
How Much Memory is Needed to Win Infinite Games?
�����

Stefan Dziembowski
�

std@mimuw.edu.pl
Marcin Jurdziński

��� �
mju@mimuw.edu.pl

Institute of Informatics
	

Warsaw University

Igor Walukiewicz
igw@mimuw.edu.pl

Abstract

We consider a class of infinite two-player games on
finitely coloured graphs. Our main question is: given a
winning condition, what is the inherent blow-up (additional
memory) of the size of the I/O automata realizing winning
strategies in games with this condition. This problem is rel-
evant to synthesis of reactive programs and to the theory of
automata on infinite objects. We provide matching upper
and lower bounds for the size of memory needed by win-
ning strategies in games with a fixed winning condition. We
also show that in the general case the LAR (latest appear-
ance record) data structure of Gurevich and Harrington is
optimal. Then we propose a more succinct way of repre-
senting winning strategies by means of parallel composi-
tions of transition systems. We study the question: which
classes of winning conditions admit only polynomial-size
blowup of strategies in this representation.

1 Introduction

We consider games played on (not necessarily finite)
graphs coloured with a finite number of colours [15, 23].
The two players alternatively choose vertices forming an
infinite path through the game graph. The winner is estab-
lished by a Muller winning condition (defined on the finite
set of colours).

These games can be seen as a special case of general
Borel games and were first studied by Büchi and Landwe-
ber [4]. Gurevich and Harrington in their seminal paper [11]

1A part of this research was carried out while the authors were visit-
ing Basic Research in Computer Science, Centre of the Danish National
Research Foundation.

2This work was partially supported by Polish KBN grant
No. 8 T11C 002 11.

3Supported by BRICS Summer Student Programme.
4Supported by by Polish-Danish Student Exchange Programme.
5Address: Institute of Informatics, Warsaw University, Banacha 2,

02-097 Warszawa, Poland.

have shown that if a player has a strategy in such a game
then there is a winning strategy for her that uses only finite
information (memory) about the history of the play.

Since this result, infinite games became a central tool in
the theory of automata on infinite objects [9, 13, 23, 19,
20]. They were also used in understanding logics of pro-
grams [9, 18, 21]. It was also observed that a game may be
considered as a specification of a reactive system by view-
ing it as a description of all possible interactions between
player 0 (Control) and player 1 (Environment). A winning
condition in a game specifies some requirements on the be-
haviour of the reactive system (for example some liveness
properties). In this metaphor, a winning strategy can be
seen as a program satisfying the specification. Hence, in
this framework, strategy construction amounts to program
synthesis and deciding if there exists a winning strategy for
player 0 is equivalent to the problem of realizability of spec-
ifications of reactive systems. These problems were studied
for example in [1, 4, 14, 17].

In all these applications an important question is how
much memory a strategy may need. As an example from
automata theory, consider the complementation lemma for
automata on infinite trees. There, in the construction of the
automaton accepting the complement of the language, one
takes as states subsets of the set of pairs:
 state of the orig-
inal automaton, memory state of the strategy � . Hence the
size of the required memory influences the size of the au-
tomaton for the complement. In particular it can change this
size from single to double exponential. In the area of pro-
gram logics, additional memory reflects in complications
in proof constructions as for example in [21] or in tableau
constructions [3, 6]. In these applications it is important
to understand the structure of the additional memory. Un-
til now essentially the only known memory structure were
LAR’s [11, 15, 23].

Most importantly, however, the question of memory size
is crucial in the program synthesis. It measures the inher-
ent blow-up of the size of a program satisfying a specifica-
tion in terms of the size of the specification itself. In order

to understand feasibility of program synthesis, as described
above, it is hence important to classify winning conditions
according to the blow-up in the size of strategies they may
incur.

In some applications it is necessary to deal with in-
finite game graphs, e.g., when proving complementation
lemma for automata on infinite trees. When considering
program synthesis, however, one usually takes into account
game graphs of size at most polynomial in the number of
colours in the winning condition. (Although finitely defin-
able infinite size games also were considered in this con-
text [5, 20, 22] and our results are also applicable there).
As we will see the case when the size of the game graph
is bounded in the number of colours is different and tech-
nically more difficult, hence it is appropriate to consider it
separately. We will consider the problem: how much mem-
ory is needed to win games with a given class of winning
conditions. We will consider both, the case when we bound
the size of games by the number of colours in the condition
and the case when we do not impose this bound.

