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Propositional logic (model checking)

Prop | ¬Prop | ϕ ∨ ψ | ϕ ∧ ψ

Valuation: V : Prop → {0, 1}

Model checking rules

V � ϕ ∨ ψ

V � ϕ V � ψ

Eve
chooses V � ϕ ∧ ψ

V � ϕ V � ψ

Adam
chooses

V � P Eve wins if V (P ) = 1.
V � ¬P Eve wins if V (P ) = 0.

Eve has a winning strategy from V � ϕ iff ϕ is true in V .
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Propositional logic (satisfiability)

We want to design a game for satisfiability checking.

We work with sets of formulas.

ϕ ∨ ψ,Γ
ϕ,Γ

ϕ ∨ ψ,Γ
ψ,Γ

Eve chooses

ϕ ∧ ψ,Γ
ϕ, ψ,Γ

Adam chooses

if Γ-irreducible then Eve wins if no P,¬P ∈ Γ.

Eve has a winning strategy from {ϕ} iff ϕ is satisfiable.

P1,¬P2, P3
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Propositional logic (satisfiability)

We want to design a game for satisfiability checking.

We work with sets of formulas.

ϕ ∨ ψ,Γ
ϕ,Γ

ϕ ∨ ψ,Γ
ψ,Γ

Eve chooses

ϕ ∧ ψ,Γ
ϕ, ψ,Γ

Adam chooses

if Γ-irreducible then Eve wins if no P,¬P ∈ Γ.

Eve has a winning strategy from {ϕ} iff ϕ is satisfiable.

Every model of ϕ can be obtained from a winning strategy in
the satisfiability game for {ϕ}.
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Remarks

In the satisfiability game Adam has nothing to say.
(This is a peculiarity of the simple case).

Satisfiability games are related to synthesis.

MC games are related to model-checking.

In the MC game we work with formulas while in the satisfiability
game we work with sets of formulas. (Boolean algebra).

Satisfiability games are constructed from MC games by a kind
of power-set construction.

(A position in sat game is like a set of positions in MC game)
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Part Ib

Games: basic definitions.
Games behind model-checking.
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Path forming games

G = 〈VE , VA, R, λ : V → C, Acc ⊆ Cω〉

a b

c

a

b

c

Eve wins a play if the labeling of it is in Acc.
(There is an edge from every node.)

V � P ∨ (¬P ∧Q)

V � P V � ¬P ∧Q

V � ¬P V � Q
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Path forming games

G = 〈VE , VA, R, λ : V → C, Acc ⊆ Cω〉

a b

c
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Eve wins a play if the labeling of it is in Acc.
(There is an edge from every node.)

V � P ∨ (¬P ∧Q)

V � P V � ¬P ∧Q
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Strategies

G = 〈VE , VA, R, λ : V → C, Acc ⊆ Cω〉

Strategy for Eve is σ : V ∗ × VE → V such that σ(~vv0) ∈ R(v0)

A strategy σ for Eve is winning from v if all plays from v
respecting the strategy are winning for Eve.

0 2

3

1

2

3

Positional/memoryless strategy for Eve is a function σ : VE → V
such that σ(v) ∈ R(v).
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Winning conditions

0 2

3

1

2

3

G = 〈VE , VA, R, λ : V → C, Acc ⊆ Cω〉

Infλ(~v): the set of colours appearing infinitely often on a path ~v.

Muller condition: given by a partition of P(C) into (FE,FA).

~v ∈ Acc iff {~v : Infλ(~v) ∈ FE}

Parity condition colours are numbers {0, . . . , d} and:

~v ∈ Acc iff min(Infλ(~v)) is even.

. – p.9/71



Basic results

Thm: Every game with a Muller winning condition is
determined, i.e., from every vertex one of the players has a
winning strategy.

Thm: In a parity game a player has a memoryless winning
strategy from each of his winning vertices.

