
Choice Functions and Well-Orderings over the

Infinite Binary Tree

Arnaud Carayol
Laboratoire d’Informatique Gaspard Monge

Université Paris-Est & CNRS

Christof Löding
Lehrstuhl Informatik 7

RWTH Aachen

Damian Niwiński∗

Institute of Informatics
University of Warsaw

Igor Walukiewicz
LaBRI

Bordeaux University & CNRS

Abstract

We give a new proof showing that it is not possible to define in monadic
second-order logic (MSO) a choice function on the infinite binary tree.
This result was first obtained by Gurevich and Shelah using set theoreti-
cal arguments. Our proof is much simpler and only uses basic tools from
automata theory. We show how the result can be used to prove the inher-
ent ambiguity of languages of infinite trees. In a second part we strengthen
the result of the non-existence of an MSO-definable well-founded order on
the infinite binary tree by showing that every infinite binary tree with a
well-founded order has an undecidable MSO-theory.

1 Introduction

The main goal of this paper is to present a simple proof for the fact (first shown
by Gurevich and Shelah in [11]) that there is no MSO-definable choice function
on the infinite binary tree t2. A choice function on t2 is a mapping assigning
to each nonempty set of nodes of t2 one element from this set, i.e., the function
chooses for each set one of its elements. Such a function is MSO-definable if
there is an MSO-formula with one free set variable X and one free element
variable x such that when X is interpreted as a nonempty set U then there is
exactly one possible interpretation u ∈ U for x making the formula satisfied.

∗Supported by the Polish government Grant N206 008 32/0810.

1



The question of the existence of an MSO-definable choice function over the
infinite binary tree can be seen as a special instance of the more general uni-
formization problem, which asks, given a relation that is defined by a formula
with free variables, whether it is possible to define by another formula a function
that is compatible with this relation. More precisely, given a formula φ(X,Y )
with vectors X,Y of free variables, such that the formula ∀X∃Y φ(X,Y ) is true
over the infinite binary tree, uniformization asks for a formula φ∗(X,Y ) such
that

1. φ∗ implies φ (each interpretation of X,Y making φ∗ true also makes φ
true),

2. and φ∗ defines a function in the sense that for each interpretation of X
there is exactly one interpretation of Y making φ∗ true.

The question of the existence of a choice function is the uniformization problem
for the formula φ(X,Y ) := X 6= ∅ → (Y is a singleton ∧ Y ⊆ X).

The infinite line, i.e., the structure consisting of natural numbers equipped
with the successor relation, is known to have the uniformization property for
MSO [25], even when adding unary predicates [21]. On the infinite binary
tree MSO is known to be decidable [2] but it does not have the uniformization
property. This was conjectured in [25] and proved in [11] where it is shown
that there is no MSO-definable choice function on the infinite binary tree. The
proof in [11] uses complex set theoretical arguments, whereas it appears that
the result can be obtained by much more basic techniques. We show that this
is indeed true and present a proof that only relies on the equivalence of MSO
and automata over infinite trees and otherwise only uses basic techniques from
automata theory. Besides its simplicity, another advantage of the proof is that
we provide a concrete family of sets (parametrized by natural numbers) such
that each formula fails to make a choice for those sets with the parameters
chosen big enough. We use this fact when we discuss two applications of the
result.

At first, we show an example of a tree game with an MSO-definable winning
condition, where the winner has no MSO-definable winning strategy. The second
application concerns the existence of inherently ambiguous tree languages. An
unambiguous automaton is an automaton which has exactly one accepting run
on every tree it accepts. On finite words and trees it is clear that every regular
language can be accepted by an unambiguous automaton because deterministic
automata are unambiguous. The regular languages of infinite words are accepted
by unambiguous Büchi automata [1]. For regular languages of infinite trees, we
show that the language of infinite trees labeled by {0, 1} having at least one
node labeled by 1 is not accepted by any unambiguous parity tree automaton.
Using the counter-example sets introduced previously, we strengthen this result
by giving a regular tree language and a tree in this language such that any
automaton accepting the language has at least two accepting runs on the tree.

The subject of MSO-definability of choice functions on trees has been studied
in more depth in [13], where the authors consider more general trees and not

2



only the infinite binary tree. They show the following dichotomy: for a tree it
is either not possible to define a choice function in MSO even with additional
predicates, or it is possible to define a well-ordering on the domain of the tree
with additional predicates.

Note that it is very easy to define a choice function if one has access to
a well-ordering of the domain: for each set one chooses the minimal element
according to the well-ordering. The same result remains true if we only have
access to a partial well-ordering: we pick the left-most element of the finite
set of minimal elements instead of the minimal element. The non-existence
of an MSO-definable choice function on the infinite binary tree implies that
there is no MSO-definable partial well-ordering on the infinite binary tree. We
strengthen this result by showing that extending the infinite binary tree by any
partial well-ordering leads to a structure with an undecidable MSO-theory. As
a consequence we obtain that each structure in which we can MSO-define a
partial well-ordering and MSO-interpret the infinite binary tree must have an
undecidable MSO-theory.

The paper is structured as follows. In Section 2 we introduce notations
and basic results for automata on infinite trees and monadic second-order logic.
The proof of the undefinability of choice functions over the infinite binary tree
is presented in Section 3, where we also discuss the first application concerning
the definability of winning strategies in infinite games. In Section 4 we prove
that there are regular languages of infinite trees that are inherently unambigu-
ous. Section 5 is on the undecidability of the monadic second-order theory of
the infinite binary tree extended with a partial well-ordering. We conclude in
Section 6 and give some possible directions of future research.

This paper is a full version of the conference publication [4].

2 Preliminaries

In this section we first introduce some general notations and then give some
background on automata and logic.

The set of natural numbers (non-negative integers) is denoted by N. A finite
interval {i, . . . , j} of natural numbers is written as [i, j].

An alphabet is a finite set of symbols, called letters. Usually, alphabets are
denoted by Σ. The set of finite words over Σ is written as Σ∗ and the set of
infinite words as Σω. The length of a finite word w ∈ Σ∗ is denoted by |w| and
ε is the empty word.

For all words w1, w2 ∈ Σ∗, w1 is a prefix of w2 (written w1 v w2) if there
exists w ∈ Σ∗ such that w2 = w1w. If w ∈ Σ+ then w1 is a strict prefix of
w2 (written w1 @ w2). The greatest common prefix of two words w1 and w2

(written w1 ∧ w2) is the longest word which is a prefix of w1 and w2.

3



2.1 Automata on infinite trees

We view the set {0, 1}∗ of finite words over {0, 1} as the domain of an infinite
binary tree. The root is the empty word ε, and for a node u ∈ {0, 1}∗ we call u0
its left successor (or 0-successor), and u1 its right successor (or 1-successor). A
branch π is an infinite sequence u0, u1, u2 . . . of successive nodes starting with
the root, i.e., u0 = ε and ui+1 = ui0 or ui+1 = ui1 for all i ≥ 0.

An (infinite binary) tree labeled by a finite alphabet Σ is a mapping t :
{0, 1}∗ → Σ. We denote by T ωΣ the set of all trees labeled by Σ. In a tree t, a
branch π induces an infinite sequence of labels in Σω. We sometimes identify
a branch with this infinite word. It should always be clear from the context to
which meaning of a branch we are referring to.

In connection with logic, the labels of the infinite tree are used to represent
interpretations of set variables. This motivates the following definitions. For
a set U ⊆ {0, 1}∗, we write t[U ] ∈ T ω{0,1} for the characteristic tree of U , i.e.,
the tree which labels all nodes in U with 1 and all the other nodes with 0.
This notation is extended to the case of several sets. The characteristic tree
of U1, . . . , Un ⊆ {0, 1}∗ is the tree labeled by {0, 1}n written t[U1, . . . , Un] and
defined for all u ∈ {0, 1}∗ by t[U1, . . . , Un](u) := (b1, . . . , bn) where for all i ∈
[1, n], bi = 1 if u ∈ Ui and bi = 0 otherwise. For a singleton set U = {u} we
simplify notation and write t[u] instead of t[{u}].

We now turn to the definition of automata for infinite trees. A parity tree
automaton (PTA) on Σ-labeled trees is a tuple A = (Q,Σ, qi,∆, c) with a finite
set Q of states, an initial state qi ∈ Q, a transition relation ∆ ⊆ Q×Σ×Q×Q,
and a priority function c : Q → N. A run of A on a tree t ∈ T ωΣ from a
state q ∈ Q is a tree ρ ∈ T ωQ such that ρ(ε) = q, and for each u ∈ {0, 1}∗
we have (ρ(u), t(u), ρ(u0), ρ(u1)) ∈ ∆. We say that ρ is accepting if the parity
condition is satisfied on each branch of the run, i.e., on each branch the minimal
priority appearing infinitely often is even. If we only speak of a run of A without
specifying the state at the root, we implicitly refer to a run from qi.

A tree t is accepted by A if there is an accepting run of A on t. The language
recognized by A is the set of all accepted trees:

T (A) = {t ∈ T ωΣ | t accepted by A}.

A tree language is called regular if it is recognized by some PTA.
For two trees t and t′ we say that they are A-equivalent, written as t≡A t′, if

for each state q of A there is an accepting run from q on t if and only if there is
an accepting run from q on t′. Intuitively, this means that A cannot distinguish
the two trees.