It is well known that there exists a sequence of games

���� � ����� , each � � of size �
	��� and requiring strategy au-
tomata of size

� � [20, 12]. Hence synthesized program may
be exponentially larger than the specification. While it is
still possible to imagine that we can deal with problems
having worst case exponential time complexity, it is hard
to imagine how we can cope with exponential space com-
plexity. Indeed in the model checking community it was
discovered that the space, not time, complexity is the major
obstacle. To overcome the problem of big sizes of strategies
we propose a new representation of strategies. This rep-
resentation is inspired by a well known problem in model
checking, namely, the state explosion problem.

Very often, reactive programs are presented as a parallel
composition of sequential programs, where each sequential
program is represented as a finite I/O automaton. It is well
known that the size of the resulting space depends expo-
nentially on the number of parallel components. This is
a major obstacle in applying model checking techniques.
Here, in the context of synthesis, we propose to use this
phenomenon to our advantage. We suggest to describe, po-
tentially big, strategy automaton as a parallel composition
of, possibly small, components. We call this representation
a p-automaton. There are examples when one can obtain
exponential savings using p-automata. Indeed it is very dif-
ficult to come up with examples of games that need expo-
nential size strategies in terms of p-automata. Such games
must exist by a counting argument but giving a concrete
example of such a game would imply a solution to one of
the major problems about nonuniform complexity classes.
The problem is to give an explicit description of a function������� � ������� ��� � ���

that is not computable in nonuniform
NC � .

1.1 Overview of the results

First we consider the case when we do not limit the size
of game graphs in terms of the number of colours in the
winning condition. We define the size of the memory of
a strategy as number of states of an I/O automaton realiz-
ing the strategy. In this case we obtain matching upper and
lower bounds for any fixed winning condition � , i.e., we
determine a number �! such that:

1. For every game with the winning condition � , memory
of size �! is sufficient for a winning strategy in this
game.

2. There exists a game with the winning condition � for
which every winning strategy requires memory of size
at least �! .

If we restrict ourselves to game graphs of size polyno-
mial in the number of colours in the winning condition then,
clearly, the upper bound still holds. General lower bounds,
however, do not follow from the above, because our games
requiring memory of size �" have graphs roughly of size
�# (which may be exponential in the number of colours).
We, however, provide a particular lower bound, that estab-
lishes optimality of LAR’s also in this setting:

3. There exists a sequence of games
�� � � �$��� , such that
the game graph of � � is of size �
	��� and every win-
ning strategy requires memory of size �&% .

In the last section we consider the problem of repre-
senting strategies by means of p-automata. We show that
the strategies in the games � � from (3) can be represented
by polynomial size p-automata. Indeed polynomial size p-
automata realising winning strategies exist for all games
with winning conditions that can be represented by a Tur-
ing machine working in a space polynomial in the number
of colours used in the condition.

1.2 Comparison with the related work

Our upper bound theorem was inspired by the paper
of Zielonka [23]. He mentions some savings in memory
for winning strategies by considering his notion of “useful
colours”. This observation is sufficient for showing mem-
oryless determinacy for games with Rabin winning condi-
tions (see also [7, 13]). In general his bound is not optimal.
Our upper bound is in some cases exponentially smaller
than his. Zielonka’s motivation comes from automata the-
ory so he considers potentially infinite graphs. In this set-
ting our upper and lower bounds for memory needed by
winning strategies are optimal.

Memory requirements in the context of program syn-
thesis were studied by Lescow [12]. He considers only

game graphs of size linear in the number of colours and
seeks a characterisation of winning conditions admitting
polynomial-size strategies. Our upper bound subsumes all
his examples of families of such winning conditions. Le-
scow provides also some

����� ��� lower bounds. We improve
on them, showing an � 	��&% lower bound. This closes the
gap between previously known lower bounds and the facto-
rial upper bound of LAR’s. This may come as a slight sur-
prise, because some claims to the contrary have been quoted
(see [20], p. 9).

