: Suppose that we have some other abstraction a
′

that is not included in absLU on at least one LU -automaton.
This means that there is some LU automaton A1 and its
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Fig. 2. Adding the sequence seq(v) to A1.

reachable configuration (q1, Z) such that a
′(Z) \ absLU (Z)

is not empty. We suppose that a′ is complete and show that it
is not sound.

Take v ∈ a
′(Z) \ absLU (Z). Consider the test sequence

seq(v) as in Corollary 6. From this corollary we know that
it is possible to execute this sequence from v but it is not
possible to do it from any valuation in Z since otherwise we
would get v ∈ absLU (Z).

As illustrated in Fig 2 we add to A1 a new sequence of
transitions constructed from the sequence seq(v). We start this
sequence from q1, and let qf be the final state of this new
sequence. The modified automaton A1 started in the initial
configuration arrives with (q1, Z) in q1 and then it can try
to execute the sequence we have added. From what we have
observed above, it will not manage to reach qf . On the other
hand from (q1, v) it will manage to complete the sequence.
But then by completeness of the abstraction (q1, a′(Z))

seq(v)
−→

(qf ,W ) for a nonempty W . So a
′ is not a sound abstraction.

IV. THE a!LU ABSTRACTION

Since absLU is the biggest abstraction, we would like to use
it in a reachability algorithm. The definition of absLU , or even
the characterization referring to rLU , are still too complicated
to work with. The a!LU abstraction proposed by Behrmann et
al. in [3] has much simpler definition. It turns out that in the
context of reachability analysis the two abstractions coincide
(Theorem 12).

We begin by recalling the definition of an LU-preorder
defined in [3]. We use a different but equivalent formulation.

Definition 8 (LU-preorder [3]) Let L,U : X → N be two
bound functions. For a pair of valuations we set v "LU v′ if
for every clock x:

• if v′(x) < v(x) then v′(x) > Lx, and
• if v′(x) > v(x) then v(x) > Ux.

Definition 9 (LU-abstraction [3]) For L, U as above. For a
set of valuations W we define:

a!LU(W ) = {v : ∃v′ ∈ W. v "LU v′}.

A. Abstractions absLU and a!LU coincide
Our goal is to show that when we consider zones closed

under time-successors, a!LU and absLU coincide. To prove
this, we would first show that there is a very close connection

between valuations in rLU (v) and valuations that simulate v
with respect to "LU . The following lemma says that if v′ ∈
rLU (v) then by slightly adjusting the fractional parts of v′ we
can get a valuation v′1 such that v "LU v′1. We start with a
preliminary definition.

Definition 10 A valuation v1 is said to be in the neighbour-
hood of v, written v1 ∈ nbd(v) if for all clocks x, y:

• ,v(x)- = ,v′(x)-,
• {v(x)} = 0 iff {v′(x)} = 0,
• {v(x)} ! {v(y)} implies {v′(x)} ! {v′(y)} where ! is

either < or =.

Notice that the neighbourhood of v is the same as the region
of v with respect to the classical region definition [1] with
maximal bound being ∞.

Lemma 11 (Adjustment) Let v be a valuation and let v′ ∈
rLU (v). Then, there exists a v′1 ∈ nbd(v′) such that v "LU v′1.

Proof: Let v′ ∈ rLU (v). The goal is to construct a
valuation v′1 ∈ nbd(v′) that satisfies v "LU v′1. To be in
the neighbourhood, the valuation v′1 should have the same
integral parts as that of v′ and should agree on the ordering
of fractional parts. So for all x, we put ,v′1(x)- = ,v′(x)-.
It remains to choose the fractional parts for v′1. But before,
we will first see that there are clocks for which irrespective of
what the fractional part is, the two conditions in Definition 8
would be true.

Consider a clock x that has ,v′(x)- < ,v(x)-. Since v′

satisfies all LU-guards as v, we should have v′(x) > Lx.
The first condition of "LU for x becomes true and the second
condition is vacuously true. Similarly, when ,v′(x)- > ,v(x)-,
we should have v(x) > Ux and the second condition of
"LU becomes true and the first condition is vacuously true.
Therefore, clocks x that do not have the same integral part
in v and v′ satisfy the "LU condition directly thanks to the
different integral parts. Whatever the fractional parts of v′1 are,
the "LU condition for these clocks would still be true.

Let us therefore now consider only the clocks that have the
same integral parts: ,v′(x)- = ,v(x)-. If this integer is strictly
greater than both Lx and Ux, the two conditions of "LU would
clearly be satisfied, again irrespective of the fractional parts.
So we consider only the clocks x that have the same integral
part in both v and v′ and additionally either ,v(x)- ≤ Ux or
,v(x)- ≤ Lx.

We prune further from among these clocks. Suppose there is
such a clock that has {v′(x)} = 0. To be in the neighbourhood,
we need to set {v′1(x)} = 0. If {v(x)} is 0 too, we are done
as the "LU condition becomes vacuously true. Otherwise, we
would have v′(x) = v′1(x) < v(x). But recall that v′ ∈ rLU (v)
and so it satisfies the same LU-guards as v does. This entails
that v′1(x) > Lx and we get the first condition of "LU to be
true. Once again, the other condition is trivial. So we eliminate
clocks that have zero fractional parts in v′. A similar argument
can be used to eliminate clocks that have zero fractional parts
in v.
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So finally, we end up with the set of clocks x that have:
• ,v′(x)- = ,v(x)-,
• {v′(x)} > 0 and {v(x)} > 0,
• v(x) < max(Ux, Lx).
Call this set Xf . The task is to select non-zero fractional

values {v′1(x)} for all clocks in Xf so that they match with
the order in v′. This is the main challenge and this is where
we would be using the second property in the definition of
v′ ∈ rLU (v), which we restate here:

∀x, y ∈ Xf such that v(x) ≤ Ux and v(y) ≤ Ly (1)
{v(x)} < {v(y)} ⇒ {v′(x)} < {v′(y)}

{v(x)} = {v(y)} ⇒ {v′(x)} ≤ {v′(y)}

Let 0 < λ′1 < λ′2 < · · · < λ′n < 1 be the fractional values
taken by clocks of Xf in v′, that is, for every clock x ∈ Xf ,
the fractional value {v′(x)} = λ′i for some i ∈ {1, . . . , n}.
Let Xi be the set of clocks x ∈ Xf that have the fractional
value as λ′i:

Xi = {x ∈ Xf | {v′(x)} = λ′i}

for i ∈ {1, . . . , n}.
In order to match with the ordering of v′, one can see that

for all clocks xi in some Xi, the value of {v′1(xi)} should be
the same, and if xj ∈ Xj with i 1= j, then we need to choose
{v′1(xi)} and {v′1(xj)} depending on the order between λ′i
and λ′j .

Therefore, we need to pick n values 0 < σ1 < σ2 <
· · · < σn < 1 and assign for all xi ∈ Xi, the fractional part
{v′1(xi)} = σi. We show that it can be done by an induction
involving n steps.

After the kth step of the induction we assume the following
hypothesis:

• we have picked values 0 < σn−k+1 < σn−k+2 < · · · <
σn < 1,

• for all clocks x ∈ Xn−k+1 ∪Xn−k+2 · · ·∪Xn, the "LU

condition is satisfied,
• for all clocks y ∈ X1 ∪X2 · · · ∪Xn−k, we have

v(y) ≤ Ly ⇒ {v(y)} < σn−k+1 (2)

Let us now perform the k + 1th step and show that the
hypothesis is true for k+1. The task is to pick σn−k. We first
define two values 0 < l < 1 and 0 < u < 1 as follows:

l = max
{

{v(z)} | z ∈ Xn−k and v(z) ≤ Lz

}

u = min
{

{ {v(z)} | z ∈ Xn−k and v(z) ≤ Uz } ∪ σn−k+1

}

We claim that l ≤ u. Firstly, l < σn−k+1 from the third part of
the induction hypothesis. So if u is σn−k+1 we are done. If not,
suppose l > u, this means that there are clocks x, y ∈ Xn−k

with v(x) ≤ Ux and v(y) ≤ Ly such that {v(x)} < {v(y)}.
From Equation 1, this would imply that {v′(x)} < {v′(y)}.
But this leads to a contraction since we know they both equal
λ′n−k in v′.

