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The goal

Understand logics on (finite) trees.

Some more prominent tree logics
CTL, CTL∗, µ-calculus,

FOL, MSOL, chain logic, anti-chain logic.

We understand relations between these logics
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Problem
Given a property, decide in which logic it can be expressed.
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An example of a surprising expressive power

Even depth property (Potthoff)
Consider the property of binary trees saying that all leaves in the forest are at even
depth.

This property can be expressed in FO[≤] (with the descendant order).

Mixed parity nodes
A mixed parity node has a path to a leaf of even length, and another one of odd length

The case when there are no mixed parity nodes

How to check if there are mixed parity nodes
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An example of a language not in first-order

Positive boolean expressions
Let A = {∨,∧, 0, 1}, and consider the set of trees that evaluate to 1 (and are
well-formed).

Theorem (Heuter, Potthoff)
The above language is not definable in chain logic. (This language is aperiodic.)

Theorem (Potthoff, Thomas)
The above language is definable in antichain logic.
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How it is done for words

Definition (Recognition)
A language L is recognized by a monoid S if there are
α : Σ∗ → S and F ⊆ S such that α−1(F) = L.

Definition (Syntactic monoid for L)
Define v1 ∼L v2 iff for all u,w ∈ Σ∗: uv1w ∈ L iff uv2w ∈ L.

This is an equivalence relation so we can take 〈Σ∗/ ∼L, ·, ε〉.

Definition (Apperiodicity)
A monoid 〈S , ·〉 is aperiodic iff there is n such that sn = sn+1 for all s ∈ S .

Theorem (Schützenberger, McNaughton & Papert)
A language is FOL definable iff its syntactic monoid is aperiodic.
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A naive example comparing automata and algebra

A FOL definable language
Let L = (ab)∗cΣ∗. It is first-order definable.

The minimal automaton for L
a

bb, c c

a, b, ca, b, c

Remarks
The aperiodicity property is not that visible from the structure of the automaton.

Every property of syntactic algebra is also a property of the minimal automaton.
The converse is not true.

This is good, as long as we know that properties of interest are properties of
syntactic algebras.
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How to do equally well for trees?

The big plan
Define an algebraic notion of recognition.

This should give a notion of syntactic algebra (invariant, for a given language).

Decide the properties of the language looking at the properties of its syntactic
algebra.

It is convenient to look at equational properties.
If we have an Eilenberg like theorem we can deduce that there is an equational
characterization without knowing what it is.
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Related work

[Nivat & Podelski’87] Looking only at the structure contexts with application. Not
enough to characterize FOL.

[Wilke’96] Three sorted structure: labels, trees, contexts.

[Salehi & Steinby’ 07] Variety theorem for the Wilke’s setting.

[Esik’99]

[Esik & Weil’ 05] Preclones. Algebra of all term, i.e., contexts of arbitrary arity.

[Thomas’84] Regular expressions for trees.

[Heuter’89] Regular expressions for FOL.

[Potthoff’] Star free=regular. Apperiodic is more than star free.

[Bojańczyk & W.’04] Characterization of EF.

[Benedikt & Segufin’05-’07] Characterization of FO[succ].

[Bojańczyk ’07] Characterization of EF + F−1.
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Forests

Definition (Trees, Forests)
A A-tree is a partial mapping t : N∗ → A with finite and prefix closed domain.

Forest is a finite sequence of trees.

c

b1 b2 . . . bn

a1 . . . ak

b

c1 c2

a1 a1 . . . ak

b

a

b

a1 a2
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Context

Definition (Contexts)
A A-context is a (A ∪ {∗})-forest, with ∗ occurring in exactly one leaf;
called a hole.

We have two operations:
context substitution p(t), and context composition p · q.

∗
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Forest and context monoid

Forest monoid
Forest monoid consists of the set of A-forests, with concatenation operation (it is not
commutative), and the empty tree.

Context monoid
Context monoid consists of the set of A-contexts with context composition.

Notation
Forest concatenation will be denoted by + and context composition by · :

s + t, p · q
One letter trees and contexts are just denoted by letters : b(t1 + t2 + · · ·+ tn)

b

t1 t2 . . . tn
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Actions of forests and contexts

Action of contexts on forests
If p is a context and t is a fores then p(t) is the tree obtained by the substitution of p in
the hole of t.

∗
p

t

we have (p · q)(t) = p(q(t))

From forests to contexts.
If t is a forest then we have the context inl(t).

t
∗

Similarly we have inr(t).
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Algebraic structure

Forest algebra 〈H ,V , act, inl , inr〉
Two monoids: H and V . We denote their operations by + and ·, respectively.

An action act : H ×V → H . We write vh for act(h, v).
Two operations inl , inr : H → V .