2.2 Monadic second-order logic

A signature is a ranked set τ of symbols, where for all R ∈ τ , |R| denotes the
arity (which is ≥ 1) of the symbol R. A relational structure S over τ is given by
a tuple (D, (RS)R∈τ ) where D is the domain (or the universe) of S and where

4



for all R ∈ τ , RS (which is also called the interpretation of R in S) is a subset
of D|R|. When S is clear from the context, we simply write R instead of RS .

We use ∼= to denote that two structures are isomorphic. Usually, we do not
distinguish isomorphic structures but sometimes we refer to different represen-
tations of structures over specific domains, and in these cases we use ∼= instead
of =.

To every tree t labeled by Σ = {a1, . . . , an}, we associate a canonical struc-
ture over the signature {E0, E1, Pa1 , . . . , Pan} where E0 and E1 are binary
symbols and the Pai

are predicates, i.e., unary symbols. The universe of this
structure is {0, 1}∗. The symbols E0 and E1 are respectively interpreted as
{(w,w0) | w ∈ {0, 1}∗} and {(w,w1) | w ∈ {0, 1}∗}. Finally for all i ∈ [1, n],
Pai is interpreted as {u ∈ Σ∗ | t(u) = ai}. In the following, we do not distinguish
between a tree and its canonical relational structure.

The unlabeled binary tree, i.e., the structure ({0, 1}∗, {E0, E1}) with the
above interpretation of E0 and E1 is denoted by t2. The structure with N as
domain and the successor relation on N can be viewed as a tree with unary
branching. Hence we denote it by t1.

We are mainly interested in monadic second-order logic (MSO) over rela-
tional structures with the standard syntax and semantics (see e.g. [9] for a
detailed presentation). MSO-formulas use first-order variables, which are inter-
preted by elements of the structure, and monadic second-order variables, which
are interpreted as sets of elements. First-order variables are usually denoted by
lower case letters (e.g. x, y), and monadic second-order variables are denoted by
capital letters (e.g. X,Y ). First-order logic (FO) is the fragment of MSO that
does not use quantifications over set variables.
Atomic MSO-formulas are of the form

• R(x1, . . . , x|R|) for a relation symbol R from the signature and first-order
variables x1, . . . , x|R|, or

• x = y, X = Y , or x ∈ X for first-order variables x, y, and monadic
second-order variables X,Y

with the obvious semantics. Complex formulas are built as usual from atomic
ones by the use of boolean connectives, and quantification.

We write φ(X1, . . . , Xn, y1, . . . , ym) to indicate that the free variables of the
formula φ are among X1, . . . , Xn (monadic second-order) and y1, . . . , ym (first-
order) respectively. A formula without free variables is called a sentence.

For a relational structure S and a sentence φ, we write S |= φ if S sat-
isfies the formula φ. The MSO-theory of S is the set of sentences satisfied
by S. For every formula φ(X1, . . . , Xn, y1, . . . , ym), all subsets U1, . . . , Un of
the universe of S and all elements v1, . . . , vm of the universe of S, we write
S |= φ[U1, . . . , Un, v1, . . . , vm] to express that φ holds in S when Xi is inter-
preted as Ui for all i ∈ [1, n] and yj is interpreted as vj for all j ∈ [1,m].

Given a structure S, we calla relation R ⊆ Dn, for some n ≥ 1, MSO-
definable in S if there is an MSO-formula φ(x1, . . . , xn) with n free first-order
variables such that (u1, . . . , un) ∈ R iff S |= φ[u1, . . . , un].

5



A single element u of a structure is MSO-definable if so is the unary relation
{u}, i.e., if there is a formula φ(x) such that u is the only element with S |= φ[u].

We are particularly interested in MSO logic over the infinite binary tree
t2, which we refer to as MSO[t2]. The MSO-theory of the infinite binary tree
t2 is also referred to as S2S, the second-order theory of two successors [19].
Correspondingly, we refer to the MSO-theory of t1, the natural numbers with
successor, as S1S [2].

An MSO[t2]-formula φ(X1, . . . , Xn) with n free variables defines a tree lan-
guage T (φ) ⊆ T ω{0,1}n as follows:

T (φ) = {t[U1, . . . , Un] | t2 |= φ[U1, . . . , Un]}.

It is often convenient to consider the binary tree t2 along with a sequence of sets
U1, . . . , Un ⊆ {0, 1}∗, as a new logical structure over the signature extended by
n fresh predicate symbols interpreted by U1, . . . , Un. We denote this structure
by t2[U1, . . . , Un]. Given a formula φ(X1, . . . , Xn), we clearly have

t2 |= φ[U1, . . . , Un] iff t2[U1, . . . , Un] |= φ,

where in the latter case φ is considered as a sentence with the predicate sym-
bols X1, . . . , Xn interpreted by U1, . . . , Un, respectively. This correspondence
extends to formulas with additional free variables, say φ(X1, . . . , Xn, Z1, . . . , Zk,
y1, . . . , ym). That is, t2 |= φ[U1, . . . , Un,W1, . . . ,Wk, v1, . . . , vm] if and only if
t2[U1, . . . , Un] |= φ[W1, . . . ,Wk, v1, . . . , vm], for any W1, . . . ,Wk ⊆ {0, 1}∗, and
v1, . . . , vm ∈ {0, 1}∗. We will often use this correspondence implicitly in the se-
quel. Note that in general there may be more relations definable in t2[U1, . . . , Un]
than in t2.

A theorem of Rabin states that the tree languages definable by MSO[t2]-
formulas are precisely those that can be accepted by tree automata [19]. An
analogous fact for MSO [t1]-definable languages of infinite words (also called ω-
regular) was proved previously by Büchi [2]. The acceptance condition used by
Rabin in [19] differs from the parity condition but it can be transformed into a
parity condition (see e.g. [29, 10]). Parity tree automata have first been used in
[18] where they are shown to be equivalent to the automata used in [19].

We state here the difficult direction of the theorem, the proof of which is
based on the closure properties of PTAs.

Theorem 2.1 ([19, 18]) For every MSO[t2]-formula φ(X1, . . . , Xn) there is a
parity tree automaton Aφ such that T (Aφ) = T (φ).

This result can be used to show the decidability of the satisfiability problem
for MSO[t2], i.e., the question whether for a given MSO[t2] formula there is
an interpretation of the free variables such that the formula is satisfied in t2.
Furthermore, one can even construct a satisfying assignment:

Theorem 2.2 ([20]) Let φ(X1, . . . , Xn) be a satisfiable MSO[t2]-formula. There
are regular sets U1, . . . , Un such that t2[U1, . . . , Un] |= φ.

6



Above we have introduced the notion of MSO-definability. We conclude from
Theorem 2.2 that on t2 each MSO-definable set is regular: Starting from a for-
mula φ(x) defining a set, we construct the formula φ′(X) = ∀x. x ∈ X ↔ φ(x).
Then there is exactly one set satisfying φ′ and this set is regular according to
Theorem 2.2. Conversely, each regular set can be defined in MSO by describing
an accepting run of the DFA defining the set.

Proposition 2.3 A set U ⊆ {0, 1}∗ is definable in MSO[t2] iff it is regular.

As a consequence we can add regular predicates to t2 without affecting the de-
cidability result for MSO. An MSO-formula having access to regular predicates
P1, . . . , Pn can be turned in a standard MSO-formula over t2 by using formulas
φP1 , . . . , φPn defining these predicates.

The notion of interpretation that is introduced in the following generalizes
this idea.

Let τ and τ̂ be two signatures. An MSO-interpretation from τ -structures to
τ̂ -structures is given as a list I = 〈φdom , (φR̂)R̂∈τ̂ 〉 of MSO-formulas over the
signature τ . The formula φdom has one free first-order variable and is called the
domain formula. For each R̂ ∈ τ̂ the formula φR̂ has |R̂| many free first-order
variables.

Applied to a τ -structure S = (D, (RS)R∈τ ), the interpretation defines a τ̂ -
structure I(S) = (D̂, (R̂I(S))R̂∈τ̂ ), where the domain formula defines the domain
of the new structure (all elements of S satisfying φdom), and the formulas φR̂
define the relations of I(S):

• D̂ = {u ∈ D | S |= φdom [u]},

• R̂I(S) = {(u1, . . . , u|R̂|) ∈ D̂|R̂| | S |= φR̂[u1, . . . , un]}.

Now assume that we are given an MSO-formula over I(S) and we want
to know whether it is satisfiable in I(S). We can replace each atomic formula
R̂(x1, . . . , x|R̂|) by its definition φR̂(x1, . . . , xn), and restrict the range of all vari-

ables to the set D̂ defined by φdom . In this way we obtain an MSO-formula over
S that is satisfiable in S iff the original formula is satisfiable in I(S). Applying
this technique to MSO-sentences (without free variables), we can transfer the
decidability of the MSO-theory as stated in the following proposition.

Proposition 2.4 If I is an MSO-interpretation and if the MSO-theory of S is
decidable, then the MSO-theory of I(S) is decidable.

3 MSO-definable choice functions

As already described in the introduction, an MSO-definable choice function is
given by an MSO-formula φ(X,x) such that:

for every non-emptyset U , there is precisely one u ∈ U such that
t2 |= φ[U, u].

7



This section is devoted to the proof of the following theorem of Gurevich
and Shelah.

Theorem 3.1 ([11]) There is no MSO-definable choice function on the infinite
binary tree.