This leaves us with two cases, either l = u or l < u.
When l = u, we pick σn−k = l = u. Firstly, from the third

part of the hypothesis, we should have l < σn−k+1 and so
σn−k < σn−k+1. Secondly for all z ∈ Xn−k, if v′1(z) < v(z),
then z should not contribute to l and so v(z) > Lz , which is
equivalent to saying, v′1(z) > Lz . Similarly, if v′1(z) > v(z),
then z should not contribute to u and so v(z) > Uz , thus
satisfying the "LU condition for z. Finally, we should show
the third hypothesis. Consider a clock y ∈ X1∪ · · ·∪Xn−k−1

with v(y) < Ly. If {v(y)} ≥ σn−k , it would mean that
{v(y)} ≥ u and from Equation 1 gives a contradiction. So the
three requirements of the induction assumption are satisfied
after this step in this case.

Now suppose l < u. Consider a clock y ∈ X1 ∪ · · · ∪
Xn−k−1 such that v(y) < Ly . From Equation 1, we should
have {v(y)} < u. Take the maximum of {v(y)} over all such
clocks:

λ = max{{v(y)} | y ∈ X1 ∪ · · · ∪Xn−k−1 and v(y) < Ly}

Choose σn−k in the interval (λ, u). We can see that all the
three assumptions of the induction hold after this step.

We are now ready to prove the second main result of
this section. We write

−→
Z for the closure of Z under time-

successors: −→Z = {v + δ : v ∈ Z, δ ∈ R≥0}. We say that a
zone Z is time-elapsed if Z =

−→
Z .

Theorem 12 If Z is time-elapsed then

absLU (Z) = a!LU(Z)

Proof: Suppose v ∈ a!LU(Z). There exists a v′ ∈ Z such
that v "LU v′. It can be easily verified that "LU is a LU -
simulation relation. Since +LU is the biggest LU-simulation,
we get that v +LU v′. Hence v ∈ absLU (Z).

Suppose v ∈ absLU (Z). There exists v′ ∈ Z such that
v +LU v′. From Lemma 5, this implies there exists a δ′ such
that v′+δ′ ∈ rLU (v). As Z is time-elapsed, we get v′+δ′ ∈ Z .
Moreover, from Lemma 11, we know that there is a valuation
v′1 ∈ nbd(v′ + δ′) such that v "LU v′1. Every valuation in the
neighbourhood of v′ + δ′ satisfies the same constraints of the
form y − x ! c with respect to all clocks x, y and hence v′1
belongs to Z too. Therefore, we have a valuation v′1 ∈ Z such
that v "LU v′1 and hence v ∈ a!LU(Z).

B. Using a!LU to solve the reachability problem
A forward exploration algorithm for solving the reachability

problem constructs the reachability tree starting from the initial
node (q0, Z0) (cf. Fig. 3). Observe that the algorithm should
not take two consecutive action transitions. Indeed, instead of
doing (q1, Z1) ⇒α (q2, Z2) ⇒α (q3, Z3), it is preferable to do
(q1, Z1) ⇒α (q2, Z2) ⇒τ (q2,

−→
Z2) ⇒α (q3, Z ′

3) since Z2 ⊆
−→
Z2 and ⇒ is monotone with respect to zone inclusion. For
this reason the algorithm can start in time-elapsed initial node
(q0,

−→
Z0), and for every node (q, Z) consider its successors

(q, Z) ⇒α⇒τ (q′, Z ′) disregarding the intermediate node. So
all nodes visited by the algorithm have time-elapsed zones.
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(q0, Z0)

(q0,
−→
Z0)

(q1, Z1)

(q1,
−→
Z1)

. . .
α

τ

α

(q2, Z2)

(q2,
−→
Z2)

. . .
α

. . .
α

τ

α

(q3, Z3)

(q3,
−→
Z3)

. . .
α

τ

α

τ

Fig. 3. A reachability tree in a zone graph alternating τ and α edges.

Before continuing exploration from a node (q, Z), the algo-
rithm first checks if q is accepting. If not, the algorithm checks
if for some visited node (q, Z ′), we have Z ⊆ a!LU(Z ′). If
this is the case, (q, Z) need not be explored. Otherwise, the
successors of (q, Z) are computed as stated above. This way
we ensure termination of the algorithm since a!LU is a fintary
abstraction [3] (see also Proposition 14).

Since the reachability algorithm refers to only time-elapsed
zones, Theorems 7 and 12 show that a!LU is the biggest sound
and complete abstraction provided the only thing we know
about the structure of the automaton are its L and U bounds.
Recall that bigger abstractions make abstract graph smaller, so
the exploration algorithm can finish faster.

The refined forward exploration algorithms calculate LU
information for each state of the automaton separately [2],
or even on-the-fly during exploration [11]. The maximality
argument in favour of a!LU is of course true also in this case.

The last missing piece is an efficient inclusion test Z ⊆
a!LU(Z ′). This is the main technical contribution of this paper.

V. AN O(|X |2) ALGORITHM FOR Z ⊆ a!LU(Z ′)

In this section, we present an efficient algorithm for the
inclusion Z ⊆ a!LU(Z ′) (Theorem 24). Since a lot of tests
of this kind need to be performed during exploration of the
zone graph, it is essential to have a very low complexity
for this inclusion procedure. We are aiming at quadratic
complexity as this is the complexity incurred in the existing
algorithms for inclusions of the form Z ⊆ Z ′ or Z ⊆
Closure(Extra+

LU (Z
′)) [11]. It is well known that all the other

operations needed for forward exploration, can be done in at
most quadratic time [18]. All missing proofs can be found in
Appendix B.

We solve the inclusion problem in two steps. We first
concentrate on the question: given a region R and a zone Z ,
when R ⊆ a!LU(Z) holds. We show the crucial point that this
can be decided by verifying if the projection on every pair of
variables satisfies this inclusion. Since a!LU(Z) is not convex
we need to find a way to work with Z instead. It turns out
that one can define a

−1
!LU

(R) in such a way that R ⊆ a!LU(Z)
is equivalent to a

−1
!LU

(R) ∩ Z 1= ∅. We show moreover that
a
−1
!LU

(R) is a zone. This gets us already half way to the result,
the rest being examination of the structure of the intersection.

0 x y
(<, ∞)

(<, 2)

(<, −4)

(<, −2)

(<, ∞)

(<, ∞)

Fig. 4. Distance graph for the zone (x−y ≥ 1 ∧ y < 2 ∧ x > 4). Observe
that it is in canonical form.

Once the inclusion question is solved with respect to regions,
we extend the solution to zones thanks to a method allowing
us to quickly tell which regions intersect a given zone.

For the rest of the section, we assume a given automaton A
with LU bounds. Before we begin we will need to recall some
standard notions. Let us consider a bound function associating
to each clock x of A a bound αx ∈ N (that is the maximum
of L and U bounds). A region [1] with respect to α is the set
of valuations specified as follows:

1) for each clock x ∈ X , one constraint from the set:
{x = c | c = 0, . . . ,αx} ∪ {c − 1 < x < c | c =
1, . . . ,αx} ∪ {x > αx}

2) for each pair of clocks x, y having interval constraints:
c− 1 < x < c and d− 1 < y < d, it is specified if {x}
is less than, equal to or greater than {y}.