Axioms:
action (v · w)h = v(wh);

insertion inl(g)h = g + h and inr(g)h = h + g;
faithfulness for every two distinct v,w ∈ V there is h ∈ H with vh 6= wh;

Some conventions
H will be called horizontal monoid, and V vertical monoid.

The neutral element of the horizontal monoid is 0 and the operation is +.

The neutral element of the vertical monoid is 1 and the operation is ·.
Action is written on the left: so act(h, v) is written vh.
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insertion inl(g)h = g + h and inr(g)h = h + g;
faithfulness for every two distinct v,w ∈ V there is h ∈ H with vh 6= wh;

Example
H any monoid, V = H → H with composition as multiplication.

The action is application.

The insertions are determined by the insertion axiom.
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Algebraic structure

Forest algebra 〈H ,V , act, inl , inr〉
Two monoids: H and V . We denote their operations by + and ·, respectively.

An action act : H ×V → H . We write vh for act(h, v).
Two operations inl , inr : H → V .

Axioms:
action (v · w)h = v(wh);

insertion inl(g)h = g + h and inr(g)h = h + g;
faithfulness for every two distinct v,w ∈ V there is h ∈ H with vh 6= wh;

Remarks
Every element from H is of the form v0 for some v ∈ V : take v = inlh.

v0 = (inlh)0 = h + 0 = h .

Mappings inl , inr : H → V are, injective, monoid homomorphisms:

inl(h1 + h2) = inl(h1)inl(h2) and inl(0) = 1 .
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Free forest algebra

Free forest algebra
For an alphabet A, the free forest algebra A∆ is:

The horizontal monoid is the set of forests over A.

The vertical monoid is the set of contexts over A.

The action is the substitution of forests in contexts.

The inl function takes a forest and transforms it into a context with a hole to the
right of all the roots in the forest. Similarly for inr but the hole is to the left of the
roots.

pt

∗
p

t

inlt
t

∗
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Morphisms

Morphism (α, β) : (H ,V )→ (G,V )
It is a pair of monoid morphisms (α : H → G, β : V →W ) with additional requirements
ensuring that the operations are preserved:

α(vh) = β(v)α(h)
β(inl(h)) = inl(α(h)) and β(inr(h)) = inr(α(h))

Remark
The component α is determined by β via

α(h) = α(h + 0) = α(inl(h)0) = β(inl(h))α(0) ,

where α(0) must be the neutral element in G as α is a monoid morphism.

Lemma (Free algebra)
For every forest algebra (H ,V ): every function f : A→ V can be uniquely extended to
a morphism (α, β) : A∆ → (H ,V ) such that β(a) = f (a) for every a ∈ A.
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Recognition

Recognizing a language L of A-forests
L is recognized by a surjective morphism (α, β) : A∆ → (H ,V ) if L is the inverse
image α−1(F) of some F ⊆ H . L is recognizable if it is recognized by a finite (H ,V ).

Even number of nodes
Let L be the set of forest with even number of nodes.

Consider the forest algebra where H = V = 〈{0, 1}, 0,+(mod2)〉
The action is also addition mod 2 and insertions are determined uniquely.

The morphism maps a context to 0 if it has even number of nodes.

The accepting set of L is 0.

b

b b

a a a a a

β(a) = 1
β(b) = 1
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Recognition

Recognizing a language L of A-forests
L is recognized by a surjective morphism (α, β) : A∆ → (H ,V ) if L is the inverse
image α−1(F) of some F ⊆ H . L is recognizable if it is recognized by a finite (H ,V ).

Even number of nodes
Let L be the set of forest with even number of nodes.

Consider the forest algebra where H = V = 〈{0, 1}, 0,+(mod2)〉
The action is also addition and insertions are determined uniquely.

The morphism maps a context to 0 if it has even number of nodes.

The accepting set of L is 0.

Label testable
L is label-testable if membership of t in L depends on the labels that occur in t.
We set H = V = P(A) with union as operation.

The action is also union, the insertions are determined.

Recognizing morphism takes a context to the set of labels appearing in it.
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Automata

Automaton for unranked trees (first approximation)
A = 〈Q,A, δ,F ⊆ Q〉

where δ : (A×Q∗ → Q)

b

b b

a a a a a
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Automata

Automaton for unranked trees (first approximation)
A = 〈Q,A, δ,F ⊆ Q〉

where δ : (A×Q∗ → Q)

Definition (Automaton for unranked trees)
A = 〈(Q, 0,+),A, δ,F ⊆ Q〉

where δ : (A×Q → Q)

Example

b
qb = δ(b, q1

b + q2
b )

bq3
a = qa + qa + qa

q1
b = δ(b, q3

a )
b

q2
a = qa + qa

q2
b = δ(b, q2

a )

a
0

qa a
0

qa a
0

qa a
0

qa a
0

qa
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Between algebra and automata

Algebra → automata
Take a morphism (α, β) : A∆ → (H ,V ) and F ⊆ H .
We construct the automaton

A(α,β) = 〈H ,A, δ,F〉 where: δ(a, h) = β(a)h.
Claim: L(A(α,β)) = α−1(F).

