
Games in logic

Igor Walukiewicz

CNRS, LaBRI Bordeaux

Algorithmic-Logical Theory of Infinite Structures
October 2007

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 1 / 48

Plan

Games in logic
Games are used to capture “dynamics” of formulas.

They offer, understanding of formula constructors in “operational” way.
The three settings presented here focus on different constructors and in consequence

use very different techniques.

1 Ehrenfeucht-Fraïssé games focus on the behaviour of quantifiers. This leads to a
notion of type and to the compositional method.

2 Parity games are used to understand operators defined by fixpoints. This leads to
theory of automata on infinite words or trees.

3 Game semantics is used to understand dynamics of propositional constructs. This
leads to accurate models of proofs and of programming languages.

Question: What are the connections between these three settings?

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 2 / 48

Part I

Ehrenfeucht-Fraïssé games and the composition method
Ehrenfeucht-Fraïssé games focus on the behaviour of quantifiers. This leads to a

notion of type and to the compositional method. In consequence we study how to cut
structures so that from the theory of parts one can obtain the theory of the whole. The

other application is to obtain normal forms of formulas.

Monadic second order logic.
E-F games and the composition theorem for sums (Shelah’s way).
Computing MSO-theories of finite sequences and infinite sequences.
CTL=Chain Logic.

[Thomas, “Ehrenfeucht Games, the Composition Method, and the Monadic Theory of
Ordinal Words.” Structures in Logic and Computer Science, LNCS 1261]

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 3 / 48

MSOL and Ehrenfeucht-Fraïssé games

Monadic second order logic
Instead of quantification over elements we have quantification over sets.

∃X .ϕ(X), ∀X .ϕ(X)
We have the inclusion predicate

X ⊆ Y
Standard predicates can be “lifted” to sets:

succ(X ,Y), X ≤ Y , X ⊆ P

Ehrenfeucht-Fraïssé games for MSOL
We have two structures (A, "P) and (B, "Q) with some distinguished sets of
elements.
We also have k = (k1, . . . , kn), a vector of positive natural numbers.
If k is empty then Duplicator wins iff the two structures satisfy the same predicates
with respect to "P and "Q. Otherwise Spoiler wins.
If k = r ·m then Spoiler chooses one of the structures, say A, and m sets in this
structure P1, . . . ,Pm . Duplicator replies by choosing Q1, . . . ,Qm in B and then the
r game is played on (A, "P,P1 . . . ,Pm) and (B, "Q,Q1 . . . ,Qm).

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 4 / 48

MSOL and Ehrenfeucht-Fraïssé games

Monadic second order logic
Instead of quantification over elements we have quantification over sets.

∃X .ϕ(X), ∀X .ϕ(X)
We have the inclusion predicate

X ⊆ Y
Standard predicates can be “lifted” to sets:

succ(X ,Y), X ≤ Y , X ⊆ P

Ehrenfeucht-Fraïssé games for MSOL
We have two structures (A, "P) and (B, "Q) with some distinguished sets of
elements.
We also have k = (k1, . . . , kn), a vector of positive natural numbers.
If k is empty then Duplicator wins iff the two structures satisfy the same predicates
with respect to "P and "Q. Otherwise Spoiler wins.
If k = r ·m then Spoiler chooses one of the structures, say A, and m sets in this
structure P1, . . . ,Pm . Duplicator replies by choosing Q1, . . . ,Qm in B and then the
r game is played on (A, "P,P1 . . . ,Pm) and (B, "Q,Q1 . . . ,Qm).

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 4 / 48

E-F games and types
Quantifier alternation

A formula of quantifier rank k = (k1, . . . , kn) has the form:

"Qn"yn . . . "Q1"y1. ϕ("x,"yn , . . . ,"y1)

where "Qi"yi stands for the vector of length ki of quantifiers of the same type.

Two structures (A, "P) and (B, "Q) are k-equivalent, written (A, "P) ≡k (B, "Q) if they
satisfy the same formulas of quantifier rank k.