One can check that the set of regions finitely partitions RX
≥0.

A notion of a zone has already been recalled on page 3.
Every region is a zone but not vice-versa.

It will be very convenient to represent zones by distance
graphs. Such a graph has clocks as vertices, with an additional
special clock x0 representing the constant 0. For readability,
we will often write 0 instead of x0. Between every two vertices
there is an edge with a weight of the form (!, c) where c ∈
Z∪{∞} and ! is either ≤ or <. An edge x

!c
−→ y represents

a constraint y − x ! c: or in words, the distance from x to y
is bounded by c. An example of a distance graph is depicted
in Fig. 4.

Let [[G]] be the set of valuations of clock variables satisfying
all the constraints given by the edges of G with the restriction
that the value of x0 is 0. We denote a distance graph G by
the set of its weights: (!ij , cij)i,j∈X .

An arithmetic over the weights (!, c) can be defined as
follows [5].

Equality (!1, c1) = (!2, c2) if c1 = c2 and !1 = !2.
Addition (!1, c1) + (!2, c2) = (!, c1 + c2) where
! =< iff either !1 or !2 is <.
Minus −(!, c) = (!,−c).
Order (!1, c1) < (!2, c2) if either c1 < c2 or (c1 = c2
and !1 =< and !2 =≤).

This arithmetic lets us talk about the weight of a path as a
weight of the sum of its edges. A cycle in a distance graph G
is said to be negative if the sum of the weights of its edges is
at most (<, 0); otherwise the cycle is positive. The following
useful lemma is folklore.

Lemma 13 A distance graph G has only positive cycles iff
[[G]] 1= ∅.
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A distance graph is in canonical form if the weight of the
edge from x to y is the lower bound of the weights of paths
from x to y. A distance graph of a region R, denoted GR,
is the canonical graph representing all the constraints defining
R. Similarly GZ for a zone Z . For two distance graphs G1,
G2 which are not necessarily in canonical form, we denote
by min(G1, G2) the distance graph where each edge has the
weight equal to the minimum of the corresponding weights in
G1 and G2. Even though this graph may be not in canonical
form, it should be clear that it represents intersection of the
two arguments, that is, [[min(G1, G2)]] = [[G1]] ∩ [[G2]]; in
other words, the valuations satisfying the constraints given by
min(G1, G2) are exactly those satisfying all the constraints
from G1 as well as G2.

The first result says that for every zone Z , the set a!LU(Z)
is a union of regions.

Proposition 14 Let Z be a zone: every region that has a
nonempty intersection with a!LU(Z) is included in a!LU(Z).

A. When is R ⊆ a!LU(Z)?
We will first transform the question about the inclusion R ⊆

a!LU(Z) into one about an intersection. We begin by defining
an operator a−1

!LU
.

Definition 15 (a−1
!LU

abstraction) Let W be a set of valu-
ations. Then, a

−1
!LU

(W ) is the set of valuations defined as
follows:

a
−1
!LU

(W ) = {v′ | ∃v ∈ W with v "LU v′}.

Next lemma says that deciding if R ⊆ a!LU(Z) can be
reduced to checking if a−1

!LU
(R) intersects with Z .

Lemma 16 Given a region R and a zone Z , we have

R ⊆ a!LU(Z) iff a−1
!LU

(R) ∩ Z 1= ∅

Proof: Suppose R ⊆ a!LU(Z) and let v ∈ R. As v ∈
a!LU(Z) too, there exists a valuation v′ ∈ Z such that v "LU

v′. Now by Definition 15, we get v′ ∈ a
−1
!LU

(R) showing that
v′ belongs to both Z and a

−1
!LU

(R). Hence a
−1
!LU

(R)∩Z 1= ∅.
Suppose a

−1
!LU

(R) ∩ Z 1= ∅ and let v′ ∈ a
−1
!LU

(R) ∩ Z .
This shows that v′ ∈ Z and v "LU v′ for some valuation
v ∈ R. Now from the definition of "LU , we get v ∈ a!LU(Z).
Therefore, we have a valuation v such that v ∈ R and v ∈
a!LU(Z). From Lemma 14, this means R ⊆ a!LU(Z).

We will now focus on the intersection question: when is
a
−1
!LU

(R) ∩ Z empty. Given the canonical distance graphs
GR and GZ for R and Z respectively, the idea is to rep-
resent a

−1
!LU

(R) as a distance graph G∗
R and check when

min(G∗
R, GZ) has negative cycles. We first partition the set

of clocks X into four sets based on the region R and then
define the distance graph G∗

R for a
−1
!LU

(R) based on these
sets.

Definition 17 (Partitioning clocks based on R) Let R be a
region and let GR = (!ij , cij)i,j∈X be its distance graph in
canonical form. Then, we partition the set of clocks X into
four sets: BR,LR,UR and MR as follows:

BR = {x ∈ X | c0x ≤ min(Lx, Ux)} ∪ x0

LR = {x ∈ X | Lx < c0x ≤ Ux}

UR = {x ∈ X | Ux < c0x ≤ Lx}

MR = {x ∈ X | max(Lx, Ux) < c0x}

Definition 18 (Distance graph for a−1
!LU

(R)) Given a re-
gion R and its associated distance graph in canonical form
GR = (!ij , cij)i,j∈X , the distance graph G∗

R is given by
(!′

ij , c
′
ij)i,j∈X where:

(!′
ij , c

′
ij) =



















(<,∞) if j ∈ MR ∪ UR

(<,∞) if i ∈ MR ∪ LR and j 1= 0

(<,−Li) if i ∈ MR ∪ LR and j = 0

(!ij , cij) otherwise

The following lemma confirms that the distance graph
defined above indeed represents a

−1
!LU

(R).

Lemma 19 Let GR be the canonical distance graph of a
region R. Then [[G∗

R]] = a
−1
!LU

(R).

We now have two distance graphs G∗
R, GZ correspond-

ing to a
−1
!LU

(R) and Z respectively. Therefore, checking if
a
−1
!LU

(R) ∩ Z is empty reduces to checking if the distance
graph min(G∗

R, GZ) has a negative cycle. To get G∗
R, we took

GR and modified some edges to (<,∞) and some edges of the
form x −→ 0 to (<,−Lx). So graph G∗

R need not necessarily be
in canonical form and we want to find negative cycles without
canonizing it as this can be algorithmically expensive.

We will now state a necessary and sufficient condition
for the graph min(G∗

R, GZ) to have a negative cycle. We
denote by Zxy the weight of the edge x

!xycxy
−−−−−→ y in the

canonical distance graph representing Z . Similarly for R.
When a variable x represents the special clock x0, we define
R0x to be (≤, 0). Since by convention x0 is always 0, this is
consistent.

Proposition 20 Let GR, GZ be the canonical distance graphs
for a region R and a zone Z respectively. Then, min(G∗

R, GZ)
has a negative cycle iff there exists a variable x ∈ BR ∪ LR

and a variable y ∈ X such that one of the following conditions
is true:

1) either y ∈ BR ∪ UR and Zxy +Ryx < (≤, 0),
2) or y ∈ LR ∪MR and R0x +Zxy +(<,−Ly) < (≤, 0).

The proof of Lemma 20 follows from Lemmas 22 and 23
below whose proofs in turn rely on an important observation
made in Lemma 21. We say that a variable x is bounded in
R if a constraint x ≤ c holds in R for some constant c.
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Lemma 21 Let x, y be bounded variables of R appearing in
some negative cycle N of min(G∗

R, GZ). Let the edge weights
be x

!cxy
−−−→ y and y

!cyx
−−−→ x in GR. If the value of the

path x −→ . . . −→ y in N is strictly less than (!xy, cxy), then
x −→ . . . −→ y

!yxcyx
−−−−−→ x is a negative cycle.