Def: To solve a game is to determine for each position who has
a winning strategy from this position.

Thm: There is an algorithm for solving finite Muller games.

[Martin, Emerson & Jutla, Mostowski]

. – p.10/71



Part II

Games: basic definitions.

Games behind model-checking.
Games behind synthesis.

Extensions of the basic game model.

Distributed synthesis.
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The mu-calculus

Syntax: P | ¬P | X | α ∨ β | α ∧ β | 〈a〉α | [a]α | µX.α | νX.α

Semantics in a transition system M = 〈V, {Ra}a∈Act , P
M, . . .〉;

we need Val : Var → P(V )

[[P ]]M
Val

=PM

[[X]]M
Val

=Val(X)

[[〈a〉α]]M
Val

={v : ∃v′. Ra(v, v
′) ∧ v′ ∈ [[α]]M

Val
}

[[µX.α(X)]]M
Val

=
⋂

{S ⊆ V : [[α(S)]]M
Val

⊆ S}

The model-checking problem: given a sentence α, a finite
transition system M, and a state s0, check if s0 ∈ [[α]]M.
(Notation M, s0 � α)
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Model-checking

We are given a transition system M.
Model checking rules

s � α ∨ β

s � α s � β

s � α ∧ β

s � α s � β

s � 〈a〉α

t � α

s � [a]α

t � α
(s, t) ∈ Ra

s � P Eve wins if s ∈ PM; s � ¬P Eve wins if s 6∈ PM.

s � µX.α(X)

s � α(µX.α(X))

s � νX.α(X)

s � α(νX.α(X))

The last two rules may be a source of infinite plays.

Wanted: Eve wins in G(M, α) from s0 � α iff M, s0 � α.
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Infinite plays

s a

...
...

s � µX.〈a〉X s � νX.〈a〉X

s � 〈a〉µX.〈a〉X s � 〈a〉(νX.〈a〉X)

s � µX.〈a〉X s � νX.〈a〉X

Eve should win in the second game but not in the first.
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Approximations

µX.β(X) =
⋃

τ∈Ord
µτX.β(X)

[[µ0X.β(X)]]
M

Val
=∅

[[µτ+1X.β(X)]] =[[β(X)]]M
Val[[[µτ X.β(X)]]M

Val
/X]

[[µτX.β(X)]]M
Val

=
⋃

τ ′<τ

[[µτ ′X.β(X)]]
M

Val
if τ is a limit ordinal

νX.β(X) =
⋂

τ∈Ord
ντX.β(X)

[[ν0X.β(X)]]
M

Val
=V

[[ντ+1X.β(X)]] =[[β(X)]]M
Val[[[ντX.β(X)]]M

Val
/X]

[[ντX.β(X)]]M
Val

=
⋂

τ ′<τ

[[ντ ′X.β(X)]]
M

Val
if τ is a limit ordinal
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Infinite plays

s a

...
...

s �

3

µτ−1X.〈a〉X s �

3

ντX.〈a〉X

s �

1

〈a〉(µτ−1X.〈a〉X) s �

2

〈a〉(ντX.〈a〉X)

s �

3

µτX.〈a〉X s �

3

ντX.〈a〉X

Eve should win in the second game but not in the first.

Assign rank 1 to µ-regeneration and rank 2 to ν-regeneration.
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Infinite plays

s a

...
...

s � 3µ
τ−1X.〈a〉X s � 3ν

τX.〈a〉X

s � 1〈a〉(µ
τ−1X.〈a〉X) s � 2〈a〉(ν

τX.〈a〉X)

s � 3µ
τX.〈a〉X s � 3ν

τX.〈a〉X

Eve should win in the second game but not in the first.

Assign rank 1 to µ-regeneration and rank 2 to ν-regeneration.
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Defining winning conditions

µX1. νX2. µX3. νX4 . . . ϕ(X1, X2, . . . )

1 2 3 4 · · ·

µ’s have odd ranks,

ν’s have even ranks,

if β is a subformula of α then β has bigger rank than α.