Automata → algebra
Take an automaton A = 〈(Q,+, 0),A, δ : A×Q → Q,F〉.
We construct the algebra (H ,V ) with

H = (Q,+, 0);
V : Q → Q with the composition operation.

act is the application v(h).
Claim: Take the unique homomorphism (αA, βA) : A∆ → (H ,V ) s.t.:

βA(a) = δ(a) for all a ∈ A.
We have αA(t) = tA.
Remark: (H ,V ) so defined may be not faithful.
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Syntactic algebra for forest languages
Fix a language L of A-forests.

Equivalences
Two A-forests s, t are L-equivalent if for every context p, either both or none of the
forests ps, pt belong to L.

Two A-contexts p, q are L-equivalent if for every forest t, the forests pt and qt are
L-equivalent.

Definition (Syntactic forest algebra for L)
The syntactic forest algebra for L is the quotient of A∆ with respect to L-equivalence.
The syntactic morphism (αL, βL) assigns to every element of A∆ its equivalence class.

Fact
A language L of A-forests is recognized by a the syntactic morphism (αL, βL).
Moreover, any morphism (α, β) : A∆ → (H ,V ) that recognizes L can be extended by
a morphism (α′, β′) : (H ,V )→ (H L,V L) so that β′ ◦ β = βL.

Computing syntactic algebras
If L is recognizable then the syntactic algebra is finite. Given an automaton for L, its
syntactic algebra can be computed by a straightforward fixpoint algorithm.
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An example: label-testable languages

Theorem
A language is label testable iff its syntactic algebra satisfies the equations:

vv = v vw = wv.

Proof
If L is label testable then its syntactic algebra satisfies the equations.

If an algebra satisfies the equations then H is also idempotent and commutative.

It also holds that v(h) = h + v0.

This allows to show that every forest is equivalent to the one of the form:
a10 + · · ·+ an0.
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An example: Σ1-languages

Σ1 formulas
A Σ1 formula is a formula of first-order logic, where only existential quantifiers appear
in the quantifier prenex normal form. (There is the descendant order in the signature).

Theorem
Let L be a forest language, and let (α, β) be its syntactic morphism. A language L is
definable in Σ1 if and only if vh ∈ α(L) implies vwh ∈ α(L).

Proof
⇒ If t ∈ L then any extension of t is in L.

⇐ For every h ∈ H consider minimal size forests mapped to h. Every such forest
is of bounded size.

A forest is in L if it is an extension of a minimal forest that is mapped to h ∈ α(L).
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An example: EF-logic

Syntax and semantics
If a is a letter, then a is a formula true in trees whose root label is a.

EF formulas are closed under boolean connectives.

If ϕ is an EF formula, then EFϕ is an EF formula true in trees having a proper
subtree satisfying ϕ.

Definition (Definability in EF)
A forest language L is definable in EF if for some a ∈ A and for some ϕ of EF :

L = {t : at � ϕ}.

Theorem
A forest language is definable in EF if and only if its syntactic forest algebra satisfies
the following equations

g + h = h + g
vh = h + vh .
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Example: EF + F−1

Definition (EF + F−1)
To the definition of EF we add the clause:

If ϕ is a formula then F−1ϕ is a formula true in a node of a tree if there is a proper
ancestor satisfying ϕ.

Theorem (Bojańczyk)
Forest language is definable in EF + F−1 iff its syntactic forest algebra satisfies the
following:

h + h = h g + h = h + g
(vw)ω = (vw)ωw(vw)ω

(u1w1)ω(u2w2)ω = (u1w1)ωu1w2(u2w2)ω for u1 a u2, w1 a w2

we need to assume here that vi ,wi 6= 1.
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Towards varieties of forest algebras

Forest algebra 〈H ,V , act, inl , inr〉
Two monoids: H and V . We denote their operations by + and ·.
An action act : H ×V → H . We write vh for act(h, v).
Two operations inl , inr : H → V .

Axioms:
action (v · w)h = v(wh);

insertion inl(g)h = g + h and inr(g)h = h + g;
faithfulness for every two distinct v,w ∈ V there is h ∈ H with vh 6= wh;

Remark
A subalgebra, quotient, or a homomorphic image of a forest algebra may not be a
forest algebra (because of faithfulness.).
The solution is to take the faithful quotient of the result.
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Varieties of forest algebras

Pseudovariety
A pseudovariety of finite forest algebras is a collection V of finite forest algebras with
the following properties:

V is closed under binary product.
If (H ,V ), (G,U ) ∈ V then (H ,V )× (G,U ) ∈ V.