Proof: Let the path x −→ . . . −→ y in N have weight
(!, c). Now, since x and y are bounded variables in R, we
can have either y − x = d or d − 1 < y − x < d for some
integer d.

In the first case, we have edges x
≤d
−−→ y and y

≤−d
−−−→ x in

GR, that is (!xy, cxy) = (≤, d) and (!yx, cyx) = (≤,−d).
Since by hypothesis (!, c) is strictly less than (≤, d), we have
either c < d or c = d and ! is the strict inequality. Hence
(!, c)+(≤,−d) < (≤, 0) showing that x −→ . . . −→ y

!yxcyx
−−−−−→

x is a negative cycle.
In the second case, we have edges x <d

−−→ y and y
<−d+1
−−−−−→ x

in GR, that is, (!xy, cxy) = (<, d) and (!yx, cyx) = (<,−d).
Here c < d and again x −→ . . . −→ y

!yxcyx
−−−−−→ x gives a negative

cycle.

Lemma 22 Suppose there exists a negative cycle in
min(G∗

R, GZ) containing no edges of the form x
<−Lx−−−−→ 0.

Then, there exist variables x ∈ BR ∪ LR and y ∈ BR ∪ UR

such that Zxy + Ryx < (≤, 0).

Proof: Let N be a negative cycle of min(G∗
R, GZ)

containing no edges of the form x
<−Lx−−−−→ 0. Therefore the

value of every edge in N comes from either GZ or GR. Since
both these graphs are canonical, we can assume without loss
of generality that no two consecutive edges in N come from
the same graph.

Suppose N has two edges x1 −→ x2 and y1 −→ y2 with edge
values coming from GR. From the definition of G∗

R we get:

x1, y1 1∈ LR ∪MR (3)
x2, y2 1∈ UR ∪MR

This condition implies that all the four variables are bounded.
Hence there exist finite valued edges x1

!c
−−→ y2 and y2

!
′c′

−−−→
x1 in GR.

Suppose (!, c) is lesser than or equal to the value of the
path x1 −→ . . . −→ y2 of N . Then, we could replace this path
by the edge x1

!c
−−→ y2 to get a smaller negative cycle N1.

From condition (3) and from the definition of G∗
R, we get that

the edge x1
!c
−−→ y2 remains in G∗

R and hence N1 is a negative
cycle of min(G∗

R, GZ).
Suppose (!, c) is greater than the value of the path x1 −→

. . . −→ y2. Then, by Lemma 21, we get x1 −→ x2 −→ . . . y1 −→

y2
!

′c′

−−−→ x1 to be a negative cycle. Since GR is canonical, we
can replace y1 −→ y2 −→ x1 −→ x2 by the edge y1 −→ x2 to get
a smaller negative cycle N2. Again from condition (3), we get
that y1 −→ x2 remains in G∗

R and N2 is a negative cycle of
min(G∗

R, GZ).

In both cases, we have eliminated two edges with value
coming from GR to get a smaller cycle with a single edge
instead. Continuing this further, we would get a negative cycle
containing only one edge coming from GR. Moreover, we
have seen that this edge would be retained in G∗

R too. Since
GZ is canonical, there would be only one edge coming from
GZ , which gives a negative cycle of the form x −→ y −→ x
with x −→ y coming from GZ and y −→ x coming from G∗

R.
From the definition of G∗

R, we see that x ∈ BR ∪ LR and
y ∈ BR ∪ UR.

Lemma 23 Suppose there exists a negative cycle in
min(G∗

R, GZ) containing an edge y
<−Ly
−−−−→ 0 with y ∈

LR ∪MR. Then, either there is a smaller negative cycle with
no edge of the form y

<−Ly
−−−−→ 0, or there exists x ∈ BR ∪ UR

such that R0x + Zxy + (<,−Ly) < (≤, 0).

Proof: Let N be a negative cycle in min(G∗
R, GZ) that

contains the edge y
<−Ly
−−−−→ 0 with y ∈ LR∪MR. If the vertex

0 occurs once again in N , we could obtain a smaller negative
cycle containing only one occurrence of 0. Hence without loss
of of generality, we can assume that 0 occurs only once in N ,
with the incoming edge y

<−Ly
−−−−→ 0. Consequently, every other

edge value in N comes from either GR or GZ and since both
these graphs are canonical, without loss of generality, we can
assume that no two consecutive edges come from the same
graph in the path from 0 to y.

Consider the variable y with its predecessor: x
!d
−−→ y.

Suppose the value (!, d) comes from GR. We can first infer
from the definition of G∗

R that x 1∈ LR ∪MR. Now suppose
we have the edge y

!
′−d′

−−−−→ 0 in GR. This means that d′ !′ y
in R and since y ∈ LR ∪ MR, we can see that d′ ≥ Ly.
This gives (<,−Ly) ≥ (!′,−d′) and hence we can replace
x

!d
−−→ y

<−Ly
−−−−→ 0 by the edge x −→ 0 coming from GR. As

we have already seen that x 1∈ LR ∪ MR, the edge x −→ 0
from GR remains in G∗

R too. Replacing by the edge x −→ 0

gives a negative cycle without an edge of the form y
<−Ly
−−−−→ 0.

Therefore, without loss of generality let us consider the value
(!, d) to come from GZ .

Consider an edge x1 −→ x2 that is part of N with edge value
coming from GR. Firstly, we can infer that x2 1∈ UR ∪MR.
Now consider the edges 0

!c
−−→ x2 and x2

!
′c′

−−−→ 0 of GR. If
(!, c) is smaller than the value of the path 0 −→ . . . −→ x2

in N , we can replace the path by the edge 0 −→ x2 that we
know remains in G∗

R since x2 1∈ UR ∪MR. Otherwise, from
Lemma 21, we get 0 −→ . . . x1 −→ x2

!
′c′

−−−→ 0 to be a negative
cycle. This cycle does not contain the edge y

<−Ly
−−−−→ 0 and

it is indeed smaller than N since we have assumed the edge
x −→ y to come from GZ and so x2 is not y.

From the above paragraphs, we get that we can reduce N

either to a smaller negative cycle without y <−Ly
−−−−→ 0 edge or

to a negative cycle with y
<−Ly
−−−−→ 0 that satisfies the following

properties:
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• if the predecessor to y is x, the edge x −→ y should come
from GZ ,

• the only edge coming from GR is of the form 0 −→ x′,
with x′ ∈ BR ∪ LR.

Hence, along with the fact that GZ is canonical, we get this
negative cycle to be of the form 0 −→ x −→ y

<−Ly
−−−−→ 0 where

the value of 0 −→ x comes from GR and the value of x −→ y
comes from GZ with x ∈ BR ∪ LR and y ∈ LR ∪MR.

B. Efficient inclusion testing
We briefly present the remaining steps for constructing an

efficient algorithm to check if Z ⊆ a!LU(Z ′). Recall that we
are aiming at an O(|X |2) complexity. Lemma 20 can be used
to efficiently determine if a region R ⊆ a!LU(Z ′). The task
is to find the regions intersecting Z and to consider all the
possible cases.