With such acceptance conditions we have:

Thm [Emerson & Jutla, Stirling]:
M, s0 � α iff Eve wins in G(M, α) from s0 � α.
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Example

νY.µX. (P ∧ 〈a〉Y ) ∨ 〈b〉X

s � 〈a〉Y

s � P ∧ 〈b〉Y

s � P

s � β3
X

s � β2
Y

s � 〈b〉X

a

sa

M

G(M, α)
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Tableau

Model checking rules

s � α ∨ β

s � α s � β

s � α ∧ β

s � α s � β

s � 〈a〉α

t � α

s � [a]α

t � α
(s, t) ∈ Ra

s � µX.α(X)

s � α(µX.α(X))

s � νX.α(X)

s � α(νX.α(X))

s � P Eve wins if s ∈ PM; s � ¬P Eve wins if s 6∈ PM.
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Tableau

Tableaux rules

α ∨ β

α β

α ∧ β

α β

〈a〉α

α
a

[a]α

α
a

µX.α(X)

α(µX.α(X))

νX.α(X)

α(νX.α(X))

These rules define a tableau Tα for a formula α.

Operation M⊗Tα of “synchronized product” of a transition
system and a tableau that gives the MC game.

Obs: M, s0 � α iff Eve wins from (s0, α) in M⊗Tα.
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Example

νY.µX. (P ∧ 〈a〉Y ) ∨ 〈b〉X

〈a〉Y

P ∧ 〈a〉Y

P

β3
X

β2
Y

〈b〉X

ba

sa

M

TβY
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Example

νY.µX. (P ∧ 〈a〉Y ) ∨ 〈b〉X

s � 〈a〉Y

s � P ∧ 〈b〉Y

s � P

s � β3
X

s � β2
Y

s � 〈b〉X

a

sa

M

M⊗TβY
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From MC to games

Given a structure M and a formula α we construct the game
G(M, α) such that:

M, s � α iff Eve wins from (s � α) in G(M, α)

The winning condition in G(M, α) is a parity condition which
size is the depth of alternation of fixpoints in α.

One can defined a tableau Tα and a synchronized product
M⊗Ta so that G(M, α) = M⊗Tα.

In particular the size of |M| ⊗ |Tα| is |M| · |α|.

This works also for infinite transition systems.
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From games to MC

A game can be represented as a transition system where
proposition PE designates Eve’s positions,
propositions P0, . . . , Pd define λ : V → {0, . . . , d}.

Thm [Emerson & Jutla]: There is a formula of the mu-calculus
εd such that

MG, v � εd iff Eve wins from v in G.

γ(Z0, . . . , Zd) =
(

PE ∧
∧

i=0,...,d

(Pi ⇒ 〈 〉Zi)
)

∨
(

¬PE ∧
∧

i=0,...,d

(Pi ⇒ [ ]Zi)
)

εd = νZ0.µZ1. . . . σZd. γ(Z0, . . . , Zd)
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In summary

Parity games and model-checking for the mu-calculus are very
close to each other (inter-reducible in linear time).

M, s � α iff in M⊗Tα Eve wins from (s, α)

Because of this translation it is enough to consider the games
solving problem instead of MC problem.

The tableau construction gives an alternating automaton
accepting models of the formula.

The M⊗Tα operation defines the space of runs of the
automaton Tα on the structure M.

As Tα accepts all models of α, the satisfiability problem reduces
to the emptiness test of Tα.