The technical formulation of the result we prove is given in Theorem 3.5
(on page 12), where we concretely provide counter examples for which a given
formula cannot choose a unique element. As a machinery for the proof we use
tree automata, that are easier to manipulate (at least for our purpose) than
formulas. In the following we present a slight modification of the standard
automaton model that we use in the proof.

An MSO[t2]-formula with free variables defines a relation between subsets
of {0, 1}∗. In this section we consider formulas with two free variables, and a
natural view in the context of choice functions is that the first variable represents
the input, and the second variable represents the output. A choice function is
the special case that the second variable is an element and not a set, and that
for each nonempty input set there is a unique output which is inside the input
set. To adapt this general view of inputs and outputs on the automata theoretic
level we introduce automata with output, called transducers. These transducers
are very simple: An output symbol is associated to each transition, which gives
a natural correspondence between runs and output trees.

A parity tree automaton with output is a tuple A = (Q,Σ, qi,∆, c, λ), where
(Q,Σ, qi,∆, c) is a standard PTA, and λ : ∆→ Γ is an output function assigning
to each transition a symbol from the output alphabet Γ. When ignoring the
output function we can use the terminology of standard PTAs, in particular the
notion of accepting run and the notion of A-equivalence (see page 4).

In general, a PTA with output defines for each input tree t ∈ T ωΣ a set of
output trees A(t) ⊆ T ωΓ defined by

A(t) = {λ(ρ) | ρ is an accepting run of A on t},

where λ(ρ) denotes the tree in T ωΓ that is obtained by taking at each node u
the output produced by λ applied to the transition used at u in ρ.

As already indicated above we are interested in such transducers for repre-
senting formulas with two free variables, i.e., the input and the output alphabets
are both equal to {0, 1}. The following theorem can easily be shown by a simple
argument based on Theorem 2.1.

Theorem 3.2 For each MSO[t2]-formula φ(X,Y ) there is a PTA with output
Aφ such that t2[U,U ′] |= φ iff t2[U ′] ∈ A(t2[U ]).

We are interested in PTAs with output that represent possible candidates for
choice formulas. i.e., the case where the second free variable of the formula
represents a single element. This motivates the following definition.

A weak choice automaton is a PTA with output such that the input and
the output alphabet are equal to {0, 1}, and for each U ⊆ {0, 1}∗ there is at

8



most one output tree in A(t2[U ]), and this output tree is of the form t2[u] for
some u ∈ U . We say that A chooses u in U . A weak choice automaton chooses
for each set U at most one element from this set. It is called weak because it
does not have to choose an element. A weak choice automaton that chooses
one element from each nonempty set represents a choice formula. Our goal is
to show that such an automaton cannot exist. Note that there are weak choice
automata: for example the automaton that rejects all inputs is a weak choice
automaton because it does not choose an element for any set.

We show in Lemma 3.4 that for each weak choice automaton A we can find
a set that is complex enough such that A cannot choose an element of U . If A
had a run choosing an element of U , we could construct another run choosing a
different element, contradicting the property of a weak choice automaton. More
precisely, we define a family (UM,N )M,N∈N of sets such that for each weak choice
automaton A we can find M and N such that A cannot choose an element of
UM,N . To achieve this, we “hide” the elements of the set very deep in the tree so
that weak choice automata up to a certain size are not able to uniquely choose
an element.

For M,N ∈ N the set UM,N ⊆ {0, 1}∗ is defined by the following regular
expression

UM,N = {0, 1}∗(0N0∗1)M{0, 1}∗.

In Figure 1 a deterministic finite automaton for the set UM,N is shown, where
the dashed edges represent transitions for input 1 that lead back to the initial
state xM . The chains of 0-edges between xk+1 and xk have length N . The final
state is x0. It is easy to verify that x0 is reachable from xM by exactly those
paths whose sequence of edge labels is in the set UM,N . Let tM,N = t[UM,N ]
and let tk,M,N = t2[Uk,M,N ], where Uk,N,M is the set that we obtain by making
xk the initial state.

We now fix a weak choice automaton A = (Q, {0, 1}, q0,∆, c, λ) on {0, 1}-
labeled trees and take M = 2|Q|+1 and N = |Q|+1. For these fixed parameters
we simplify the notation by letting tk = tk,M,N . In particular, tM = tM,M,N =
tM,N . We say that a subtree (of some tree t) that is isomorphic to tk for some
k is of type tk.

Our aim is to trick the automaton A to show that it cannot choose a unique
element from the set UM,N . This is done by modifying a run that outputs
an element u of UM,N such that we obtain another run outputting a different
element from the same set.

To understand the general idea, consider the path between xk+1 and xk for
some k. If we take a 1-edge before having reached the end of the 0-chain, i.e.,
one of the dashed edges leading back to the initial state xM , then we reach a
subtree of type tM . But if we walk to the end of the 0-chain and then move to
the right using a 1-edge, then we arrive at a subtree of type tk. If we show that
there is ` < M such that tM and t` are A-equivalent, then this means that A
has no means to identify when it enters the part where taking a 1-edge leads to
a subtree of type t`. We then exploit this fact by pumping the run on this part
of the tree such that we obtain another run with a different output.

9



xM

· · ·

xM−1

· · ·

xM−2

...

x1

· · ·

x0

1
0

0

0

0 1

0

0

0

0 1

0 1

0

0

0

0 1

0, 1

N 0-edges

Figure 1: A DFA accepting UM,N . Dashed edges are labeled by 1. The tree
tM,N is obtained by unraveling this DFA.

10



tk1+1: 0

0

...

0

0

0

... tk1

tk1

tM

tM

tM

tk2+1: 0

0

...

0

0

0

... tk2

tk2

tM

tM

tM

Figure 2: The shape of the trees tk1+1 and tk2+1 in the proof of Lemma 3.3

Lemma 3.3 There exists ` < M such that tM ≡A t`.

Proof. We consider for each tree t ∈ T ω{0,1} the function ft : Q → {a, r} with
ft(q) = a if there is an accepting run of A from q on t, and ft(q) = r otherwise.
By definition, two trees t, t′ are A-equivalent if ft = ft′ . There are at most 2|Q|

different such functions. By the choice of M there are 1 ≤ k1 < k2 ≤ M such
that tk1 ≡A tk2 .

We now show that tk1 ≡A tk2 implies tk1+1 ≡A tk2+1 (in case k2 < M ,
otherwise we choose ` = k1). This allows us to lift the equivalence step by step
to t` and tM for ` = k1 + (M − k2).

If we only look at the left-most branches and the types of the trees going
off to the right, then tk1+1 and tk2+1 look as shown in Figure 2. From this
picture it should be clear that tk1+1≡A tk2+1 because an accepting run on tk1+1

can easily be turned into an accepting run on tk2+1, and vice versa, using the
equivalence of tk1 and tk2 . 2

The following lemma states that it is impossible for A to choose an element
of UM,N (and hence the set of outputs computed by A on tM,N is empty).

Lemma 3.4 The weak choice automaton A cannot choose an element from
UM,N , i.e., A([tM,N ]) = ∅.

Proof. Assume that there is an accepting run ρ of A on tM = tM,N . Since A
is a weak choice automaton this means that the output of this run must be an
element of UM,N , i.e., λ(ρ) = t[u] for some u ∈ UM,N .

From ρ we construct another accepting run with a different output tree,
contradicting the definition of weak choice automaton.

Since u is in UM,N , we know that the path from the root to u must end with
the pattern as defined by the automaton in Figure 1. Hence we can make the
following definitions. For 0 ≤ k ≤M let uk denote the maximal prefix of u such

11



that the subtree at uk is of type tk. Let ` be as in Lemma 3.3. For i ≥ 0 let
vi = u`+10i and v′i = vi1. Note that v0 = u`+1 and that for 0 ≤ i < N the
subtree at v′i is of type tM , and for i ≥ N the subtree at v′i is of type t`.

From Lemma 3.3 we know that t` ≡A tM . Hence, for each accepting run ρq
of A from q on tM we can pick an accepting run ρ′q of A from q on t`.

By the choice of N (recall that N = |Q|+ 1) there are 0 ≤ j < j′ < N such
that ρ(vj) = ρ(vj′). For the moment, consider only the transitions taken in ρ
on the sequence v0, v1, . . ., i.e., on the infinite branch to the left starting from
v0. We now simply repeat the part of the run between vj and vj′ once. The
effect is that some of the states that were at a node v′i for i < N are pushed
to nodes v′i for i ≥ N , i.e., the states are moved from subtrees of type tM to
subtrees of type t`. But for those states q we can simply plug the runs ρ′q that
we have chosen above.

More formally, we define the new run ρ′ of A on tM as follows. On the part
that is not in the subtree below v0 the run ρ′ corresponds to ρ. In the subtree
at v0 we make the following definitions, where h = j′ − j.

• For i < j′ let ρ′(vi) = ρ(vi) and ρ′(v′i) = ρ(v′i).

• For i ≥ j′ let ρ′(vi) = ρ(vi−h) and ρ′(v′i) = ρ(v′i−h).

• For the subtrees at v′i for i < j′ we take the subrun of ρ at v′i.

• For the subtrees at v′i for j′ ≤ i < N or i ≥ N + h we take the subrun of
ρ at v′i−h. This is justified because in these cases ρ′(v′i) = ρ(v′i−h) and the
subtrees at v′i and v′i−h are of the same type (both of type tM or both of
type t`).