For two variables x, y, Lemma 34 in Appendix C gives the
minimum value of Ryx among the regions R intersecting a
zone Z . To be able to use Lemma 20 we additionally require
the variables x, y to be in appropriate sets BR,LR,UR or MR

with respect to R. To achieve this, one needs to consider
the relevant part of the zone that has regions with x and y
in appropriate sets and then apply Lemma 34. We get the
following theorem that can be directly transformed into an
algorithm. The proof of this Theorem appears in Appendix C

Theorem 24 Let Z,Z ′ be non-empty zones. Then, Z 1⊆
a!LU(Z ′) iff there exists a variable x with Zx0 ≥ (≤,−Ux)
and a variable y such that one of the following conditions is
true:

• Zy0 > (<,−Ly) and Z ′
xy < Zxy and Z ′

xy+(≤,−Ly) <
Zx0

• Zy0 ≤ (<,−Ly) and Zxy + (<,Ux − Ly) ≥ (≤
, 0) and Z ′

xy + (<,−Ly) < Zx0

VI. CONCLUSIONS

We have shown how one can use non-convex abstractions
while still working with zones. This works as soon as the
abstraction satisfies the transition compatibility condition. For
the construction to be efficient though, one needs an efficient
inclusion test. We have given such a test for a!LU abstrac-
tion. In [11] we have shown an efficient inclusion test for
Closure+LU abstraction. The test presented here is conceptually
more difficult to obtain. In the case of Closure+LU we were
looking which regions intersect a closure of a zone. For this
it has been of course enough to look at the zone itself. Since
a!LU abstraction is not defined as a closure of a zone, the
task here has been substantially more complicated. It is even
surprising that the inclusion test with respect to such a big
abstraction can be done by simply looking at projections on
two variables.

The result showing that a!LU abstraction is the biggest
possible is quite unexpected. It works thanks to the obser-
vation that when doing forward exploration it is enough to
consider only time-elapsed zones. This result explains why

after Extra+
LU from [3] there have been no new abstraction

operators [6]. Indeed it is not that easy to find a better zone
inside a!LU abstraction than that given by Extra+

LU abstrac-
tion. The inclusion test for a!LU turns out to be even simpler
than for Closure+LU , the latter in turn subsumes Extra+

LU test.
Hence by all criteria it is preferable to use a!LU to the other
two.

The maximality result for a!LU shows that to improve
reachability testing even further we will need to look at new
structural properties of timed automata, or to consider more
refined algorithms than forward exploration.
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APPENDIX

A. Compatibility of abstractions

We show that every abstraction defined based on a time-
abstract simulation is transition compatible. We assume that
we are given an automaton A.

Definition 25 (Time-abstract simulation) A (state based)
time-abstract simulation between two states of a transition
system is a relation (q, v) 5t.a. (q′, v′) such that:

• q = q′,
• if (q, v) →δ (q, v + δ) →α (q1, v1), then there exists a
δ′ ∈ R≥0 such that (q′, v′) →δ′ (q′, v′ + δ′) →α (q′1, v

′
1)

satisfying (q1, v1) 5t.a. (q′1, v
′
1).

For two valuations v, v′, we say that v 5t.a. v′ if for every
state q of the automaton, we have (q, v) 5t.a. (q′, v′). An
abstraction a based on a simulation 5t.a. can be defined as
follows:

Definition 26 (Abstraction based on simulation) Given a
zone Z , we define a(Z) = {v : ∃v′ ∈ Z. v 5t.a. v′}.

For a given automaton this abstraction defines an abstract
transition system. Our goal is to efficiently construct this
system, or a relevant part of it if we are checking a reachability
property. As explained in Section II, for nodes of this system
we can use pairs of the form (q, Z), i.e., pairs consisting of
a state and a zone. Such a pair will represent a configuration
(q, a(Z)). Transition relation will be computed on zones. This
is possible since the abstraction is defined using a simulation
so it is automatically transition compatible.

Lemma 27 Let a be an abstraction based on a simulation
relation. For every transition (q, a(Z)) ⇒a (q′,W ′) and the
matching transition (q, Z) ⇒ (q′, Z ′), we have W ′ = a(Z ′).

Proof: Let a be based on a simulation relation 5t.a., that
is, for a set W , we have a(W ) = {v : ∃v′ ∈ W. v 5t.a. v′}.
Without loss of generality, assume that ⇒ denotes a time-
transition followed by an action: →δ→a.

Let v ∈ W ′. Then, by definition of (q, a(Z)) ⇒a (q′,W ′),
there exists v1 ∈ a(Z) and a δ1 ∈ R≥0 such that
(q, v1) →δ1→a (q′, v′1) and v 5t.a. v′1. Now, since v1 ∈ a(Z),
we can find v2 ∈ Z satisfying v1 5t.a. v2. Therefore by
definition of simulation relation, there exists a δ2 ∈ R≥0

which enables the transition: (q, v2) →δ2→a (q′, v′2) and
yields v′1 5t.a. v′2. As we have seen before we have v 5t.a. v′1
and so we can infer that v 5t.a. v′2. By completeness of ⇒,
we will have v′2 ∈ Z ′ and hence v ∈ a(Z ′). This shows that
W ′ ⊆ a(Z ′).

Let v ∈ a(Z ′). Then, there exists v1 ∈ Z and a δ1 ∈ R≥0

such that v1 →δ1→a v′1 and v 5t.a. v′1. By the property of
an abstraction operator, we will have v1 ∈ a(Z) too. Now,
directly by the definition of (q, a(Z)) ⇒a (q′,W ′), we get
that v ∈ W ′ and this shows a(Z ′) ⊆ W ′.

B. Proofs for Section V

1) Proof of Proposition 14: Proposition 14 states that for
every zone Z , the abstraction a!LU(Z) is always a union
of regions. Before proving the proposition, we begin with
a lemma that relates the simulation v "LU v′ and the
containment v′ ∈ rLU (v) defined in page 4.

Lemma 28 Let v, v′ be valuations such that v "LU v′. Then,
v′ ∈ rLU (v).

Proof: It is not difficult to see from the definition of "LU

that both v and v′ satisfy the same LU-guards. It remains to
show the second property for v′ to be in rLU (v).

Let x, y be clocks such that ,v(x)- = ,v′(x)- and v(x) ≤
Ux, v(y) ≤ Ly . Suppose {v(x)}! {v(y)}, for ! being either
< or =. As v "LU v′, if v′(x) > v(x), we need v(x) > Ux

which is not true. Hence we can conclude that v′(x) ≤ v(x).
Similarly, for y, one can conclude that v′(y) ≥ v(y). As the
integer parts are the same in v and v′, we get {v′(x)} <
{v′(y)} or {v′(x)} ≤ {v′(y)} depending on whether ! is <
or =.

#PROPOSITION 14. Let Z be a zone: every region that has a
nonempty intersection with a!LU(Z) is included in a!LU(Z).

Proof: Let v and w be valuations belonging to the same
region. Assume that v ∈ a!LU(Z). So there exists a valuation
v′ ∈ Z such that v "LU v′. From Lemma 28, we get
v′ ∈ rLU (v). Since w belongs to the same region as v, one
also has v′ ∈ rLU (w). From the adjustment lemma, there
exists w′ ∈ nbd(v′) such that w "LU w′. But values in the
same neighbourhood satisfy the same difference constraints
and should hence belong to the same zones. This gives that
w′ ∈ Z and hence w ∈ a!LU(Z).

2) Proof of Lemma 19: Lemma 19 states that the distance
graph G∗

R defined in Definition 18 captures exactly the set
a
−1
!LU

(R).

#LEMMA 19. Let GR be the canonical distance graph of a
region R. Then [[G∗

R]] = a
−1
!LU

(R).

We begin with the following lemma that shows one side of
the implication.

Lemma 29 Let v′ be a valuation in a
−1
!LU

(R). Then, v′ ∈
[[G∗

R]].

Proof: Let GR be given by (!ij , cij)i,j∈X and let G∗
R =

(!′
ij , c

′
ij)i,j∈X be the graph obtained from Definition 18.