Indeed, the satisfiability game is obtained from converting Tα

into a nondeterministic automaton.
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Pushdown systems

Pushdown system: P = (Q,Γ,∆)

Transitions rules: ∆ ⊆ Q× Γ×Q×Op

(q, a) � (q′, pop) (q, a) � (q′, pushb)

Pushdown graph: G(P )

Vertices: Q× Γ∗

Edges: qw→ q′w′ according to the rules.

q0 is always the initial state and ⊥ is the initial stack symbol.
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Pushdown graph: an example

q0⊥ q0a⊥ q0aa⊥ q0aaa⊥ · · · q0a
k⊥ · · ·

q1⊥ q1a⊥ q1aa⊥ · · · q1a
k−1⊥ · · ·

This is (a part of) the graph of the system:

(q0, a) �(q0, pusha) (q0, a) �(q1, pop)

(q1, a) �(q1, pop)

(q0,⊥) �(q0, pusha) (q1,⊥) �(q0, pusha)

The push-down model checking problem:

Given P and α decide if α holds in the initial vertex of G(P ).
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Model checking pushdown systems

Given P and α decide if α holds in the initial vertex of G(P ).

Construct Tα and the product G(P )⊗ Tα.

This gives an infinite pushdown game:

P = 〈Q,Γ,∆, QE , QA,Ω : Q→ N〉

pushdown system with states partitioned between Eve and
Adam

where each state is assigned a rank (Ω : Q→ N).

α holds in the initial vertex of G(P ) iff
Eve has a winning strategy from the initial vertex in the game.
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Pushdown game: an example

q0
0⊥ q0

0a⊥ q0
0aa⊥ q0

0aaa⊥ · · · q0
0a

k⊥ · · ·

q1
1⊥ q1

1a⊥ q1
1aa⊥ · · · q1

1a
k−1⊥ · · ·

We have that:
q0 is a vertex of Adam and q1 of Eve;
Ω(q0) = 0 and Ω(q1) = 1.

Eve has a winning strategy in this game.

The game solving problem: Given P with a partition (QE, QA)
of states, and a function Ω : Q→ N decide who has a winning
strategy from the initial vertex of G(P ).

Thm: The problem of solving parity pushdown games is
EXPTIME-complete. The same for MC problem.

. – p.29/71



Higher-order pushdown systems

1-store: a sequence al . . . a1 over an alphabet Γ.

n-store: a sequence [sl] · · · [s1] of (n− 1)-stores.

We have standard operations push1
a and pop1

a.

Additionally we have pushk and popk operations:

pushk([sl] · · · [s1]) =

{

[sl][sl] · · · [s1] stack order = k

[pushk(sl)] · · · [s1] stack order > k

popn([sl][sl−1] · · · [s1]) =

{

[sl−1] · · · [s1] stack order = k

[sl−1] · · · [s1] stack order > k

Pushdown system of order n: P = 〈Q,Γ,∆〉 where

∆ ⊆ Q× Γ×Q×Opn.
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Higher-order example

A system where all paths are of the form qk
1q

k
2q

k
3

q1[a] → q1[aa] → · · · → q1[a
k]→

q2[a
k][ak] → q2[a

k−1][ak] → · · · → q2[][a
k] →

q3[a
k] → q3[a

k−1] → · · · → q3[]

2-store gives additional power. If considered as an accepting
device 2-store automaton would recognize {akbkck : k ∈ N}.
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MC for higher-order automata

Once again the model checking problem reduces to solving
games. This time higher-order pushdown games.

Such a game is given by a higher-order pushdown automaton
with states partitioned into Adam’s and Eve’s states and a
function Ω : Q→ N.

Thm[Engelfreit, Cachat]: Solving n-order pushdown games is
n-EXPTIME complete.

Higher-order pushdown automata “implement” higher-order
(safe) program schemes.

The graphs of configurations of n-order pushdown automata
are the graphs of n-th level of the Caucal hierarchy.
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Part III

Games: basic definitions.

Games behind model-checking.

Games behind synthesis.
Extensions of the basic game model.

Distributed synthesis.
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Synthesis via satisfiability checking

Synthesis problem I: Given a specification find a system
satisfying it.

Specification: propositional formula;
System: valuation of variables.