Fact: (A, "P) ≡k (B, "Q) iff Duplicator has a winning strategy in the k game on
(A, "P) and (B, "Q).

k-types

Tpε(A, "P) is the set of qf formulas true in (A,P).
Tpk(A, "P), for k = r ·m is

{Tpr(A, "P, "Q) : "Q ⊆ |A|m}

Important property: (A, !P) ≡k (B, !Q) iff Tpk(A, !P) = Tpk(B, !Q).
Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 5 / 48

Important property: (A, !P) ≡k (B, !Q) iff Tpk(A, !P) = Tpk(B, !Q).

θk

θm1

θr1

θε1 θε2

θr2

θε3 θε4

θm2

θr3

θε5 θε6

θr4

θε7 θε8

θm1

θr1

θε2

θk

θm1

θr1

θε1 θε2

θr2

θε3 θε4

θm2

θr3

θε5 θε6

θr4

θε7 θε8

θm2

θr4

θε7

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 6 / 48

Composition theorems

Sum
The k-type of A+ B is determined by (and can be computed from) the k types of A
and B.

A B

P
P

Tpk(A) Tpk(B)

Tpk(A)

Ordered sum
The k-type of

∑
i∈ω Ai is determined by r-type of the sequence

(typek(A0), typek(A1), . . .); where k and r have the same length.
(This sequence is over the alphabet {Qτ : τ ∈ Typesk}.

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 7 / 48

Composition theorems

Sum
The k-type of A+ B is determined by (and can be computed from) the k types of A
and B.

Ordered sum
The k-type of

∑
i∈ω Ai is determined by r-type of the sequence

(typek(A0), typek(A1), . . .); where k and r have the same length.
(This sequence is over the alphabet {Qτ : τ ∈ Typesk}.

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 7 / 48

Part Ib

Deciding logics using compositional theorems

A k-type of a structure tells what k-formulas are true in the structure.
First, we will calculate possible types of finite sequences.
Then, we calculate the types for infinite sequences.

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 8 / 48

Computing the theory of finite sequences
The theory of finite sequences

Consider structures An = 〈{1, . . . ,n},≤〉.
Let Tpk

fin = {Tpk(An) : n ∈ N} (these are all possible k-thypes of finite sequences)

Computing Tpk(Fin(m))

Tpk(A1)

Tpk(A2) = Tpk(A1) + Tpk(A1)
...

Tpk(An+1) = Tpk(An) + Tpk(A1) = Tpk(Aj) for j ≤ n

We take Tpk
fin =
⋃n

i=1 Tpk(Ai).

Remark
Tpk·m

fin gives us all possible k-types of {〈{1, . . . ,n},≤,P1, . . . ,Pm〉 : for n ∈ N}.
Tpk

fin(m) = {τ : ∃σ ∈ Tpk·m
fin , τ ∈ σ}

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 9 / 48

Computing the theory of 〈ω,≤〉

The base step: Tpm(ω)
We compute by hand the theory Tpm(ω) that is:

{Tpε(ω,P) : P ∈ P(ω)m}

Observation
If we can compute Tpk(ω) then we can Tpk(ω, "Q) where each Qi is either ∅ or ω.

Induction step for k ·m
Tpk·m(ω) = {Tpk(ω, "P) : "P ∈ P(ω)m}

Each Tpk(ω, "P) can be presented as τ +
∑
ω
σ for τ,σ ∈ Tpk

fin(m).
Computing

∑
ω
σ reduces to computing Tpr(ω, "Q) where only one Qi = ω and the

rest is ∅.

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 10 / 48

Ramsey argument on types

We want to compute:

Tpk·m(ω) = {Tpk(ω, "P) : "P ∈ P(ω)m}

We show that each Tpk(ω, "P) can be presented as τ +
∑
ω
σ for τ,σ ∈ Tpk

fin(m).

Consider A = (ω,≤, "P)

Each interval (i, j) has its own k-theory.

We have FA : N2 → Tpk
fin(m).

By Ramsey Theorem there is an infinite S ⊆ N and σ ∈ Tpk
fin(m) such that for all

i, j ∈ S , FA(i, j) = σ
So Tpk(A) can be presented as τ +

∑
ω
σ; where τ = F(1, i) and i = min(S).