• For the subtrees at v′i forN ≤ i < N+h we take the runs ρ′qi
for qi = ρ′(v′i).

This is justified as follows. From qi = ρ′(v′i) and the definition of ρ′ we
know that ρ(v′i−h) = qi. Hence, there is an accepting run of A from qi on
tM . Thus, ρ′qi

as chosen above is an accepting run of A from qi on t`.

This run ρ′ is accepting. Furthermore, the transition producing output 1 in
ρ has been moved to another subtree: There are n ≥ N and w ∈ {0, 1}∗
such that u = u`+10nw. In ρ′ the transition that is used at u in ρ is used at
u′ = u`+10n+hw. Hence, we have constructed an accepting run whose output
tree is different from t[u], a contradiction. 2

Of course, the statement is also true if we increase the value of M or N , e.g.,
if we take N = M = 2|Q|+1. Thus, combining Theorem 3.2 and Lemma 3.4 we
obtain the following.

Theorem 3.5 Let φ(X,x) be an MSO-formula. There exists m ∈ N such that
for all n ≥ m and for each u ∈ Un,n with t2 |= φ[Un,n, u] there is u′ 6= u with
t2 |= φ[Un,n, u′].

12



Proof. Consider the formula

φ∗(X,x) := φ(X,x) ∧ x ∈ X ∧ ¬∃y(y 6= x ∧ y ∈ X ∧ φ(X, y)).

Applying Theorem 3.2 to this formula yields a weak choice automaton A.
Choose n = 2|Q|+1 and assume that there is u ∈ Un,n such that t2 |= φ[Un,n, u].
According to Lemma 3.4 we have A(tn,n) = ∅. Hence, because A and φ∗ are
equivalent, t2 6|= φ∗[Un,n, u]. By definition of φ∗ this means that there must be
u′ 6= u such that t2 |= φ[Un,n, u′]. 2

A direct consequence is the theorem of Gurevichand Shelah (Theorem 3.1).
The advantage of our proof is that we obtain a rather simple family of counter
examples (the sets UM,N ).

An easy reduction allows us to extend the non-existence of an MSO-definable
choice function to the case where we allow a finite number of fixed predicates as
parameters. This result has already been shown in [14] in an even more general
context, but again relying on the methods employed in [11].

Corollary 3.6 Let P1, . . . , Pn ⊆ {0, 1}∗ be arbitrary predicates. There is no
MSO-formula φ(X,x) such that for each nonempty set U there is exactly one
u ∈ U with t2[P1, . . . , Pn] |= φ[U, u].

Proof. Suppose that there are P1, . . . , Pn ⊆ {0, 1}∗ and an MSO[t2]-formula
φ(X1, . . . , Xn, X, x) such that for each nonempty set U there is exactly one u ∈
U with t2[P1, . . . , Pn] |= φ[U, u], where the symbols X1, . . . , Xn are interpreted
by P1, . . . , Pn, respectively. Then the formula

∃X1, . . . , Xn ∀X 6= ∅ ∃x ∈ X : φ(X1, . . . , Xn, X, x) ∧
∀y φ(X1, . . . , Xn, X, y)→ x = y

holds in t2. Hence, there are regular predicates P ′1, . . . , P
′
n (see Theorem 2.2 on

page 6) such that

t2[P ′1, . . . , P
′
n] |= ∀X 6= ∅ ∃x ∈ X : φ(X1, . . . , Xn, X, x) ∧

∀y φ(X1, . . . , Xn, X, y)→ x = y.

Regular predicates are MSO-definable (see Proposition 2.3), and therefore we
can find formulas ψ1(z), . . . , ψn(z) defining P ′1, . . . , P

′
n, respectively. Then the

formula φ′(X,x) defined as

∃X1, . . . , Xn : φ(X1, . . . , Xn, X, x) ∧
n∧
i=1

(∀z : z ∈ Xi ↔ ψi(z))

describes a choice function, contradicting Theorem 3.5. 2

We point out here that this method only relies on the fact that the property of
being a choice function is MSO-definable. This way of reducing the case with
parameters to the parameter free case can be applied whenever the properties of
the object under consideration are MSO-definable (in Proposition 5.7 on page 25
we also use this technique).

13



MSO-definable winning strategies

In this section we use Theorem 3.1 to study the definability of winning strategies
in infinite games. For a general introduction to games of infinite duration we
refer the reader to [10]. The logical definability of winning regions in parity
games has been studied in [8]. To express that a vertex of a game graph belongs
to the winning region of one player it is sufficient to express that there exists
a winning strategy from this vertex. Here we study the question whether it
is possible to define a single winning strategy. In the following we show that
there exist tree games (games with a tree as underlying game graph) that do
not admit MSO-definable winning strategies.

A game tree is a tuple Γ = (U1, U2,Ω) where U1, U2 ⊆ {0, 1}∗ form a partition
of {0, 1}∗, and Ω : {0, 1}∗ → {0, . . . , n} maps each node to a number in a finite
initial segment of N. A tree game (Γ,W ) is given by a game tree Γ and a
winning condition W ⊆ {0, . . . , n}ω. A play in this game starts in ε. If the play
is currently in u ∈ {0, 1}∗, then Player 1 or Player 2, depending on whether
u ∈ U1 or u ∈ U2, chooses b ∈ {0, 1}, and the next game position is ub. In the
limit, such a play forms an infinite word in {0, 1}ω; we identify the play with
this word. This infinite word corresponds to an infinite sequence over {0, . . . , n}
by applying Ω to each prefix. If this sequence is in W then Player 1 wins, and
otherwise Player 2 wins.

A strategy for Player i is a function fi : Ui → {0, 1}. A play γ is played
according to fi if, for each prefix u ∈ Ui of γ, Player i uses the strategy to
determine the next move, i.e., ufi(u) is again a prefix of γ. A strategy fi is
winning for Player i if each play γ played according to fi is won by Player i.

If W ⊆ {0, . . . , n}ω is a regular ω-language, then for each tree game (Γ,W )
one of the players has a winning strategy [3].

A strategy fi for Player i can be represented by two sets of nodes S0 and S1 of
the game tree: the set of nodes where the value of fi is 0 and 1, respectively. We
are interested in MSO-definability of strategies in the game tree. To this end, we
represent a game tree Γ = (U1, U2,Ω) as the binary tree t2 extended by monadic
predicates U1, U2,Ω0, . . . ,Ωn, where each Ωi ⊆ {0, 1}∗ corresponds to the set of
nodes mapped to i by Ω. Let us abbreviate t2[U1, U2,Ω0, . . . ,Ωn] = t2[Γ].

We say that a strategy represented by S0 and S1 is MSO-definable in the
game tree Γ if these sets are definable in t2[Γ], i.e., if there exists two MSO-
formulas φ0(x) and φ1(x) determining the sets S0 and S1:

S0 ={u : t2[Γ] |= φ0[u]}
S1 ={u : t2[Γ] |= φ1[u]}.

Finite-state strategies (i.e. strategies implementable by a finite-state automa-
ton) are a particular case of MSO-definable strategies.

Note that the above formulas φ0(x) and φ1(x) may depend on the game
tree Γ. The question whether such formulas exist for a particular game tree
Γ and a player i should not be confused with the fact that the family of all
winning strategies for player i is definable in MSO in a uniform way. More
precisely, whenever the condition W is ω-regular then it is not difficult to write

14



an MSO-formula ψW (X1, X2, Y0, . . . , Yn, Z0, Z1), such that, for any game tree
Γ = (U1, U2,Ω) with Ω : {0, 1}∗ → {0, . . . , n}, and any S0, S1 ⊆ {0, 1}∗,

t2 |= ψW [U1, U2,Ω0, . . . ,Ωn, S0, S1]

iff S0 and S1 represent a winning strategy for Player i in (Γ,W ). Thus, we
can express the existence of a winning strategy for Player i in the game (Γ,W )
by an MSO-formula interpreted in t2[Γ]. If t2[Γ] has decidable MSO-theory,
we can therefore decide who wins the game (Γ,W ) for any ω-regular winning
condition W . This however does not imply the existence of an MSO-definable
winning strategy. In fact, we show in the following that there is a fixed tree game
(with a decidable MSO-theory) for which there are no MSO-definable winning
strategies.

It is well-known that there exists a recursive tree game where Player 1 has a
winning strategy but no recursive one. In [28], an example of such a tree game
is given that has moreover an MSO-definable winning condition. Nevertheless
this example cannot be used to prove the following theorem as both players
admit MSO-definable strategies.

Theorem 3.7 There is a game tree Γ = (U1, U2,Ω) with decidable MSO-theory,
and an MSO-definable winning condition W , such that Player 1 has a winning
strategy in the game (Γ,W ), but no winning strategy for Player 1 is MSO-
definable in t2[Γ].

Proof. Consider the following {0, 1, 2}-labeled tree t such that for each n ∈ N
the subtree at the node 1n0 is isomorphic to tn,n, and all nodes of the form 1n

are labeled by 2. The labeling of t defines the mapping Ω, i.e., Ω(u) = t(u). We
let U2 = {1n | n ∈ N} and U1 = {0, 1}∗ \ U2.

Consider Γ = (U1, U2,Ω) and let the winning condition W (for Player 1)
contain all infinite words over {0, 1, 2} that do not contain 0 or that contain a
1.