ϕ ∨ ψ,Γ
ϕ,Γ

ϕ ∨ ψ,Γ
ϕ,Γ

Eve chooses

ϕ ∧ ψ,Γ
ϕ, ψ,Γ

Adam chooses

when Γ-irreducible then Eve wins if no P,¬P ∈ Γ.

Eve has a winning strategy from {ϕ} iff ϕ is satisfiable.

Every model of ϕ can be obtained from a winning strategy in
the satisfiability game for {ϕ}.
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Extension to the µ-calculus

Γ
{α, {β : [a]β ∈ Γ} : 〈a〉α ∈ Γ}

Adam chooses

Γ, µX.α(X)
Γ, α(µX.α(X))

Γ, νX.α(X)
Γ, α(νX.α(X))

There are now infinite paths and we need a rule to decide the
winner there.
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Path condition

µX.〈a〉X νX.〈a〉X

〈a〉(µX.〈a〉X) 〈a〉(νX.〈a〉X)

µX.〈a〉X νX.〈a〉X

...
...

On the left Adam should win on the right it should be Eve.

µX.[a]X, νX.〈a〉X

[a](µ . . . ), 〈a〉(ν . . . )

µX.[a]X, νX.〈a〉X

The conditions should talk about traces inside the path.
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Extension to the µ-calculus

Γ
{α, {β : [a]β ∈ Γ} : 〈a〉α ∈ Γ}

Adam chooses

Γ, µX.α(X)
Γ, α(µX.α(X))

Γ, νX.α(X)
Γ, α(νX.α(X))

The rule for infnite paths says that Eve wins if there is no bad
trace inside the path. (It can be converted to a parity condition).

Eve wins from {α} iff α is satisfiable.

Every model (transition system) for α comes from some
winning strategy in this game.

Thm [Emerson & Jutla]: The satisfiability problem for the
µ-calculus is EXPTIME-complete.
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Control problem for a given plant

A plant is a deterministic transition system over Σ.
P = 〈Sp, Σ, sp

I , e
p : S × A

·
→ S〉

Given P and α, find a controller C (deterministic transition
system) s.t. P × C � α.

P × C = 〈S = Sp × Sc, Σ, (sp
I , s

c
I), e : S × Σ

�

→ S〉
e((sp, sc), a) = (ep(sp, a), e

c(sc, a))

Solution:
Define an operation α/P such that:

C � α/P iff P × C � α

Find a model C of α/P .
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Example

α ≡ execute d action

P: �

�
�

�

a

b

c1c2

d

d

d

Some possible controllers:

�

�

� �

�

	

a d a d

d

The second solution is non-blocking.
C � (α/P ) ∧ βnonblock

So we can require additional properties from the controller.
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Uncontrollable/unobseravable actions

Divide Σ into:
Σcon and Σucon of controllable and uncontrollable actions.
Σobs and Σuobs of observable and unobservable actions.

Additional conditions:

θucon : C cannot forbid actions from Σucon

≡ ∀s ∈ S. ∀a ∈ Σucon. e(s, a) defined

≡ νX.
(

∧

a∈Σ

[a]X
)

∧
(

∧

a∈Σucon

〈a〉tt
)

θuobs : C cannot observe actions from Σuobs

≡ ∀s ∈ S. ∀a ∈ Σuobs. e(s, a) = s

≡ νX. (
∧

a∈Σ

[a]X) ∧ (
∧

a∈Σuobs

	a)

Solution: C ∈ L(Aα/P ) ∩ L(Aθucon
)

. – p.40/71



Uncontrollable/unobservable actions

Divide Σ into:
Σcon and Σucon of controllable and uncontrollable actions.
Σobs and Σuobs of observable and unobservable actions.