In consequence, it is enough to compute all possible:
τ +
∑
ω
σ for τ,σ ∈ Tpk

fin(m).

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 11 / 48

Computing the theory of 〈ω,≤〉 (cont.)

Induction step for k ·m
Tpk·m(ω) = {Tpk(ω, "P) : "P ∈ P(ω)m}

Each Tpk(ω, "P) can be presented as τ +
∑
ω
σ for τ,σ ∈ Tpk

fin(m).
Computing

∑
ω
σ reduces to computing Tpr(ω, "Q) where only one Qi = ω and the

rest is ∅.

Ordered sum
The k-type of

∑
i∈ω Ai is determined by r-type of the sequence

(Tpk(A0),Tpk(A1), . . .); where k and r have the same length.
(This sequence is over the alphabet {Qτ : τ ∈ Typesk}.

Observation
If we can compute Tpk(ω) then we can Tpk(ω, "Q) where each Qi is either ∅ or ω.

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 12 / 48

Part Ic

Understanding logics on trees

Composition theorems for trees permit to talk about properties of trees in terms of
its paths.
FO=CTL∗ over finite binary trees.
Variants of this argument work for infinite trees, or unranked trees, etc.

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 13 / 48

A composition theorem for trees
First-order theory of finite binary trees

We use first-order logic over predicates x ≤ y, left(x), right(x).
We will not need vectorial ranks. So we write Tpk(A) for the k-type of A, where
k ∈ N.

From trees to paths: expk(t, v)
w1

v1w2

v2 w3

v3w4

exp(t,w4) =

(λ(w1), r ,Tpk(v1 ↓))

(λ(w2), l,Tpk(v2 ↓))

(λ(w3), r ,Tpk(v3 ↓))

(λ(w4), l,Tpk(w4 ↓))

Theorem
The k + 1-type of a finite binary tree t is determined by the set

{Tpk(expk(t, v)) : v ∈ t}
Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 14 / 48

FO=CTL∗ on finite binary trees
Theorem (Hafer & Thomas)
The expressive powers of FO and CTL∗ on finite binary trees are the same

Remark
On infinite trees it is not the case as in FOL we cannot single out an infinite path.

Proof: We express FO-types in CTL∗

We want to express Tpk+1(t).
By composition theorem it suffices to know {Tpk(expk(t, v)) : v ∈ t}.
Recall that expk(t, v) are the sequences over Σ× {l, r}× Tpk .
For every Tpk(expk(t, v)) there is a first order formula defining sequences with this
property.
By Kamp theorem over sequences FOL=LTL, so we have an equivalent LTL
formula α (with predicates from Σ× {l, r}× Tpk)
By induction every type in Tpk is expressible by a CTL∗ formula.
We convert α to a CTL∗ formula α̂ by replacing predicates from
Σ× {l, r}× Tpk(t) by an appropriate CTL∗ formulas.
We write CTL∗ formula of the form

∧
i∈I Eα̂i ∧ A(

∨
i∈I)α̂i expressing Tpk+1(t).

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 15 / 48

Part II

Parity games and model checking
Parity games are used to understand operators defined by fixpoints. Such operators

talk not about a model but about an unfolding of the model. Their semantics is
captured by infinite plays and parity condition.

Introducing parity games via model-checking.
Parity games ≡ model-checking of the mu-calculus.
Where we can go from here:
changing winning conditions, or changing the way games are played.

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 16 / 48

Verification as a game

Verification (Model Checking)
Given a transition systemM and a property ψ, check ifM ! ψ

Reformulation
Construct a game G(M,ψ) of two players: Adam and Eve.
Fix the rules in such a way that