Intuitively, Player 2 can move along the right branch of the game tree. If he
continues like this forever then he loses because only nodes labeled 2 are visited
during the play. Otherwise, he moves to the left at some position, that is, to
the root of a subtree tn,n. Now Player 1 chooses all the following moves and
wins if a node labeled 1 is reached eventually. As each subtree tn,n contains a
node labeled 1 it is obvious that Player 1 has a winning strategy.

Assume that there is a winning strategy f1 for Player 1 that is MSO-definable
in t2[Γ] by formulas φ0(x) and φ1(x). Let Sf1 be the set of all nodes that occur
in a play that is played according to f1. (This set can be seen as an alternative
way of coding the strategy f1.) From φ0 and φ1 we can easily derive an MSO[t2]-
formula φ(X1, X2, Y0, Y1, Y2, X), such that

t2 |= φ[U1, U2,Ω0,Ω1,Ω2, S]

holds precisely when S = Sf1 .
The formula φ is equivalent to a parity automaton over alphabet {0, 1}6,

but using the definition of our Γ (constructed from the tree t), we can simplify

15



it to an automaton A over the alphabet {0, 1, 2} × {0, 1}, where the 1 on the
second component should be read as “marked”. This automaton reads trees
over {0, 1, 2}, where some nodes are marked, and whenever it reads our tree t,
it accepts it only in the case when the marking coincides with Sf1 .

Using A we can construct a formula φ∗(X,x) that chooses exactly one u ∈
Un,n for each n ∈ N, contradicting Theorem 3.5. For this we fix an arbitrary
order on the states of A. For each n there is at least one state q of A such
that A accepts from q exactly one winning strategy on the subtree tn,n of t
(namely the state assumed at the root of the subtree tn,n in an accepting run
for the unique winning strategy on Γ that is accepted by A). The formula φ∗

is designed to select the smallest state q with this property and then chooses
the element of Un,n that is described by the unique winning strategy accepted
by A from q on tn,n. It is not difficult to verify that the formalization is indeed
possible in MSO. 2

One should note here that the tree constructed in the proof of Theorem 3.7
(and also the one from Theorem 4.3) is not too complicated: it belongs to the
Caucal hierarchy1 [6]. This means that it can be obtained from a regular tree
by a finite number of applications of MSO-interpretations and unfoldings, or
equivalently, it is the transition graph of a higher-order pushdown automaton [5].
In [15] it is shown that the tree belongs to the fourth level of the hierarchy. The
possibility of constructing such rather simple examples is one of the advantages
of our new proof of Theorem 3.1.

In the tree games that we consider we do not require that there is a strict
alternation between the moves of the two players. However, by inserting addi-
tional nodes in the tree games, it is always possible to obtain a game with strict
alternation.

4 Unambiguous automata

In this section, we show that unambiguous parity tree automata do not accept
all regular tree languages. For the proof we use the non-existence of a MSO-
definable choice function.

Unambiguous automata have been introduced on finite words because they
allow more efficient algorithms for equivalence and inclusion testing [26]. This
has been generalized to automata on finite trees in [23]. On finite words and
trees it is clear that every regular language can be accepted by an unambiguous
automaton because deterministic automata are unambiguous.

For Büchi automata on infinite words the situation is more difficult. Al-
though determinization is possible ([16, 22]), it requires the model of deter-
ministic parity (or Muller) automata with acceptance conditions that are more
powerful than Büchi conditions. However, from the determinization result one

1In particular, as all graphs in the Caucal hierarchy have a decidable MSO-theory, the tree
constructed in the proof of Theorem 3.7 also has a decidable MSO-theory.

16



can infer that all regular languages of infinite words can be accepted by an unam-
biguous Büchi automaton [1]. In [12] a construction for unambiguous automata
is presented that does not rely on deterministic automata.

In this section we show that the situation is different for infinite trees: There
are regular languages that cannot be accepted by an unambiguous automaton.
The proof is based on the main result from the previous section: the undefin-
ability of a choice function in MSO. The underlying idea is rather simple. We
consider the language

T∃1 = {t ∈ T ω{0,1} | ∃u ∈ {0, 1}
∗ : t(u) = 1}

of trees with at least one node labeled 1. Each tree in T∃1 can be viewed as the
set of nodes labeled 1. Intuitively, an automaton accepting T∃1 has to verify that
the input tree contains a 1, i.e., an accepting run has to identify some position
labeled by 1. If the automaton is unambiguous, then there is exactly one run for
each tree in T∃1, and hence the automaton identifies exactly one position from
the set coded by the 1-positions. This can be turned into a formula defining a
choice function.

We show the following more technical result because it can be used to prove
different statements on the ambiguity of automata.

Lemma 4.1 Let A be a parity tree automaton over the alphabet {0, 1} not ac-
cepting the tree that is completely labeled by 0. Then there is a formula ψA(X,x)
such that for each U ⊆ {0, 1}∗ for which there is a unique accepting run of A
on t2[U ], there is a unique element u ∈ U such that t2 |= ψA[U, u].

Proof. We consider the following game which can be seen as the emptiness game2

for the automaton A intersected with the trivial automaton that accepts only
the tree t[∅] (i.e., the tree labeled 0 everywhere). This intersection corresponds
to removing all transitions that use a letter different from 0 from the standard
emptiness game for A.

Formally, the game is played between two players Eva and Adam who move
in alternation. The positions of Eva are the states of A, and the positions of
Adam are the transitions of A that use input letter 0. The initial position is
the initial state of A. Then the players move in alternation as follows:

• From a position q Eva chooses a transition (q, 0, q0, q1) of A.

• From position (q, 0, q0, q1) Adam chooses a state q0 or q1.

Eva wins a play if she can always choose a transition and if the resulting sequence
of states chosen in the play satisfies the acceptance condition of A. Since the
acceptance condition of A is a parity condition, we obtain a parity game (for
basic facts on parity games see [29]).

We have already mentioned that the presented game is an emptiness game for
the subautomaton of A in which all transitions with label 1 have been removed.

2For a description of the emptiness game for parity tree automata see [29].

17



A winning strategy of Eva in this game would yield an accepting run of A
on the tree t[∅], contradicting the assumption t[∅] /∈ T (A). We can conclude
that Adam has a winning strategy, and since we are working with a parity game,
Adam even has a positional3 winning strategy f that picks for each transition of
the form (q, 0, q0, q1) one of the states q0, q1 (see [29] for a proof of the positional
determinacy of parity games).

We now construct the formula ψA(X,x) based on this strategy f . Evaluated
on t[U, u] the formula states that there exists an accepting run of A on t[U ] such
that the path leading to node u corresponds to the choices of Adam according to
the strategy f . Note that if we apply the strategy of Adam to the transitions in
an accepting run, then this results in a path ending in a node labeled 1 because
otherwise the resulting infinite play would be winning for Eva.

Assuming that the states of A are {1, . . . , n} the formula ψA(X,x) looks as
follows:

∃X1, . . . , Xn : AccRun(X1, . . . , Xn, X) ∧X(x) ∧
∀y @ x : stratf (X,x,X1, . . . , Xn, y)

where

• the formula AccRun expresses that X1, . . . , Xn describe an accepting run
of A on the characteristic tree of X (the construction of such a formula is
standard, see e.g. [29]), and

• stratf states that the strategy f applied at node y in the run coded by
X1, . . . , Xn moves into the direction of x. In case the strategy allows to
move to both directions (when the states q0 and q1 are the same), the
formula picks the left move:

¬X(y) ∧
∧
q,q0,q1∈{1,...,n} Xq(y) ∧Xq0(y0) ∧Xq1(y1)→[

f(q, 0, q0, q1) = q0 ↔ (y0 v x)
]

If we fix the interpretations for X and X1, . . . , Xn, then there is exactly one
interpretation of x such that ∀y @ x.stratf (X,x,X1, . . . , Xn, y) is satisfied (if
there are two positions, then we obtain a contradiction when interpreting y as
the greatest common ancestor of these two positions).

Now assume that there is exactly one accepting run of A on t[U ]. Then the
interpretations of X1, . . . , Xn are fixed by U and hence the formula ψA(X,x)
has the claimed property. 2

Using this lemma it is easy to obtain the following theorem.

Theorem 4.2 There is no unambiguous parity tree automaton accepting the
language T∃1 consisting of exactly those {0, 1}-labeled trees in which at least one
node is labeled 1.

3The moves of a positional strategy only depend on the current vertex and not on the
entire history of the play.

18



Proof. AssumeA is an unambiguous automaton for T∃1 and consider the formula
ψA(X,x) from Lemma 4.1. As there is a unique accepting run of A on t[U ] for
each non-empty set U , ψA(X,x) defines a choice function. This contradicts
Theorem 3.1. 2

Using Lemma 4.1 we can also show that there are regular languages whose
ambiguity is witnessed by a single tree.

Theorem 4.3 There is a regular language T ⊆ T ω{0,1} and a tree t ∈ T such
that there is no parity automaton accepting T that has a unique accepting run
for t.

Proof. Consider the language T of trees with the property that each subtree
rooted at a node of the form 1∗0 contains a node labeled 1. Obviously this is a
regular language.

The tree t is defined to have all nodes of the form 1∗ labeled 0, and for each
n we plug the tree tn,n as the subtree rooted at the node 1n0 (as in the proof
of Theorem 3.7.) As each tn,n contains a node labeled 1, we have t ∈ T .