Additional conditions:

θucon : C cannot forbid actions from Σucon

≡ νX.
(

∧

a∈Σ

[a]X
)

∧
(

∧

a∈Σucon

〈a〉tt
)

θuobs : C cannot observe actions from Σuobs

≡ νX. (
∧

a∈Σ

[a]X) ∧ (
∧

a∈Σuobs

	a)

Solution: Find C � (α/P ) ∧ θucon ∧ θuobs
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Example

Σuobs = {a}, Σucon = {e} and the goal is to avoid e

• •

• •

a

c

c

e

d

d d

A solution: •

•

ad

e

a, e

Wrong: • •

•

a

c

d

d
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Games as specifications

Till now we have reduced various synthesis problems to
games.

Games themselves can be considered as specifications and
strategies as programs.

0 2

3

1

2

3

3

In this kind of setting we can vary only the shape of a graph
and the rest of a specification is fixed.

All centralized synthesis problems are reducible to this one.
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Part IV

Games: basic definitions.

Games behind model-checking.

Games behind synthesis.

Extensions.
Distributed synthesis.
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More elaborate winning conditions

The mu-calculus specifications translate into parity winning
conditions. Similarly for other standard program logics.

In the context of push-down games we have phenomena not
expressible in these logics:

explosion: the height of the stack is unbounded.

Thm[Cachat & Duparc & Thomas, Bouquet & Serre & W.,
Gimbert]: Games with winning conditions that are boolean
combinations of parity and explosion conditions can be solved in
EXPTIME.

Thm: Winning conditions that are unions of explosion and parity
conditions admit memoryless strategies. Intersection of Büchi
and explosion conditions may need infinite memory.
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Example

q0
0⊥ q0

0a⊥ q1
0aa⊥ q1

0aaa⊥ · · · q1
0a

k⊥ · · ·

q1
1⊥ q1

1a⊥ q1
1aa⊥ · · · q1

1a
k−1⊥ · · ·

· · ·
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Conditions admitting positional strategies

Memoryless strategies are interesting as the size of memory
influences:

the size of controllers,
the size of counterexamples,
the complexity of the algorithms.

A winning condition admits positional determinacy iff all the
games with this condition are positionally determined.

Thm [McNaughton]: Parity condition is the only Muller
condition admitting positional determinacy.

Rem [Zielonka]: If all nodes need to be coloured then the class
is a bit bigger.
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Other types of conditions

Muller conditions with infinite number of colours.
G = {VE , VA, R, λ : V → ω}

Infinite parity condition:
Eve wins iff min(Inf(p)) is even or Inf(p) = ∅.

Thm[Graedel & W.]: Games with infinite parity condition admit
memoryless determinacy. All other conditions need infinite
memory.

Thm[Graedel & W.]: The conditions given by λ : V → (ω + 1)
admit positional determinacy over graphs of bounded out-degree.

Thm [Colcombet & Niwiński]: If partial colouring functions are
allowed then only finite parity conditions admit positional
determinacy.
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Games with time

0

3

3

0

0

4

4

x < 6

x > 5
x < 5.5

x ≥ 5.5

x := 0

Like in timed automata, game has clocks and restrictions on
when transitions can be taken.
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Modifying rules

A taxonomy of the types of rules:

Deterministic Probabilistic

Turn-based

1/2

1/2

Concurrent by

ax

ay

bx

by

ax

ay

bx

1/3

2/3
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Perfect information stochastic games

We add randomized positions: ∆.

In such a vertex we a have a probability distribution on
outgoing edges.

0

4 3

52/3

1/3

Adam wins in this game
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Perfect information stochastic games

None of the players may be sure to win.

0

4 3

52/3

1/3

Eve wins with the probability 2/3 and
Adam with the probability 1/3.

Thm [de Alfaro & Majumdar, Chatterjee & Jurdziński &
Henzinger, Zielonka] :
In a finite game each state has a value and each player has an
positional, pure and optimal strategy.
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Concurrent games

hide

home

wet

(r,d) (d,t)

(r,t)

(o,o)

(d,d) Eve Adam
d d
r t
o o

Two players choose their moves concurrently. Their joint choice
determines the successor.