Eve wins from the initial position of G(M,ψ) iffM ! ψ

Game rules

s ! α ∨ β

s ! α s ! β

s ! α ∧ β

s ! α s ! β

s ! 〈a〉α

t ! α

s ! [a]α

t ! α
(s, t) ∈ Ra

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 17 / 48

Example

s0

s1 s2

s4 s5 s6

?
! 〈a〉[b]P

a a

b bb

Game

s0 ! 〈a〉[b]P

s1 ! [b]P s2 ! [b]P

s4 ! P s5 ! P s6 ! P

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 18 / 48

Example

s0

s1 s2

s4 s5 s6

?
! 〈a〉[b]P

a a

b bb

Game

s0 ! 〈a〉[b]P

s1 ! [b]P s2 ! [b]P

s4 ! P s5 ! P s6 ! Ps4 ! P s5 ! P s6 ! P

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 18 / 48

Example

s0

s1 s2

s4 s5 s6

?
! 〈a〉[b]P

a a

b bb

Game

s0 ! 〈a〉[b]P

s1 ! [b]P s2 ! [b]P

s4 ! P s5 ! P s6 ! Ps4 ! P s5 ! P s6 ! P

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 18 / 48

Game rules: reachability

Reachability: 〈·〉∗P

s0 s1 s2

〈·〉∗P

P ∨ 〈·〉〈·〉∗P

〈·〉∗P

P ∨ 〈·〉〈·〉∗P

〈·〉∗P

P ∨ 〈·〉〈·〉∗P

Who wins?
Eve wins if the game ends.

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 19 / 48

Game rules: safety

Safety: [·]ωP

s0 s1 s2

[·]ωP

P ∧ [·][·]ωP

[·]ωP

P ∧ [·][·]ωP

[·]ωP

P ∧ [·][·]ωP

Who wins?
Eve wins if the game continues forever or ends because there is no successor.

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 20 / 48

Different games for different proprieties

M, s ! α

G(M, s,α)

modal logic

finite duration games

reachability

termination

safety

non-termination

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 21 / 48

Games

Definition (Game G = 〈VE ,VA,R,λ : V → C ,Acc ⊆ Cω〉)

a b

c

d

e

f

Definition (Winning a play)
Eve wins a play v0v1 . . . iff the sequence is in Acc.

Definition (Winning position)
A strategy for Eve is σE : V ∗ ×VE → V . A strategy is winning from a given position iff
all the plays starting in this position and respecting the strategy are winning. A position
is winning if there is a winning strategy from it.

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 22 / 48

Games

Definition (Game G = 〈VE ,VA,R,λ : V → C ,Acc ⊆ Cω〉)

a b

c

d

e

f

Definition (Winning a play)
Eve wins a play v0v1 . . . iff the sequence is in Acc.

Definition (Winning position)
A strategy for Eve is σE : V ∗ ×VE → V . A strategy is winning from a given position iff
all the plays starting in this position and respecting the strategy are winning. A position
is winning if there is a winning strategy from it.

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 22 / 48

What kind of winning conditions

Properties
reachability
safety
etc.

Winning conditions
reachability: Acc =(sequences passing through a position from F),
safety: Acc =(sequences of elements of F),
repeated reachability: Acc =(sequences with infinitely many elements from F).
ultimately safe: Acc =(almost all elements from F).

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 23 / 48

The parity condition

Definition (Parity condition: Ω : V → {0, . . . , d})

"v ∈ Acc iff lim inf
n→∞

Ω(vn) is even

Other conditions in terms of parity condition
Infinitely often states from F ⊆ V .

Ω : V → {0, 1} such that Ω(v) = 0 iff v ∈ F .
Almost always states from F ⊆ V .

Ω : V → {1, 2} such that Ω(v) = 2 iff v ∈ F .
Reachability for F .

Arrange so that each state from F is winning.
Safety for F .

Ω(v) = 0 for v ∈ F and arrange so that all states not in F are loosing.

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 24 / 48

Part IIb

Parity games ≡ µ-calculus model checking

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 25 / 48

The mu-calculus

Syntax
P | ¬P | X | α | α ∨ β | α ∧ β | 〈a〉α | [a]α | µX .α | νX .α

Semantics
GivenM = 〈V , {Ea}a∈Act ,PM, . . .〉 and Val : Var → P(V) we define [[α]]MVal ⊆ P(V).