Assume that there is parity automaton A accepting T that has a unique run
on t. Let q be a state of A that occurs at infinitely many nodes of the form
1∗0 in this run. Let A′ be the automaton A with initial state q. As A accepts
T it is clear that A′ does not accept the tree t[∅]. Furthermore, as the run of
A on t is unique, there are infinitely many n such that A′ has a unique run on
tn,n. For the formula ψA′(X,x) from Lemma 4.1 this yields a contradiction to
Theorem 3.5. 2

5 Well-orderings

A well-ordering is a total order relation with the property that there are no
infinite descending chains or, equivalently, every non-empty subset of the do-
main of the relation has a smallest element. A simple example is the natural
ordering on the set of natural numbers N. The natural ordering on the set of
integers Z is not a well-ordering because, e.g., the whole set Z does not have a
minimal element w.r.t. to this ordering. If we define an ordering � on Z by first
comparing the absolute values of the numbers and in case of equality letting the
negative one be smaller, i.e., n � m iff |n| < |m|, or |n| = |m| and n ≤ m, then
we obtain a well-ordering.

A partial well-ordering is a partial order relation with no infinite descending
chains and with no infinite sets of pairwise incomparable elements. Equivalently
a partial well-ordering is a partial order in which any non-empty set admits a
non-empty finite set of minimal elements. Another useful equivalent property
is that for every infinite sequence (ai)i∈N there are two indices k < l such that
ak ≤ al. For two elements u and v of the partial well-ordering, we write u | v if
u and v are incomparable for the order.

19



A well-ordering is a particular case of partial well-ordering. If we partially
order the integers in Z by comparing their absolute values if they have the same
sign, we obtain a partial well-ordering on Z.

In this section we are interested in well-orderings and partial well-orderings
on the tree domain {0, 1}∗. A typical ordering of {0, 1}∗ is the lexicographic
ordering ≤lex defined by u1 ≤lex u2 if u1 is a prefix of u2, or u1 = u0u′1 and
u2 = u1u′2 for some u, u′1, u

′
2 ∈ {0, 1}∗. From the definition of ≤lex one can

easily see that it is MSO-definable in t2. But it is not a well-ordering because,
e.g., the set of nodes of the form 0∗1 does not have a minimal element.

In a similar way as we changed the standard ordering on Z into a well-
ordering, we can obtain a well-ordering on {0, 1}∗ by first comparing the length
of the elements and in case of equality take the lexicographic ordering. We
obtain the length-lexicographic ordering ≤llex formally defined by u1 ≤llex u2 iff
|u1| < |u2|, or |u1| = |u2| and u1 ≤lex u2. This defines a well-ordering but its
definition requires to compare the length of the elements. From the fact that
the MSO-theory of t2 extended with the equal length predicate is undecidable
(see [27]) one can easily derive that ≤llex is not MSO-definable in t2.

A partial well-ordering <len on {0, 1}∗ is obtained by only comparing the
length of the words (i.e. u ≤len v if u = v or |u| < |v|). In fact, as there are
only finitely many words of a given length, any non-empty subset of {0, 1}∗ has
a non-empty set of minimal elements for <len. Again <len is not MSO-definable
in t2.

More generally, as a direct consequence of Theorem 3.1 we obtain that there
exists no MSO-definable partial well-ordering on the nodes of the infinite binary
tree. In fact, from an MSO-formula φ≤(x, y) defining a partial well-ordering in
t2, a choice function choosing x in X is easily defined by taking the smallest
element for ≤lex of the finite set of minimal elements of X (for the partial
well-ordering):

ψchoice(X,x) := ∃Y ⊆ X. x ∈ Y ∧ (∀y ∈ Y. x ≤lex y)∧
∀z ∈ X. z ∈ Y ↔ ¬(∃z′ ∈ X φ<(z′, z))

This naturally raises the question whether there is a partial well-ordering
that we can add to t2 while preserving the decidability of MSO. In this section,
we prove the following negative result.

Theorem 5.1 The MSO-theory of the full-binary tree together with an arbi-
trarypartial well-ordering is undecidable.

In the particular case of tllex, the infinite binary tree with length-lexico-
graphic order, i.e., the structure tllex = ({0, 1}∗, E0, E1,≤llex), this result is
well-known. It easily follows from the undecidability of t2 extended with the
equal length predicate (see [27]).

We show that tllex can be MSO-interpreted in the infinite binary tree with
any partial well-ordering.

Theorem 5.2 There exists an MSO-interpretation I such that for every par-
tially well-ordered infinite binary tree t, I(t) is isomorphic to tllex.

20



As MSO-interpretations preserve the decidability of MSO (see Proposition 2.4),
Theorem 5.1 follows from the undecidability of the MSO-theory of tllex. The
rest of this section is dedicated to the proof of Theorem 5.2.

Partially well-ordered trees

We consider structures over the binary signature τ = {E0, E1,≤}. A canonical
well-ordered tree has the universe {0, 1}∗ where E0 and E1 are respectively
interpreted as {(u, u0) | u ∈ {0, 1}∗} and {(u, u1) | u ∈ {0, 1}∗}, and ≤ is
interpreted as a well-ordering on {0, 1}∗. We say that a τ -structure t is a well-
ordered (infinite binary) tree if it is isomorphic to a canonical well-ordered tree.
Similarly, if ≤ is a partial well-order we talk about partially well-ordered trees.

Up to isomorphism, a well-ordered tree is entirely characterized by the well-
ordering on the set of words over {0, 1}. Above, we have already defined tllex to
be the well-ordered tree with ≤llex as ordering relation.

The key property of tllex is that it is MSO-definable (up to isomorphism) in
the class of partially well-ordered trees4.

Proposition 5.3 There exists an MSO-sentence φllex such that a partially well-
ordered tree t is isomorphic to tllex iff t |= φllex.

Proof. We describe the properties that we need to express by φllex to ensure
that partially well-ordered t is isomorphic to tllex. In the description, for a node
v1 ∈ 1+ we denote by Bubble(v1) the set {u : v < u ≤ v1}. Note that if ≤
equals ≤llex, then Bubble(v1) consists of all nodes that are on the same level as
v1. The formula φllex expresses the following properties:

1. Bubble(1) = {0, 1}, and for all v ∈ 1∗, Bubble(v1) is the set of all the
children of nodes in Bubble(v).

2. The root of the tree is the least element for the order ≤, and on Bubble(v)
the relation ≤ agrees with the lexicographic order for all v ∈ 1+.

These properties can be defined in MSO. It is easy to see that tllex satisfies
the formula φllex. It remains to show that for every well-ordered tree t satisfying
φllex is isomorphic to tllex.

Let t be a partially well-ordered tree satisfying φllex. First observe that for
v ∈ 1∗ the first condition assures that Bubble(v) = {u : |u| = |v|}, i.e., the set
of all the nodes that are on the same level as v.

We write Succllex(u) for the successor of u for the order ≤llex. To prove the
proposition it is enough to show that every node u has exactly one successor in
<-ordering, and it is Succllex(u); in other terms, the set of minimal elements of
{v : u < v} is exactly {Succllex(u)}.

Assume by contradiction that this property is not satisfied. Let ū be the
smallest in the≤llex ordering node violating this property. By the first condition,

4The class of well-ordered trees and the class of partially well-ordered trees are themselves
MSO-definable in the class of τ -structures.

21



ū is not the root. If ū ∈ 1+ then the minimal elements of {v : ū < v} are
contained in Bubble(ū1). By the second condition the only minimal element is
0|ū|+1 = Succllex(ū). If ū 6∈ 1+ then all its potential successors are in Bubble(v)
where v ∈ 1∗ has the same length as ū. Once again the second condition allows
us to conclude. 2

Interpreting tllex

We now define the notion of induced partially well-ordered tree. Consider a
canonical partially well-ordered tree t with partial well-ordering ≤t and a set
U ⊆ {0, 1}∗ of nodes that

• is closed under greatest common prefix (u ∈ U ∧ v ∈ U → u ∧ v ∈ U),

• has the property that for all u ∈ U , u0{0, 1}∗∩U 6= ∅ and u1{0, 1}∗∩U 6= ∅,
i.e., from every node we can go to the left and to the right and find another
element of U below.

The partially well-ordered tree t|U induced by U in t has universe U .
To interpret its relations we use a formula ψgreatest(X,x) stating that x is

the greatest common prefix of the set X:

E
t|U
0 = {(u, v) ∈ U × U | t |= ψgreatest[u0{0, 1}∗ ∩ U, v]}

E
t|U
1 = {(u, v) ∈ U × U | t |= ψgreatest[u1{0, 1}∗ ∩ U, v]}
≤t|U = {(u, v) ∈ U × U | u ≤t v}.

The plan is to show that in each partially well-ordered tree we can find a
subset U inducing a well-ordered tree that is isomorphic to tllex. As a first step
we show that we can express each MSO-property φ of t|U by an MSO-formula
φ∗ on t that takes U as a parameter.

Lemma 5.4 For every MSO-formula φ over τ there exists a formula φ∗(X) such
that for every canonical partially well-ordered tree t and set U , t |= φ∗[U ] iff the
set U induces a partially well-ordered tree t|U on t, and t|U |= φ.