None of the players may have a pure winning strategy.

There exists randomized strategies, but they may require
infinite memory [de Alfaro, Henzinger].
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Part V

Games: basic definitions.

Games behind model-checking.

Games behind synthesis.

Extensions of the basic game model.

Distributed synthesis.
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Distributed synthesis

Given a plant P and formulas α, β1, β2 do there exist
controllers C1, C2 such that:

C1 � β1, C2 � β2 and P × C1 × C2 � α.
(Each controller has its own Σi

ucon and Σi
uobs.)

Synthesis for a given architecture:

C1 C2 C3 Cn

Σ0 Σ1 Σ2 Σn
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Distributed control

Given a plant P and formulas α, β1, β2 do there exist
controllers C1, C2 such that:

C1 � β1, C2 � β2 and P × C1 × C2 � α.
(Each controller has its own Σi

ucon and Σi
uobs.)

Define new operation α/β with the property:

P � α/β iff there is C such that C � β and P × C � α

The operation α/β works only if β does not use 	.

We have:
P � (α/β1)/β2 iff there is C2 with P × C2 � α/β1

iff there are C1, C2 with P × C1 × C2 � α.
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Distributed synthesis is difficult

Fact: The following problem is undecidable:
Given α, β1, β2 are there C1, C2 such that C1 × C2 � α and
C1 � β1, C2 � β2.

Thm[Pnueli & Rosner]: The problem:

For a fixed architecture, given α are there controllers that
make the system satisfy α.

is decidable only for pipelines.

C1 C2 C3 Cn

Σ0 Σ1 Σ2 Σn
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Distributed synthesis is difficult

Fact: The following problem is undecidable:
Given α, β1, β2 are there C1, C2 such that C1 × C2 � α and
C1 � β1, C2 � β2.

Thm[Pnueli & Rosner]: The problem:

For a fixed architecture, given α are there controllers that
make the system satisfy α.

is decidable only for pipelines.

C1 C2
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Distributed synthesis is difficult (2)

A specification is local if it is a conjunction of requirements on
each controller.

Thm[Madhusudan]: The problem:

For a fixed architecture given a local specification, are
there controllers that make the system satisfy the
specification.

is decidable only for doubly flanked pipelines.

C1 C2 C3 Cn

Σ0 Σ1 Σ2 Σn
Σ′

n
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Summary

For most architectures there are specifications that make the
problem undecidable.

It may be more fruitful to take a specification into account and
look for which pairs (architecture, specification) the problem is
decidable.

Idea: Compile (architecture, specification) pair into a game and
use tools developed there.

Problem: Compiling to two player games does not make much
sense.

We want a setting with a coalition of players against the
environment.

Distributed games to distributed strategies as standard games
to centralized strategies.
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Solving distributed synthesis

P(n) P(n− 1) P(2) P(1)

G(2)

Solution
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Solving distributed synthesis

P(n) P(n− 1) P(2) P(1)

G(2)

Solution

G(n+ 1) G(n) G(3)

The game setting can be:

more general,

combinatorially easier to handle.
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Distributed game

Take n “local” games Gi = 〈Ai, Ri, Ti〉. (bipartite)

Distributed game G = 〈A,E,R,Acc ⊆ (E ∪ P )ω〉.

E = E1 × · · · × En,

A ⊆ (A1 ∪ E1)× · · · × (An ∪ En) \ E.

Eve’s (environment) moves: [e1, . . . , en] → (x1, . . . , xn) with
xi = ei or ei → xi.

Some of these transitions can be suppressed.

Adam (system) moves: (x1, . . . , xn) → [e1, . . . , en] with
xi = ei or xi → ei.