[[P]]MVal =PM

[[X]]MVal =Val(X)
[[〈a〉α]]MVal ={v : ∃v′. Ea(v, v′) ∧ v′ ∈ [[α]]MVal}

[[µX .α(X)]]MVal =
⋂
{S ⊆ V : [[α(S)]]MVal ⊆ S}

Notation:M, s ! α for s ∈ [[α]]MVal , where Val will be clear from the context.

We will give a characterization of the semantics in terms of games

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 26 / 48

Games for the mu-calculus

Setup
We are given a transition systemM and a formula α0.
We define a game G(M,α0) where Eve wins from (s0 ! α0) iffM, s0 ! α0.

Game rules

s ! α ∨ β

s ! α s ! β

s ! α ∧ β

s ! α s ! β

s ! 〈a〉α

s ! α

s ! [a]α

s ! α
(s, t) ∈ RMa

In s ! P Eve wins iff s ∈ PM In s ! ¬P Eve wins iff s /∈ PM

What to do with µX .α(X) and νX .α(X)?

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 27 / 48

Game rules

Game rules

s ! α ∨ β

s ! α s ! β

s ! α ∧ β

s ! α s ! β

s ! 〈a〉α

s ! α

s ! [a]α

s ! α
(s, t) ∈ RMa

In s ! P Eve wins iff s ∈ PM In s ! ¬P Eve wins iff s ∈ PM

s ! µX .α(X)

s ! α(µX .α(X))

s ! νX .α(X)

s ! α(νX .α(X))

These two rules may be the source of infinite plays.

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 28 / 48

Example: Reachability

Reachability: 〈·〉∗P ≡ µX .P ∨ 〈·〉X

s0 s1 s2

α ≡ µX .P ∨ 〈·〉X

P ∨ 〈·〉α

α

P ∨ 〈·〉α

α

P ∨ 〈·〉α
Eve wins if the game ends in P. µX .α(X) =

⋃
τ∈Ord µ

τX .α(X)

Safety: [·]ωP ≡ νX .P ∧ [·]X

s0 s1 s2

β ≡ νX .P ∧ [·]X

P ∧ [·]β

β

P ∧ [·]β

β

P ∧ [·]β
Eve wins if the game continues for ever ends in P.

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 29 / 48

Example: Reachability

Reachability: 〈·〉∗P ≡ µX .P ∨ 〈·〉X

s0 s1 s2

α ≡ µX .P ∨ 〈·〉X

P ∨ 〈·〉α

α

P ∨ 〈·〉α

α

P ∨ 〈·〉α
Eve wins if the game ends in P. µX .α(X) =

⋃
τ∈Ord µ

τX .α(X)

Safety: [·]ωP ≡ νX .P ∧ [·]X

s0 s1 s2

β ≡ νX .P ∧ [·]X

P ∧ [·]β

β

P ∧ [·]β

β

P ∧ [·]β
Eve wins if the game continues for ever ends in P.

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 29 / 48

Example: Reachability

Reachability: 〈·〉∗P ≡ µX .P ∨ 〈·〉X

s0 s1 s2

α ≡ µX .P ∨ 〈·〉X

P ∨ 〈·〉α

α

P ∨ 〈·〉α

α

P ∨ 〈·〉α
Eve wins if the game ends in P. µX .α(X) =

⋃
τ∈Ord µ

τX .α(X)

Safety: [·]ωP ≡ νX .P ∧ [·]X

s0 s1 s2

β ≡ νX .P ∧ [·]X

P ∧ [·]β

β

P ∧ [·]β

β

P ∧ [·]β
Eve wins if the game continues for ever ends in P.

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 29 / 48

Example: Reachability

Reachability: 〈·〉∗P ≡ µX .P ∨ 〈·〉X

s0 s1 s2

α ≡ µX .P ∨ 〈·〉X

P ∨ 〈·〉α

α

P ∨ 〈·〉α

α

P ∨ 〈·〉α
Eve wins if the game ends in P. µX .α(X) =

⋃
τ∈Ord µ

τX .α(X)

Safety: [·]ωP ≡ νX .P ∧ [·]X

s0 s1 s2

β ≡ νX .P ∧ [·]X

P ∧ [·]β

β

P ∧ [·]β

β

P ∧ [·]β
Eve wins if the game continues for ever ends in P.