Proof. Consider an MSO-formula φ over τ . Let φind(X) be an τ -formula ex-
pressing that X satisfies the conditions to induce a full binary tree and let φ′(X)
be the formula obtained from φ by relativizing the quantifications to X and by
replacing Ei(x, y) with ψchoice(xi{0, 1}∗∩X, y), for i ∈ {0, 1}. It is easy to check
that the formula φ∗(X) := φind(X) ∧ φ′(X) satisfies the property stated in the
lemma. 2

Applying this lemma to the formula φllex from Proposition 5.3 yields that t |=
φ∗llex[U ] iff U induces a well-ordered tree isomorphic to tllex.

We now show that for every canonical partially well-ordered tree t there
exists a subset U ⊆ {0, 1}∗ such that t|U is isomorphic to tllex. We even show a
stronger result: there is in fact an MSO-definable such set (Lemma 5.6).

22



uε

• •

u0 u1

•

u00

Figure 3: Construction of a set inducing tllex

To construct such a set U we built up a sequence of nodes indexed by the
elements from {0, 1}∗. We start with a node uε representing the root of t|U .
Then we define u0 to be a node in the left subtree of uε such that uε < u0.
We continue by finding a node u1 in the right subtree of uε such that u0 < u1.
Then we take a node u00 in the left subtree of u0 such that u1 < u00, and so on.
This construction is illustrated in Figure 3, where the dashed arrows represent
the order relation < on the sequence uε, u0, u1, u00, . . . by always pointing to
the next bigger element from this sequence.

For this construction to work we need to ensure that we always can find
nodes as required, e.g., that there is a node u00 in the left subtree of u0 such
that u1 < u00. For this purpose we make the definition of a mixed node and
later choose uε to be a node with this property. We call a node u ∈ {0, 1}∗ of
a canonical partially well-ordered tree t mixed if the ordering relation “jumps”
between all different subtrees below u in the following sense: for all v, v′ w u
there exists w ∈ {0, 1}∗ such that v < v′w. We show that we can indeed find a
node with this property.

Lemma 5.5 Every canonical partially well-ordered tree t contains a mixed node.

Proof. Let t be a canonical partially well-ordered tree. Assume by contradiction
that t does not have any mixed nodes. We are going to construct a sequence
(un)n∈N of nodes such that for no i < j, ui < uj . This is in contradiction with
the fact that < is a well partial ordering.

We construct the sequence (un)n∈N by induction on n together with another
sequence of nodes (vn)n∈N such that for all n ≥ 0:

• vn v un+1 and vn v vn+1,

• there is no v > un in the subtree rooted in vn.

Note that these conditions imply that for no i < j, ui < uj because uj is in the
subtree rooted in vi.

As ε is not mixed there exist two nodes u and v such that there is no node in
the subtree of v that is greater (with respect to <) than u. We take u0 = u and

23



v0 = v. If v0 is not mixed then we can apply the same argument to the subtree
rooted in v0 obtaining u1 and v1. We get the desired sequence by induction. 2

Now we can formalize the construction of the set U inducing tllex as indicated
above and in Figure 3.

Lemma 5.6 For every canonical partially well-ordered tree t, there exists a set
of nodes U inducing a well-ordered tree t|U isomorphic to tllex.
Moreover there exists an MSO-formula ψ(X) which uniquely defines one such
set (i.e. there exists a unique set U0 s.t. t[U0] |= ψ and t|U0 is isomorphic to
tllex).

Proof. Let t be a canonical partially well-ordered tree. We construct a sequence
of nodes (uw)w∈{0,1}∗ indexed by the set of words over {0, 1}∗ such that:

• for all w,w′ ∈ {0, 1}∗, w ≤llex w
′ implies uw ≤ uw′ ,

• and for all w ∈ {0, 1}∗ and i ∈ {0, 1}, uwi ∈ uwi{0, 1}∗.

If we assume that this sequence has been constructed and we take U :=
{uw | w ∈ {0, 1}∗}, it is easy to check that U is closed by greatest common
prefix and hence U induces a full binary tree on t. Furthermore the mapping
from {0, 1}∗ to U associating w to uw is an isomorphism from tllex to t|U .

We now construct the sequence (uw)w∈{0,1}∗ by induction on the length-
lexicographic order ≤llex. By Lemma 5.5, the tree t has a mixed node. We take
uε to be a mixed node of t.

Assume that the sequence has been constructed up to w ∈ {0, 1}∗. Let w′

be the successor of w in the length-lexicographic order. Note that as w′ is not
empty, it can uniquely be written as w′ = w′′i for some w′′ ≤llex w and i ∈ 0, 1.
To construct uw′ , we need to find an element of uw′′i{0, 1}∗ which greater than
uw. As uε is mixed and uw and uw′′i are below uε (below according to the prefix
relation), there exists z ∈ {0, 1}∗ such that uw′′iz > uw. We take uw′ equal to
uw′′iz.

This establishes the first part of the lemma.
The construction of the set U presented above leaves several choices: namely

the mixed node we take for uε and the element of {uw′′iz|z ∈ {0, 1}∗ ∧ uw′′iz >
uw} we take for uw′ for each w′ ∈ {0, 1}+. We have already remarked (on page
20) that we can define a choice function on t by means of an MSO-formula
ψ(x,X). The formula states that x is the left-most minimal element of X
(minimal with respect to <).

We will show that if for each of the choices in the construction of U we use
the choice function defined by ψ we obtain a set U0 which is MSO-definable in
t.

Consider a set U0 satisfying the following properties:

(1) U0 induces a well-ordered tree which is isomorphic to tllex,

(2) the smallest element x0 of U0 is chosen by ψ in the set of mixed nodes of t,

24



(3) for all x′ 6= x0 ∈ U0 with predecessor x in U0 (according to ≤), father x′′

in U0 (according to the binary tree structure induced by U0), and i ∈ {0, 1}
such that x′′i v x′, we have that x′ is the element chosen by ψ in the set of
elements of U0 which are below x′′i and greater than x (below according to
the prefix relation, and greater according to <).

It follows from the first part of the proof that such a set exists. Moreover
there exists at most one set satisfying properties (1), (2) and (3). It remains to
verify that the above properties can be expressed in MSO-logic. For property
(1), it is enough to take the formula φ∗llex(X) obtained by applying Lemma 5.4
to the formula φllex of Proposition 5.3. For property (2), we simply need to
remark that the property of being a mixed node can be expressed in MSO. For
property (3) the translation is immediate. 2

Note that we can now already derive Theorem 5.1: For every formula φ over
τ , consider the formula φ∗(X) obtained from φ by Lemma 5.4 and φ∗llex(X)
obtained from the formula φllex of Proposition 5.3. By Lemma 5.6, for every
partially well-ordered tree t:

tllex |= φ iff t |= ∃X : φ∗llex(X) ∧ φ∗(X).

As the formula φ∗(X) can be effectively constructed from the formula φ, it
follows that the MSO-theory of tllex is recursive in the MSO-theory of any
partially well-ordered tree t.

Using the previous results it is easy to prove Theorem 5.2.
Proof(of Theorem 5.2). The interpretation I = (φdom, φE0 , φE1 , φ≤) such that
I(t) ∼= tllex for each well-ordered tree t is defined as follows. As domain formula
φdom we take the formula ψ defining the set U0 from Lemma 5.6. The formulas
φE0 , φE1 , and φ≤ just define the induced successor relations and the induced
ordering from the definition of induced well-ordered tree. 2

An immediate consequence of this result is that the infinite binary tree can-
not be MSO-interpreted in t1 (the natural numbers with successor). Based on
this we can use the same technique as in Corollary 3.6 to obtain the same result
for t1 extended with unary predicates.

Proposition 5.7 Let P1, . . . , Pn be unary predicates for t1. There is no inter-
pretation I such that I(t1[P1, . . . , Pn]) ∼= t2.

Proof. As already mentioned there is no interpretation I such that I(t1) ∼= t2.
Otherwise we could extend this interpretation by a formula transferring the or-
dering on t1 to t2, thus obtaining a well-ordered tree with decidable MSO-theory
(contradicting Theorem 5.1). Now assume that there is an interpretation I such
that I(t1[P1, . . . , Pn]) ∼= t2. We first construct a formula φtree(X1, . . . , Xn) such
that

t1 |= φtree[U1, . . . , Un] iff I(t1[U1, . . . , Un]) ∼= t2.

25



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 · · ·

Figure 4: Graph of the flip function

Such a formula only needs to express that the formulas from the interpretation
describe a structure in which all nodes have exactly one E0 successor, exactly
one E1 successor, and exactly one predecessor except for one node which is the
root. This can easily be done by an MSO-formula.

The formula ∃X1, . . . , Xn : φtree(X1, . . . , Xn) is true in t2 (interpreting
X1, . . . , Xn by P1, . . . , Pn). Hence, there are regular interpretations U1, . . . , Un
of X1, . . . , Xn such that t1 |= φtree[U1, . . . , Un] (see Theorem 2.2). By construc-
tion of φtree this means that I(t1[U1, . . . , Un]) ∼= t2. Since regular sets can be
defined in MSO we can directly refer to U1, . . . , Un in the interpretation and
obtain in interpretation I ′ such that I ′(t1) = t2, which is not possible. 2

Note that Proposition 5.7 does not make any assumption on the predicates
P1, . . . , Pn.

Another consequence of Theorem 5.1 is that t2 is not MSO-interpretable in
any structure that has a decidable MSO-theory and admits an MSO-definable
well-ordering because otherwise one could also MSO-interpret t2 extended with
a well-ordering in a structure with decidable MSO-theory.