Every such transition must be present.
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Example

e1 e′1

p1 p′1

e2 e′2

p2 p′2

e1, e
′
2

e′1, e
′
2

p′1, p
′
2

e1, e2

e′1, e2

p1, p2

Goal: Avoid blue positions.
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Example 2

e1 e′1

p1 p′1

e2 e′2

p2 p′2

e1, e
′
2

e′1, e
′
2

p1, p
′
2

e1, e2

e′1, e2

p1, p2

Goal: Avoid blue positions.
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Distributed strategies

Given a play ~v in G, a view of Adam i is view i(v) ∈ (Ei · Pi)
ω.

(e1, e2, . . . , en) e1

(e1, p2, . . . , en)

(e1, e
′
2, . . . , en)

(p1, e2, . . . , en) p1

(e′1, e
′
2, . . . , en) e1

An i-local strategy is a strategy in the game Gi.

Distributed strategy is a tuple 〈σ1, . . . , σn〉 of local strategies.
σ(~v · (x1, . . . , xn)) = (e1, . . . , en)

where ei = xi or ei = σi(view i(~v · xi)).
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Observations

Adams may have a global strategy in a game but not a
distributed one. (Distributed games are not determined).

Distributed games are like concurrent games, but the players
who have partial information play with and not against each other.

It is not decidable if there is a distributed winning strategy in a
given distributed game.

There may be a memoryless global strategy but all distributed
strategies may require memory.
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Example 3

e1 e′1

p1 p′1

e2 e′2

p2 p′2

e1, e
′
2

e′1, e
′
2

p1, p
′
2

e1, e2

e′1, e2

p1, p2

Goal: Avoid blue positions.
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Example 3

e1 e′1

p1 p′1

e2 e′2

p2 p′2

e1, e
′
2

e′1, e
′
2

p1, p
′
2

e1, e2

e′1, e2

p1, p2

Goal: Avoid blue positions.
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Deterministic games

The game is deterministic for the environment iff every
environment position has at most one successor.

If Adams have a global strategy in such a game then they have
a distributed one.

Cor: Environment deterministic distributed games are solvable.
(Existence of distributed strategies is decidable).
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Simplification theorems

A game is k-deterministic
if whenever ~e

~x ~y

then ~x[k] 6= ~y[k].

(Adam k, can deduce the move of Eve).

If a game is 1 and n-deterministic then we can “glue together”
players 1 and n (Thm 1).

We get a game with smaller number of Adams.
There is a distributed strategy in the new game iff there is one

in the old game.

If a game is not i-deterministic then, under some conditions, we
can apply a kind of “powerset construction” to make it
i-deterministic (Thm 2).
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Summary

Distributed games are in general neither determined nor
algorithmically solvable.

Many known settings of distributed synthesis are
representable in distributed games.

Pipelines.
Local specifications and double flanked pipelines.
Madhusudan & Thiagarajan setting.
Rudie & Wonham distributed control.

The solutions require some coding and two theorems.

Distributed games can be hopefully as useful for distributed
synthesis problem as two player games are for the
centralized synthesis problem.
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Directions

Classes of graphs for which game solving is decidable.

Unsafe higher-order program schemes.

Good winning conditions for push-down systems.

More decidable cases for distributed synthesis.

Randomized strategies in distributed games.
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Conclusions

Games are behind model-checking and synthesis problems.

Parity games are tied with the µ-calculus model-checking
(other logics also can be easily put into the game setting).

This connection is sometimes lost in more elaborate settings
but sometimes stays (concurrent probabilistic games with parity
conditions).

Often in these new settings games are all what is left from the
classical setting.

New game models are needed to capture concurrency directly.
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Conclusions

Games are behind model-checking and synthesis problems.

Parity games are tied with the µ-calculus model-checking
(other logics also can be easily put into the game setting).

This connection is sometimes lost in more elaborate settings
but sometimes stays (concurrent probabilistic games with parity
conditions).

Often in these new settings games are all what is left from the
classical setting.

New game models are needed to capture concurrency directly.

The playful universe is expanding.
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