We will show that valuation v′ has to satisfy the constraints
given by G∗

R. That is, we will now show that for every i, j ∈
X , we get v′j − v′i !

′
ij c

′
ij . From the definition of G∗

R finite
weights occur only in edges of the form i −→ j and j

<−Lj
−−−−→ 0

with i ∈ BR ∪ UR and j ∈ BR ∪ LR. In the former case, the
finite values are in fact (!ij , cij). It is enough to consider
these edges.
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Now, as v′ ∈ a
−1
!LU

(R), there exists a valuation v ∈ R such
that v "LU v′. The valuation v satisfies the constraints of GR,
that is vj − vi !ij cij . Consider two variables, i ∈ BR ∪ UR

and j ∈ BR ∪ LR. Since v "LU v′, we will have v′i ≥ vi and
v′j ≤ vj . This clearly gives v′i − v′j !ij cij too. Also since
j ∈ LR ∪MR, we will have Lj < v′j ≤ vj which shows that
the constraint j <−Lj

−−−−→ 0 is satisfied.

The rest of the section is devoted to prove that if v′ ∈ G∗
R

then v′ ∈ a
−1
!LU

(R). Let v be an arbitrary valuation such that
v ∈ R. We will first show that v′ ∈ rLU (v). We will then
give a reverse-adjustment lemma below which will entail there
exists a valuation v1 ∈ nbd(v) such that v1 "LU v′. Since
v1 ∈ nbd(v), it would also belong to R.

Lemma 30 Let R be a region and let v′ ∈ G∗
R. Then, for

every valuation v ∈ R, v′ ∈ rLU (v).

Proof: Let v be a valuation in R. From the definition
of G∗

R, it can be easily seen that both v and v′ satisfy the
same LU-guards. It is the second property about the fractional
parts for clocks with the same integer parts that needs to be
checked.

Let x, y be clocks such that ,v′(x)- = ,v(x)-, ,v′(y)- =
,v(y)- and v(x) ≤ Ux and v(y) ≤ Ly . By the partition of
clocks this means that x /∈ UR and y /∈ LR. From Definition
18, the edge y −→ x carries the same weight as that of GR in
G∗

R.
Let ,v(x)- = cx, ,v(y)- = cy and let y !d

−−→ x be the edge
in GR. This entails that all valuations in R satisfy x− y! d.
Hence their fractional parts satisfy:

{x}− {y}! d− (cx − cy)

Suppose {x} < {y} for all valuations and since GR is
canonical, we can infer d− (cx − cy) ≤ 0 and if it is 0 then
! is <.

Now consider the graph G∗
R. Since the edge y

!d
−−→ x

remains in G∗
R, and since v′ ∈ G∗

R, the valuation v′ should
satisfy v′x − v′y ! d and as ,v′y- = cy and ,v′x- = cx, we get:

{v′x}− {v′y}! d− (,v′x- − ,v′y-)

⇒ {v′x}− {v′y}! d− (cx − cy)

We saw before that either d− (cx − cy) < 0 or if it is 0, then
! is <. This shows that {v′(x)} < {v′(y)}.

The other case when {v(x)} = {v(y)} can be shown exactly
in the same manner.

Lemma 31 (Reverse-adjustment) Let v, v′ be valuations
such that v′ ∈ rLU (v). Then there exists a valuation v1 ∈
nbd(v) such that v1 "LU v′.

Proof: The task is to pick a valuation v1 that has the same
integral parts as v and agrees to the ordering of fractional parts
as in v. Similar to the proof of the adjustment lemma, it is
enough to choose fractional parts for the clocks Xf that have:

• ,v′(x)- = ,v(x)-,
• {v′(x)} > 0 and {v(x)} > 0,
• v(x) < max(Ux, Lx).
Again, as v′ ∈ rLU (v), we have the following property:

∀x, y ∈ Xf such that v(x) ≤ Ux and v(y) ≤ Ly (4)
{v(x)} < {v(y)} ⇒ {v′(x)} < {v′(y)}

{v(x)} = {v(y)} ⇒ {v′(x)} ≤ {v′(y)}

Let 0δ1 < δ2 < · · · < δn < 1 be the fractional parts taken
by clocks of Xf in v and let Xi be defined as follows:

Xi = {x ∈ Xf | {v(x)} = δi}

for i ∈ {1, . . . , n}.
We will now select n values 0 < σ1 < σ2 < · · · < σn < 1

and set for all clocks xi ∈ Xi, the {v1(xi)} to be δi. We
perform an induction involving n steps.

After the kth step of the induction we assume the following
hypothesis:

• we have picked values 0 < σn−k+1 < σn−k+2 < · · · <
σn < 1,

• for all clocks x ∈ Xn−k+1 ∪Xn−k+2 · · ·∪Xn, the "LU

condition is satisfied,
• for all clocks y ∈ X1 ∪X2 · · · ∪Xn−k, we have

v′(y) ≤ Uy ⇒ {v′(y)} < σn−k+1 (5)

Let us now perform the k + 1th step and show that the
hypothesis is true for k+1. The task is to pick σn−k. We first
define two values 0 < l′ < 1 and 0 < u′ < 1 as follows:

l′ = min{ {v′(z)} | z ∈ Xn−k and v′(z) ≤ Lz }

u′ = max{ {v′(z)} | z ∈ Xn−k and v′(z) ≤ Uz } ∪ σn−k+1

It can be shown that u′ ≤ l′. The rest of the proof follows
in exactly the same lines as that of the adjustment lemma.

C. Proof of Theorem 24

For ease of reading, we make use of the following notations
in this section.

Remark 32 (Notations) For a clock x and a valuation v, we
denote v(x) by vx.

We begin with a few definitions. For a weight (!, c) we
define −(!, c) as (!,−c). We now define a ceiling function
6·7 for weights.

Definition 33 For a real c, let 6c7 denote the smallest integer
that is greater than or equal to c. We define the ceiling function
6(!, c)7 for a weight (!, c) depending on whether ! equals
≤ or <, as follows:

6(≤, c)7 =

{

(≤, c) if c is an integer
(<, 6c7) otherwise
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6(<, c)7 =

{

(<, c+ 1) if c is an integer
(<, 6c7) otherwise

The following lemma is the core for the proof of the main
theorem. It gives the least value of Rxy from among the
regions R that intersect Z .

Lemma 34 Let Z be a non-empty zone and let x, y be
variables. Then, from among the regions R that intersect Z ,
the least value of Rxy is given by
{

(<,∞) if Zy0 < (≤,−αy)

max{6−Zyx7, 6−Zy07 − (≤,αx)} otherwise

Proof: Let G be the canonical distance graph representing
the zone Z . We denote the weight of an edge i −→ j in G by
(!ij , cij). Recall that this means Zij = (!ij , cij). For clarity,
for a valuation v, we write vx for v(x).

We are interested in computing the smallest value of the
y− x constraint defining a region belonging to Closureα(Z),
that is, we need to find min{[v]xy | v ∈ Z}. Call this β. By
definition of regions, we have for a valuation v:

[v]xy =











(<,∞) if vy > αy

6(≤, vy − vx)7 if vy ≤ αy and vx ≤ αx

(<, 6vy7 − αx) if vy ≤ αy and vx > αx

(6)

We now consider the first of the two cases from the
statement of the lemma. Namely, Zy0 < (≤,−αy). This means
that 0−vy!y0 cy0 and cy0 ≤ −αy; moreover !y0 is the strict
inequality if cy0 = −αy . In consequence, all valuations v ∈ Z ,
satisfy vy > αy . Whence β = (<,∞).