Consider, for example, the function flip on the natural numbers. It maps
a natural number n to the number that is obtained by changing the least sig-
nificant bit that is 1 in the binary representation of n to 0. The graph of the
flip function is shown in Figure 4. The structure (t1,flip) of the natural num-
bers with successor extended by the flip function has a decidable MSO-theory
[17]. We conclude that t2 cannot be MSO-interpretable in this structure because
otherwise we could also interpret a well-ordered tree in it.

Proposition 5.8 There is no MSO-interpretation I with I(t1,flip) ∼= t2.

6 Conclusion

In this paper we have studied questions on MSO-definability in the binary tree
and on decidability of MSO in extensions of the binary tree by well-orderings.
As a result we obtain a rather simple and elementary proof of the theorem of
Gurevich and Shelah stating that there is no MSO-definable choice function on
the infinite binary tree. A simple consequence is that there is also no MSO-
definable well-ordering on the domain of the infinite binary tree. We obtain the

26



even stronger result that adding any partial well-ordering to the infinite binary
tree yields a structure with undecidable MSO-theory. These two results can
be used to derive non-definability results for MSO, as we have illustrated with
some examples.

One natural question that remains open is whether there exists a choice
function that can be added to the infinite binary tree such that the resulting
structure has a decidable MSO-theory.

As mentioned in the introduction, MSO-definability of a choice function is
a very special instance of the uniformization problem, namely for the formula
φ(X, y) = y ∈ X. The result from Section 3 shows that uniformization is
not possible in general on the infinite binary tree. This leaves the question
whether there are other types of formulas that allow uniformization. In [24] it
is mentioned that uniformization is possible for formulas of the form φ(x, Y ).
Here, uniformization means that the relation between elements and sets defined
by φ(x, Y ) can be turned into an MSO-definable function associating to each
element exactly one set from the relation.5

Another type of question related to this is the one of decidability, as for
example in Church’s synthesis problem [7] (see also [30]). An instance of this
problem is given by an MSO-formula φ(X,Y ) over the infinite line t1 such
that for each input sequence X there is at least one output sequence Y . A
solution is a very specific function compatible with this relation: It should be
implementable by a finite state automaton that reads the input sequence and
produces in each step one element of the output sequence. The task is now to
decide if such an automaton exists (and to construct one if possible). Similarly,
one can study the decision variant of uniformization on the binary tree: Given an
MSO-formula φ(X,Y ) over t2, does there exist an MSO-formula φ∗(X,Y ) that
defines a function compatible with φ(X,Y ). In its full generality this question
seems to be too difficult but one could study specific instances of it for simple
classes of formulas.

Acknowledgements. We would like to thank the anonymous referees for their
helpful comments.

References

[1] A. Arnold. Rational ω-languages are non-ambiguous. Theoret. Comput.
Sci., 26:221–223, 1983.

[2] J. R. Büchi. On a decision method in restricted second order arithmetic.
In Nagel E., Suppes P., and Tarski A., editors, Proceedings of International

5Such a result can be shown by transforming the formula into an equivalent automaton and
then constructing a formula that selects for each x a unique run that accepts the tree annotated
with x and some set Y . For this purpose it is enough to select a (say lexicographically) smallest
run on the path to the element x that can be completed to an accepting run. In this finite
part of the run we can plug for each ‘dangling’ state a fixed MSO-definable run. The details
of this construction are left to the reader.

27



Congress on Logic, Methodology and Philosophy of Science, pages 1–11.
Stanford University Press, 1962.

[3] J. R. Büchi and L. H. Landweber. Solving sequential conditions by finite-
state strategies. Trans. Amer. Math. Soc., 138:295–311, 1969.

[4] A. Carayol and C. Löding. MSO on the infinite binary tree: Choice and or-
der. In J. Duparc and T. A. Henzinger, editors, Proceedings of the 16th An-
nual Conference of the European Association for Computer Science Logic,
CSL 2007, volume 4646 of Lecture Notes in Computer Science, pages 161–
176. Springer, 2007.

[5] A. Carayol and S. Wöhrle. The Caucal hierarchy of infinite graphs in
terms of logic and higher-order pushdown automata. In P. K. Pandya and
J. Radhakrishnan, editors, Proceedings of the 23rd Conference on Founda-
tions of Software Technology and Theoretical Computer Science, FST TCS
2003, volume 2914 of Lecture Notes in Computer Science, pages 112–123.
Springer, 2003.

[6] D. Caucal. On infinite terms having a decidable monadic theory. In K. Diks
and W. Rytter, editors, Proceedings of the 27th International Symposium
on Mathematical Foundations of Computer Science, MFCS 2002, volume
2420 of Lecture Notes in Computer Science, pages 165–176. Springer, 2002.

[7] A. Church. Logic, arithmetic and automata. In Proceedings of the Inter-
national Congress of Mathematicians, pages 23–35, 1962.

[8] A. Dawar and E. Grädel. The descriptive complexity of parity games.
In M. Kaminski and S. Martini, editors, Proceedings of the 17th Annual
Conference on Computer Science Logic, CSL 2008, volume 5213 of Lecture
Notes in Computer Science, pages 354–368. Springer, 2008.

[9] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Perspectives in
Mathematical Logic. Springer, Berlin, 1995.

[10] E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infi-
nite Games, volume 2500 of Lecture Notes in Computer Science. Springer,
2002.

[11] Y. Gurevich and S. Shelah. Rabin’s uniformization problem. J. Symbolic
Logic, 48(4):1105–1119, 1983.

[12] D. Kähler and T. Wilke. Complementation, disambiguation, and deter-
minization of Büchi automata unified. In L. Aceto, I. Damg̊ard, L. A.
Goldberg, M. M. Halldórsson, A. Ingólfsdóttir, and I. Walukiewicz, editors,
Proceedings of the 35th International Colloquium on Automata, Languages
and Programming, ICALP 2008, Part I, volume 5125 of Lecture Notes in
Computer Science, pages 724–735. Springer, 2008.

28



[13] S. Lifsches and S. Shelah. Uniformization, choice functions and well orders
in the class of trees. J. Symbolic Logic, 61(4):1206–1227, 1996.

[14] S. Lifsches and S. Shelah. Uniformization and Skolem functions in the class
of trees. J. Symbolic Logic, 63(1):103–127, 1998.

[15] C. Löding. Automata and Logics over Infinite Trees. Habilitationsschrift,
RWTH Aachen, 2009.

[16] R. McNaughton. Testing and generating infinite sequences by a finite au-
tomaton. Information and Control, 9(5):521–530, 1966.

[17] A. Monti and A. Peron. Systolic tree omega-languages: the operational
and the logical view. Theoret. Comput. Sci, 233(1–2):1–18, 2000.

[18] A. W. Mostowski. Regular expressions for infinite trees and a standard
form of automata. In A. Skowron, editor, Computation Theory, volume
208 of Lecture Notes in Computer Science, pages 157–168. Springer, 1984.

[19] M. O. Rabin. Decidability of second-order theories and automata on infinite
trees. Trans. Amer. Math. Soc., 141:1–35, July 1969.

[20] M. O. Rabin. Automata on Infinite Objects and Church’s Problem. Amer-
ican Mathematical Society, Boston, MA, USA, 1972.

[21] A. Rabinovich. On decidability of monadic logic of order over the nat-
urals extended by monadic predicates. Information and Computation,
205(6):870–889, 2007.

[22] S. Safra. On the complexity of omega-automata. In Proceedings of the
29th Annual Symposium on Foundations of Computer Science, FoCS 1988,
pages 319–327, Los Alamitos, California, October 1988. IEEE Computer
Society Press.

[23] H. Seidl. Deciding equivalence of finite tree automata. SIAM J. Comput.,
19(3):424–437, 1990.

[24] A. L. Semenov. Decidability of monadic theories. In P. Czechoslo-
vakia, M. Chytil, and V. Koubek, editors, Proceedings of the 11th Inter-
national Symposium on Mathematical Foundations of Computer Science,
MFCS 1984, volume 176 of Lecture Notes in Computer Science, pages 162–
175. Springer, June 1984.

[25] D. Siefkes. The recursive sets in certain monadic second order fragments
of arithmetic. Arch. für mat. Logik und Grundlagenforschung, 17:71–80,
1975.

[26] R. E. Stearns and H. B. Hunt III. On the equivalence and containment
problems for unambiguous regular expressions, regular grammars and finite
automata. SIAM J. Comput., 14(3):598–611, 1985.

29



[27] W. Thomas. Automata on infinite objects. In Handbook of Theoretical
Computer Science, volume B: Formal Models and Semantics, pages 133–
192. Elsevier Science Publishers, Amsterdam, 1990.

[28] W. Thomas. On the synthesis of strategies in infinite games. In E. W.
Mayr and C. Puech, editors, Proceedings of the 12th Annual Symposium
on Theoretical Aspects of Computer Science, STACS ’95, volume 900 of
Lecture Notes in Computer Science, pages 1–13. Springer, 1995.

[29] W. Thomas. Languages, automata, and logic. In G. Rozenberg and A. Sa-
lomaa, editors, Handbook of Formal Language Theory, volume III, pages
389–455. Springer, 1997.

[30] W. Thomas. Church’s problem and a tour through automata theory. In
Pillars of Computer Science, Essays Dedicated to Boris (Boaz) Trakhten-
brot on the Occasion of His 85th Birthday, volume 4800 of Lecture Notes
in Computer Science, pages 635–655. Springer, 2008.

30