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 29 / 48

Example: Reachability

Reachability: 〈·〉∗P ≡ µX .P ∨ 〈·〉X

s0 s1 s2

α ≡ µX .P ∨ 〈·〉X

P ∨ 〈·〉α

α

P ∨ 〈·〉α

α

P ∨ 〈·〉α

Eve wins if the game ends in P. µX .α(X) =
⋃
τ∈Ord µ

τX .α(X)

Safety: [·]ωP ≡ νX .P ∧ [·]X

s0 s1 s2

β ≡ νX .P ∧ [·]X

P ∧ [·]β

β

P ∧ [·]β

β

P ∧ [·]β
Eve wins if the game continues for ever ends in P.

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 29 / 48

Example: Reachability

Reachability: 〈·〉∗P ≡ µX .P ∨ 〈·〉X

s0 s1 s2

α ≡ µX .P ∨ 〈·〉X

P ∨ 〈·〉α

α

P ∨ 〈·〉α

α

P ∨ 〈·〉α
Eve wins if the game ends in P. µX .α(X) =

⋃
τ∈Ord µ

τX .α(X)

Safety: [·]ωP ≡ νX .P ∧ [·]X

s0 s1 s2

β ≡ νX .P ∧ [·]X

P ∧ [·]β

β

P ∧ [·]β

β

P ∧ [·]β
Eve wins if the game continues for ever ends in P.

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 29 / 48

Example: Reachability

Reachability: 〈·〉∗P ≡ µX .P ∨ 〈·〉X

s0 s1 s2

α ≡ µX .P ∨ 〈·〉X

P ∨ 〈·〉α

α

P ∨ 〈·〉α

α

P ∨ 〈·〉α
Eve wins if the game ends in P. µX .α(X) =

⋃
τ∈Ord µ

τX .α(X)

Safety: [·]ωP ≡ νX .P ∧ [·]X

s0 s1 s2

β ≡ νX .P ∧ [·]X

P ∧ [·]β

β

P ∧ [·]β

β

P ∧ [·]β
Eve wins if the game continues for ever ends in P.

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 29 / 48

Defining winning conditions

µX1 νX2 µX3 νX4 α(X1,X2, . . .)

1 2 3 4 · · ·

µ’s have odd ranks,
ν’s have even ranks,
if β is a subformula of α then β has bigger rank than α.

The winning condition is the parity condition
Eve wins if the smallest priority appearing infinitely often is even.

Example
µ1Y .ν2X .(P ∧ 〈·〉X) ∨ 〈·〉Y ν2X .µ3Y (P ∧ 〈·〉X) ∨ 〈·〉Y

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 30 / 48

Model checking ≡ game solving

MC ⇒ game solving
The problemM, s0 ! α0 is reduced to deciding if Eve wins from the position (s0 ! α0)
in the game G(M,α0).

Game solving ⇒ MC
Game can be represented as a transition system.
There is a µ-calculus formula which is true exactly in positions where Eve wins.

Remarks
Other program logics (with fixpoint definable operators) can be handled in the
same way.
This approach permits also to handle satisfiability.
It also explains algorithmics of verification nicely. This is especially useful for
verification of infinite structures.

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 31 / 48

Part IIc

Different ways of winning and playing games.

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 32 / 48

Other kinds of winning conditions

Mean pay-off game: G = 〈VE ,VA,R,w : (VE ∪VA)→ N〉
Outcome for Eve of a play v0, v1, . . . is:

lim inf
n→inf

1
n

n∑

i=1

w(vi).

For Adam it is lim sup.

Discounted payoff game G = 〈VE ,VA,R,w : (VE ∪VA)→ R〉
Outcome of v0, v1, . . . is

(1− δ)
∑∞

i=0 δ
iw(vi)

here 0 < δ < 1 is a discount factor.

Value of the game
Value of the game in a vertex v is a number Vv such that:

Eve has a strategy from v to have an outcome ≥ Vv , and
Adam has a strategy from v to have an outcome ≤ Vv .