We now consider the case when Zy0 ≥ (≤,−αy). Let G′

be the graph in which the edge 0 −→ y has weight min{(≤
,αy), (!0y, c0y)} and the rest of the edges are the same as
that of G. This graph G′ represents the valuations of Z that
have vy ≤ αy: [[G′]] = {v ∈ Z | vy ≤ αy}. We show that
this set is not empty. For this we check that G′ does not have
negative cycles. Since G does not have negative cycles, every
negative cycle in G′ should include the newly modified edge
0 −→ y. Note that the shortest path value from y to 0 does not
change due to this modified edge. So the only possible negative
cycle in G′ is 0 −→ y −→ 0. But then we are considering the
case when Zy0 ≥ (≤,−αy), and so Zy0 + (≤,αy) ≥ (≤, 0).
Hence this cycle cannot be negative either. In consequence all
the cycles in G′ are positive and [[G′]] is not empty.

To find β, it is sufficient to consider only the valuations in
[[G′]]. As seen from Equation 6, among the valuations in [[G′]],
we need to differentiate between those with vx ≤ αx and the
ones with vx > αx. We proceed as follows. We first compute
min{[v]xy | v ∈ [[G′]] and vx ≤ αx}. Call this β1. Next, we
compute min{[v]xy | v ∈ [[G′]] and vx > αx} and set this as
β2. Our required value β would then equal min{β1,β2}.

To compute β1, consider the following distance graph G′
1

which is obtained from G′ by just changing the edge 0 −→ x

to min{(≤,αx), (!0x, c0x)} and keeping the remaining edges
the same as in G′. The set of valuations [[G′

1]] equals {v ∈
[[G′]] | vx ≤ αx}. If [[G′

1]] = ∅, we set β1 to (<,∞) and
proceed to calculate β2. If not, we see that from Equation 6,
for every v ∈ [[G′

1]], [v]xy is given by 6(≤, vy − vx)7. Let
(!1, w1) be the shortest path from y to x in the graph G′

1.
Then, we have for all v ∈ [[G′

1]], vx−vy!1w1. If !1 is ≤, then
the least value of [v]xy would be (≤,−w1) and if !1 is <,
one can see that the least value of [v]xy is (<,−w1+1). This
shows that β1 = 6(!1,−w1)7. It now remains to calculate
(!1, w1).

Recall that G′
1 has the same edges as in G except possibly

different edges 0 −→ x and 0 −→ y. If the shortest path from y
to x has changed in G′

1, then clearly it should be due to one of
the above two edges. However note that the edge 0 −→ y cannot
belong to the shortest path from y to x since it would contain
a cycle y −→ . . . 0 −→ y −→ . . . x that can be removed to give
shorter path. Therefore, only the edge 0 −→ x can potentially
yield a shorter path: y −→ . . . −→ 0 −→ x. However, the shortest
path from y to 0 in G′

1 cannot change due to the added edges
since that would form a cycle with 0 and we know that all
cycles in G′

1 are positive. Therefore the shortest path from y
to 0 is the direct edge y −→ 0, and the shortest path from y to
x is the minimum of the direct edge y −→ x and the path y −→
0 −→ x. We get: (!1, w1) = min{(!yx, cyx), (!y0, cy0) + (≤
,αx)} which equals min{Zyx, Zy0 + (≤,αx)}. Finally, from
the argument in the above two paragraphs, we get:

β1 =































(<,∞) if [[G′
1]] = ∅

6−Zyx7 if [[G′
1]] 1= ∅ and

Zyx ≤ Zy0 + (≤,αx)

6−Zy07+ (≤,−αx) if [[G′
1]] 1= ∅ and

Zyx > Zy0 + (≤,αx)

(7)

We now proceed to compute β2 = min{[v]xy | v ∈
[[G′]] and vx > αx}. Let G′

2 be the graph which is obtained
from G′ by modifying the edge x −→ 0 to min{Zx0, (<,−αx)}
and keeping the rest of the edges the same as in G′. Clearly
[[G′

2]] = min{v ∈ [[G′]] | vx > αx}.
Again, if [[G′

2]] is empty, we set β2 to (<,∞). Otherwise,
from Equation 6, for each valuation v ∈ [[G′

2]], the value of
[v]xy is given by (<, 6vy7−αx). For the minimum value, we
need the least value of vy from v ∈ [[G′

2]]. Let (!2, w2) be
the shortest path from y to 0 in G′

2. Then, since −vy !2 w2,
the least value of 6vy7 would be −w2 if !2 =≤ and equal to
6−w27 if !2 =< and β2 would respectively be (<,−w2−αx)
or (<,−w2 + 1− αx). It now remains to calculate (!2, w2).

Recall that G′
2 is G with 0 −→ y and x −→ 0 modified. The

shortest path from y to 0 cannot include the edge 0 −→ y since
it would need to contain a cycle, for the same reasons as in the
β1 case. So we get (!2, w2) = min{Zy0, Zyx + (<,−αx)}.
If Zy0 ≤ Zyx + (<,−αx), then we take (!2, w2) as Zy0,
otherwise we take it to be Zyx + (<,−αx). So, we get β2 as
the following:
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β2 =































(<,∞) if [[G′
2]] = ∅

−Zyx + (<, 1) if [[G′
2]] 1= ∅ and

Zy0 ≥ Zyx + (<,−αx)

6−Zy07+ (<,−αx) if [[G′
2]] 1= ∅ and

Zy0 < Zyx + (<,−αx)
(8)

However, we would like to write β2 in terms of the cases used
for β1 in Equation 7 so that we can write β, which equals
min{β1,β2}, conveniently.

Let ψ1 be the inequation: Zyx ≤ Zy0 + (≤,αx). From
Equation 7, note that β1 has been classified according to ψ1

and ¬ψ1 when [[G′
1]] is not empty. Similarly, let ψ2 be the

inequation: Zy0 ≥ Zyx + (<,−αx). From Equation 8 we see
that β2 has been classified in terms of ψ2 and ¬ψ2 when
[[G′

2]] is not empty. Notice the subtle difference between ψ1

and ψ2 in the weight component involving αx: in the former
the inequality associated with αx is ≤ and in the latter it is <.
This necessitates a bit more of analysis before we can write
β2 in terms of ψ1 and ¬ψ1.

Suppose ψ1 is true. So we have (!yx, cyx) ≤ (!y0, cy0 +
αx). This implies: cyx ≤ cy0+αx. Therefore, cy0 ≥ cyx−αx.
When cy0 > cyx − αx, ψ2 is clearly true. For the case when
cy0 = cyx − αx, note that in ψ2 the right hand side is always
of the form (<, cyx − αx), irrespective of the inequality in
Zyx and so yet again, ψ2 is true. We have thus shown that ψ1

implies ψ2.
Suppose ¬ψ1 is true. We have (!yx, cyx) > (!y0, cy0+αx).