V is closed under faithful quotients of homomorphic images.
If (H ,V ) ∈ V and (H ′,V ′) is its homomorphic image, then faith(H ′,V ′) ∈ V.
V is closed under faithful quotients of subalgebras.
If (H ,V ) ∈ V and (H ′,V ′) is its subalgebra then faith(H ′,V ′) ∈ V.

Example
Equation is a pair of terms in a signature of forest algebras (with variables of two
types).

An algebra satisfies an equation if for all valuations of variables the values of the
two terms are the same.

Everything definable by a finite set of equations is a variety.
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Examples

Theorem
A language is label testable iff its syntactic algebra satisfies the equations:

vv = v vw = wv.

Theorem
Let L be a forest language, and let (α, β) be its syntactic morphism. A language L is
definable in Σ1 if and only if vh ∈ α(L) implies vwh ∈ α(L).

Theorem
A forest language is definable in EF if and only if its syntactic forest algebra satisfies
the following equations

g + h = h + g
vh = h + vh .
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First correspondence theorem

Varieties of forest languages
Let V be a variety of algebras. For every finite alphabet A define

V(A) = {L ⊆ HA : (H L,V L) ∈ V}.

We call V the variety of forest languages associated to V, and write

V 7→ V.

Theorem
The mapping V 7→ V is one-to-one.
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Second correspondence theorem

A prefix operator
If L is a language of A-forests and p is a A-context then we define

p−1L = {t : pt ∈ L}.

Theorem
LetW be an operator assigning to each finite alphabet A a familyW(A) of
A-languages. W is a variety of languages if and only if the following three conditions
hold:

1 for all finite alphabets A,W(A) is closed under boolean operations.
2 for all finite alphabets A, if L ∈ W(A) and p is an A-context then p−1L ∈ W(A).
3 for all finite alphabets A and B, if (α, β) : A∆ → B∆ is a homomorphism, and

L ∈ W(B), then α−1(L) ∈ W(A).
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Application: first-order logic

First-order logic over forest, FO[≤]
We have a unary predicate Qa for every letter in the alphabet.

We have ≤ relation interpreted as a descendant relation in the tree.

Example: ∃x∀y.(x ≤ y) defines trees.

Fact
FO[≤] is a variety of forest languages.

fact
Chain logic is a variety of forest languages.

Remark
FO[succ] is not a variety of forest languages. Closure under inverse homomorphic
images fails.
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Defining varieties by equations

Let {li = ri}i>0 be an infinite set of equations.

An algebra ultimately satisfies {li = ri}i>0 if it satisfies all but finitely many of
these equations.

A variety ultimately defined by {li = ri}i>0 is the set of finite algebras ultimately
satisfying these equations.

Theorem
If V is a pseudovariety, then it is ultimately defined by some set of equations.

Corollary
There is a set of equations ultimately defining FO[≤].
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The zoo of first-order logics on trees

Two orders
In unranked trees we have two orders:

≤H the horizontal order, i.e., order between siblings.

≤V the vertical order, i.e., ancestor-descendant order.

We write FO[≤H ,≤V ] or FO[≤V ] to show which order is present.

UHV: Given a regular language L of unranked trees,
decide if L can be defined in FO[≤H ,≤V ].

l
BHV: Given a regular language L of binary trees,

decide if L can be defined in FO[≤H ,≤V ].
↓

BV: Given a regular language L of binary trees,
decide if L can be defined in FO[≤V ].

↓
UV: Given a regular language L of unranked trees,

decide if L can be defined in FO[≤V ].
↑

CTL*: Given a regular language L of unranked trees,
decide if L can be defined in CTL*.
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Comments on missing reductions

Fact
The language “unranked trees with even number of nodes” is definable in
MSOL[≤H ,≤V ] but not in MSOL[≤V ].

Fact
The language “binary trees where all leaves have even depth” can be defined in
FO[≤H ,≤V ] but not in FO[≤H ].
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Conclusions and some other results

An algebraic framework for recognizing forest languages. It is based on a new
interpretation of a transformation semigroup.

Basic results from the theory of semigroups carry over to forest algebras.

The framework permits to express some characterizations in a simple way.

“By design” there are some things not expressible in the framework. Ex.
deterministic tree languages, or frontier languages.

The variety theorem guarantees that there is an equational characterisation for
some interesting logics.

Considering unranked forests is interesting also for the case of binary forests.

The notion of the wreath product of transformation semigroups generalizes
naturally to forest algebras.

As in the word case one gets the wreath product principle connecting the wreath
product with the cascade product of automata, and the formula substitution.

This gives characterizations of many known logics in terms of wreath products of
simple varieties.
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