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 33 / 48

Results on payoff games

Theorem (Ehrenfeucht & Mycielski)
Every vertex of a mean payoff game has a value. Moreover the two players have
positional optimal strategies.

Theorem (Zwick and Paterson)
For every finite discounted payoff game the value exists in every vertex and is given as
a unique solution of the set of equations:

xv = (1− δ)w(v) +
{

max(v,u)∈R δxu if v ∈ VE

min(v,u)∈R δxu if v ∈ VA

There are optimal positional strategies.

Theorem (Zwick & Paterson)
When δ → 1 then VZP

δ (v)→ VEM (v).

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 34 / 48

Modifying rules for playing games

Turn based

Concurrent

Deterministic Probabilistic

ax

ay

bx

by

1/2

1/2

ax

ay

bx

by

2/3

1/3

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 35 / 48

Perfect information stochastic games

Definition
Apart from positions for Eve and Adam there are randomized positions where a
successor is chosen according to a probability distribution.

Example

0

4

5

3

2/3

1/3

Adam wins in this game.

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 36 / 48

Perfect information stochastic games, cont.

None of the players may be sure to win

0

4

5

3

2/3

1/3

Eve wins with the probability 2/3 and Adam with the probability 1/3.

Theorem (de Alfaro &, Majumdar, Chetterjee & Jurdzinski &
Henzinger, Zielonka)
In a finite game each state has a value and each player has an positional pure and
optimal strategy.

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 37 / 48

Concurrent games

Definition
Two players choose their moves concurrently. Their joint choice determines the
successor.

Example

hide

wet

home

(r,t)

(r,d),(d,t)

(o,o)

(d,d)
Eve’s moves: delay,run,out

Adam’s moves: delay,throw,out

Observation [de Alfaro, Henzinger]
There exists randomized strategies, but they may require infinite memory.

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 38 / 48

Part III

Game semantics
Game semantics is used to understand dynamics of propositional constructs. It
extracts computational content from proofs, abstracting from irrelevant detail.
This leads to accurate models of proofs and programming languages.
As for E-F types, it is not the winning the matters, but the ways to play.

Proofs as games.
Game semantics: an example.
Brief summary of the results, and (potential) applications.

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 39 / 48

Satisfiability in propositional logic

We have examined s ! α now we look at α + β

Game rules

α1 ∨ α2 2 β

α1 2 β α2 2 β

α1 ∧ α2 2 β

α1 2 β α2 2 β

α 2 β1 ∨ β2

α 2 β1 α 2 β2

α 2 β1 ∨ β2

α 2 β1 α 2 β2

What one can prove with these rules?
Not much. These rules characterize ∨ and ∧ in the free lattice.

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 40 / 48

Satisfiability cont.

Different ways of proving α1 ∧ α2 + α1 ∨ α2

α1 ∧ α2 2 α1 ∨ α2 α1 ∧ α2 2α1 ∨ α2

α1 ∧ α2 2 α1 α1 ∧ α2 2α2

α1 2 α1 α2 2α2

Things we cannot prove
(α1 ∨ α2) ∧ β 2 (α1 ∧ β) ∨ (α2 ∧ β)

The normal solution is to go to sets of formulas on both sides.

Strategies instead of proofs

α1∧ α2 2 α1∨α2
qo

qp
ao

ap

α1∧ α2 2 α1∨α2
qo

qp
ao

ap

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 41 / 48

Satisfiability cont.

Different ways of proving α1 ∧ α2 + α1 ∨ α2

α1 ∧ α2 2 α1 ∨ α2 α1 ∧ α2 2α1 ∨ α2

α1 ∧ α2 2 α1 α1 ∧ α2 2α2

α1 2 α1 α2 2α2

Things we cannot prove
(α1 ∨ α2) ∧ β 2 (α1 ∧ β) ∨ (α2 ∧ β)

The normal solution is to go to sets of formulas on both sides.