If cyx > cy0 + αx, then clearly cy0 < cyx − αx implying that
¬ψ2 holds. If cyx = cy0+αx, then we need to have !yx =≤
and !y0 =<. Although ¬ψ2 does not hold now, we can safely
take β2 to be 6−Zy07+(<,−αx) as its value is in fact equal
to −Zyx + (<, 1) in this case. Summarizing the above two
paragraphs, we can rewrite β2 as follows:

β2 =































(<,∞) if [[G′
2]] = ∅

−Zyx + (<, 1) if [[G′
2]] 1= ∅ and

Zxy ≤ Zy0 + (≤,αx)

6−Zy07+ (<,−αx) if [[G′
2]] 1= ∅ and

Zxy > Zy0 + (≤,αx)

(9)

We are now in a position to determine β as min{β1,β2}.
Recall that we are in the case where Zy0 ≤ (≤,−αy)
and we have established that [[G′]] is non-empty. Now since
[[G′]] = [[G′

1]] ∪ [[G′
2]] by construction, both of them cannot be

simultaneously empty. Hence from Equations 7 and 9, we get
β, the min{β1,β2} as:

β=

{

6−Zyx7 if Zxy ≤ Zy0 + (≤,αx)

6−Zy07+ (<,−αx) if Zxy > Zy0 + (≤,αx)
(10)

There remains one last reasoning. To prove the lemma, we
need to show that β = max{6−Zyx7, 6−Zy07 + (<,−αx)}.
For this it is enough to show the following two implications:

Zyx ≤ Zy0 + (≤,αx) ⇒ 6−Zyx7 ≥ 6−Zy07+ (<,−αx)

Zyx > Zy0 + (≤,αx) ⇒ 6−Zyx7 ≤ 6−Zy07+ (<,−αx)

We prove only the first implication. The second follows in a
similar fashion. Let us consider the notation (!yx, cyx) and
(!y0, cy0) for Zyx and Zy0 respectively. So we have:

(!yx, cyx) ≤ (!y0, cy0) + (≤,αx)

⇒ (!yx, cyx) ≤ (!y0, cy0 + αx)

If the constant cyx < cy0+αx, then −cyx > −cy0−αx and we
clearly get that 6−Zyx7 ≥ 6−Zy07+(<,−αx). If the constant
cyx = cy0 + αx and if !y0 =≤, then the required inequation
is trivially true; if !y0 =<, it implies that !yx =< too and
clearly 6(<,−cyx)7 equals 6(<,−cy0)7+ (<,−αx).

We are now in a position to prove the main theorem.

#THEOREM 24. Let Z,Z ′ be non-empty zones. Then, Z 1⊆
a!LU(Z ′) iff there exists a variable x with Zx0 ≥ (≤,−Ux)
and a variable y such that one of the following conditions is
true:

• Zy0 > (<,−Ly) and Z ′
xy < Zxy and Z ′

xy+(≤,−Ly) <
Zx0

• Zy0 ≤ (<,−Ly) and Zxy + (<,Ux − Ly) ≥ (≤
, 0) and Z ′

xy + (<,−Ly) < Zx0

Proof: From Lemma 20, we get that Z 1⊆ a!LU(Z ′) iff
there exists a region R intersecting Z that satisfies one of the
following conditions for variables x ∈ BR ∪ LR and y ∈ X :

y ∈ BR ∪ UR and Z ′
xy +Ryx < (≤, 0), or (11)

y ∈ LR ∪MR and R0x + Z ′
xy + (<,−Ly) < (≤, 0)

To see if the first of the above two conditions is true, we
need the minimum value of Ryx from among the regions R
intersecting Z and satisfying R0y ≤ Ly and R0x ≤ Ux. The
sum of this minimum value of Ryx and Z ′

xy is less than (≤, 0)
iff Z 1⊆ a!LU(Z ′). Therefore, we first restrict our attention to
the part of Z that gives regions with R0y ≤ Ly and R0x ≤ Ux.

Let G1 be the graph obtained from GZ by modifying the
edge 0 −→ x to min(Z0x, (≤, Ux)) and 0 −→ y to min(Z0y, (≤
, Ly)). Every valuation v ∈ [[G1]] has vx ≤ Ux and vy ≤
Ly and hence gives rise to a region of our required form.
Conversely, every valuation v ∈ Z that is part of a region of
the required form has vx ≤ Ux, vy ≤ Ly and hence satisfies
the constraints of G1, that is belongs to [[G1]]. We know that
Z is non-empty. Therefore, [[G1]] will be non-empty if the two
modified edges do not introduce negative cycles:

[[G1]] 1= ∅ ⇔ Zx0 ≥ (≤,−Ux) and Zy0 ≥ (≤,−Ly) (12)

Let us assume that [[G1]] is non-empty. We will now use
Lemma 34 to get the least value of Ryx among the regions R
that intersect [[G1]]. There are two cases given by Lemma 34.
We first need the shortest path from x to 0 in G1 to find the
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correct case. It is given by Zx0 itself since the newly modified
edges cannot influence it. Therefore [[G1]]x0 is exactly Zx0

and since [[G1]] is non-empty, from Equation (12), Zx0 ≥
(≤,−Ux) and in particular this implies Zx0 ≥ (<,−αx).
So we need to consider the second case of the equation
given in Lemma 34. The shortest path from x to y in G1

is given by min(Zxy, Zx0 + (≤, Ly)). From Lemma 34, the
minimum value of Ryx is given by max(6−Zxy7, 6−Zx07 +
(≤,−Ly), 6−Zx07 + (≤,−αy)). Since (≤,αy) ≤ (≤, Ly),
we can safely discard the last component. Substituting in
Condition 1, we get:

Z ′
xy +max(6−Zxy7, 6−Zx07+ (≤,−Ly)) < (≤, 0)

⇔ Z ′
xy + 6−Zxy7 < (≤, 0) and

Z ′
xy + 6−Zx07+ (≤,−Ly) < (≤, 0)

⇔ Z ′
xy < Zxy and (13)

Z ′
xy + (≤,−Ly) < Zx0

Let us follow a similar procedure to now see if the second of
our required conditions is true. Let G2 be the graph obtained
from GZ by modifying the edge 0 → x to min(Z0x, (≤, Ux))
and the edge y → 0 to min(Zy0, (<,−Ly)). The set [[G2]]
represents the set of valuations v ∈ Z that have vx ≤ Ux and
vy > Ly. As Z is non-empty, for [[G2]] to be non-empty, the
newly modified edges should not introduce a negative cycle:

[[G2]] 1= ∅ ⇔ Zx0 + (≤, Ux) ≥ (≤, 0) and (14)
Z0y + (<,−Ly) ≥ (≤, 0) and
(≤, Ux) + Zxy + (<,−Ly) ≥ (≤, 0)

Assume [[G2]] is empty. We will again use Lemma 34 to get the
least value of R0x among the regions that intersect [[G2]]. The
shortest path from x to 0 in G2 is given by min(Zx0, Zxy+(<
,−Ly)). Call it δ. From Equation (14), we get both Zx0 ≥
(≤,−Ux) and Zxy + (<,−Ly) ≥ (≤,−Ux) and hence in
particular greater than or equal to (≤,−αx). Therefore δ ≥
(≤,−αx) and from Lemma 34, the least value of R0x is given
by 6−δ7. We now consider two separate cases:

a) When Zy0 ≤ (<,−Ly).: In this case, δ = Zx0 and
substituting the least value of R0x in Condition 2 of (11) gives:

Z ′
xy + (<,−Ly) < Zx0 (15)

So, when Zy0 ≤ (<,−Ly) checking for Condition 2 is
equivalent to checking the conditions given by Equations (14)
and (15). Also note that since Z0y+Zy0 ≥ (≤, 0), in this case
we directly get Z0y +(<,−Ly) ≥ (≤, 0) and thus we get the
second part in the statement of the theorem.

b) When Zy0 > (<,−Ly).: Now, δ is min(Zx0, Zxy +
(<,−Ly)) and 6−δ7 equals max(6−Zx07,−Zxy+(<,Ly)+
(<, 1)). Substituting this in Condition 2 gives:

Z ′
xy + (<,−Ly) < Zx0 and (16)

Zxy + Z ′
xy + (<, 1) < (≤, 0)

So, when Zy0 > (<,−Ly), checking for Condition 2 of (11)
is equivalent to checking the conditions given by Equations
(14) and (16). However this would imply that the conjunction

of (12) and (13) is true. Therefore when Zy0 > (<,−Ly) it
is sufficient to check for Condition 1 of (11).
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