Strategies instead of proofs

α1∧ α2 2 α1∨α2
qo

qp
ao

ap

α1∧ α2 2 α1∨α2
qo

qp
ao

ap

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 41 / 48

Proofs as strategies

Strategies instead of proofs

2 α→(α→α)
qo

qp
ao

ap

2 α→(α→α)
qo

qp
ao

ap

Proofs as programs

λx.λy.y : N→N→N
qo

qp
ao

ap

λx.λy.x : N→N→N
qo

qp
ao

ap

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 42 / 48

Program semantics as a strategy

f :N→N 2 if (f (5) = 6) then 7 else 0: N
qo

qp
qo
5p

6o
7p

Remarks
Different strategies correspond to different programs.
The semantics is not about provability.
Semantics of a program is, roughly, a set of words: all plays permitted by the
strategy.

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 43 / 48

Program semantics as a strategy

f :N→N 2 if (f (5) = 6) then 7 else 0: N
qo

qp
qo
5p

6o
7p

f :N→N 2 if (f (5) = 6) then 7 else 0: N
qo

qp
qo
5p

1o
0p

Remarks
Different strategies correspond to different programs.
The semantics is not about provability.
Semantics of a program is, roughly, a set of words: all plays permitted by the
strategy.

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 43 / 48

More examples

Calling a function twice
f :N→N 2 f (5) + f (1) :N

qo

qp

qo

5p

no

qp

qo

1p

m0

(m + n)p

Nested calls
f :N→ N 2 f (f (5)) : N

qo

qp

qo

qp

qo

5p

no

np

mo

mp

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 44 / 48

Idealized Algol
Types

b ::= com | exp | var τ ::= b | τ → τ

Rules

Γ 2 skip,Ω : com
i ∈ {0, . . . ,max}

Γ 2 i : exp Γ, x : τ 2 x : τ

Γ, x : τ 2 M : τ ′
Γ 2 λx.M : τ → τ ′

Γ 2 M : τ → τ ′ Γ 2 N : τ
Γ 2 MN : τ ′

Γ 2 M : exp Γ 2 M0,M1 : b
Γ 2 ifzero MM0M1 : b

Γ 2 M : com Γ 2 N : b
Γ 2 M ; N : b

Γ 2 M : var
Γ 2!M : exp

Γ 2 M : var Γ 2 N : exp
Γ 2 M := N : com

Iteration and recursion
Γ 2 M : exp Γ 2 N : com
Γ 2 while M do N : com

Γ, x : τ 2 M : τ
Γ 2 µxτ .M : τ

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 45 / 48

Game semantics

Observational equivalence
Two terms are observationally equivalent, M ≈ N , if they behave the same in all
contexts

C [M] ⇓ skip iff C [N] ⇓ skip

Quantification over all program contexts C [·] makes this notion hard to work with.
The notion is very compelling as it captures well semantical indistinguishability.

Theorem (Abramsky & McCusker)
The game semantics of IA is fully abstract, which means that for all M and N :

[[M]] = [[N]] iff M ≈ N .

Remarks
For programs of type N→ N the semantics will be the input/output relation.
The setting scales up to higher-order programs with free variables.
The semantics is compositional.

f : N→ N 2 if (f (5) = 6) then 7 else 0: N

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 46 / 48

Reasoning about programs using game semantics

Reasoning about program equivalence
Construct the strategy representing a given program (typically using finite
approximations for data domains).
Sometimes this strategy can be represented by a finite automaton, or by a
deterministic pushdown automaton.
If so, we can check program equivalence by comparing languages for the two
automata.

Results
For Idealized Algol we have quite good understanding for which subclasses the
equivalence problem is decidable.

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 47 / 48

Conclusions

In E-F games, the semantics of a formula in a structure is represented by a type: a
tree describing all potential extensions.
In parity games, the semantics of a fixpoint formula is represented as an infinite
unfolding of a formula. Winning conditions on infinite plays are needed to handle
fixpoints of different types.
In game semantics, formula, or program, is represented by a set of plays it admits.
This set can be sometimes regular or context-free.

Questions
Are there connections between these settings?
Are there nontrivial results that can be transferred from one setting to another?

Igor Walukiewicz (LaBRI) Games in logic Dagstuhl 2007 48 / 48