Finally let us mention the following algorithmic prob-
lem: given a game and a node, establish whether player 0
has a winning strategy from this node. McNaughton [15]
gives an algorithm working in time exponential in the num-
ber of colours. In case the of games with winning condi-
tions given in Rabin form, Emerson and Jutla [8] show that
the problem is NP-complete. From our general upper bound
on memory we infer a class of winning conditions for which
the problem is in NP � co-NP (see Corollary 12). This can
be seen as a generalisation of the result due to Emerson,
Jutla and Sistla [10], where NP � co-NP upper bound was
shown for games with Rabin chain (parity) winning con-
dition. The latter problem is polynomially equivalent to
the � -calculus model checking [10]. Nerode, Remmel and
Yakhnis [16] study classes of winning conditions for which
there exist polynomial time algorithms of strategy synthe-
sis. We provide (Corollary 13) a broader class of winning
conditions allowing strategy synthesis in polynomial time.

2 Preliminaries

We consider infinite duration games played by two play-
ers (player 0 and player 1) on finitely coloured graphs called
arenas. An arena is a tuple 	�
 	� � ��� � � �

��� ��� ��� where:
	� � � �

� ��� ��� is a (not necessarily finite) bipartite directed
graph with the partition ��� , � � ;

�
is a finite set of colours;

and
� � ��� �

is a partial colouring function. We as-
sume that for every vertex of the arena there is at least one
outgoing edge, i.e., for every ����� there is some ����� ,
such that 	�� � � � � . Hence every path in the arena can be
prolonged.
Remark: In order not to unnecessarily obscure our exam-
ples we will sometimes have arenas that are not bipartite
graphs. It will be, however, always straightforward to re-
store the bipartite property by introducing some new ver-
tices, but never more than linearly many in the size of the
arena.

A game is a pair �!
 	"	 � � , where 	 is an arena, and
�$#&% 	 � is a winning condition for player 0 (in Muller
form [19]). An (infinite) play of the game � is an (infinite)
sequence '(

)�*� � � �

� ��� �,+,+-+ � of nodes of 	 , such that for
every ./
 � � � � � �-+,+-+

we have)�10 � ��032 � 4�
�

.
Given an infinite play '5

)�1� � � �

� ��� �,+-+,+ � of a game

� we define the set of frequent colours of ' (denoted by687:9 	�'�) as the set of colours that occur infinitely often in
the sequence
 � 	�� � ��� 	�� �

�;� 	�� � �,+,+-+ � . An infinite play
' is a winning play for player 0 if the set of its frequent
colours is an element of the winning condition for player 0,
i.e.,

687:9 	�'�4�"� .

A strategy for player 0 in a game � is a partial function< � � � �=� � , defined for finite plays '>

)�1� � � �
�,+-+,+ � �1? �

with �1?@�A��� , such that)��? � <)'� �� �
. A play 'B

)�*� � � �
� ��� �-+,+-+ � from a node ���C�>�D� is consistent with the

strategy if
< 	���� �-+,+,+ � ����0 E
F����0"2 � for .G
 � � ���,+-+,+

. A strat-
egy

<
is winning for player 0 from a vertex ��� if every in-

finite play starting from �1� consistent with
<

is winning for
player 0.

A winning set for player 0 is the set of vertices of
the arena from which there exists a winning strategy for
player 0. It is easy to see that these strategies can be
“merged” (see [15]), hence there is also one common win-
ning strategy on the winning set.

Proviso: We will consider winning strategies for player 0.
Thus w.l.o.g. we can assume that player 0 has a strategy to
win from every vertex of the arena. To meet this require-
ment it is enough to restrict the arena to the winning set of
player 0.

It turns out (see [11, 15, 23]) that for the games we con-
sider the winning strategies can be realized by functions that
do not have to refer to the whole histories of the play (i.e.,
the elements of the set � �), but only to a finite information
about the play so far. To make this precise we introduce the
notion of strategies with memory.

Definition 1 (Strategy with memory) Let 	
 	� � � � �
� �

��� ��� �;� be an arena. A strategy automaton is an I/O
automaton HI
 	KJ � ��� � � �

� �ML �8N , where J is a fi-
nite set of (memory) states; �O� , � � are input and output
alphabets respectively; ��LP�5J is the initial state; andN #QJSR �D�TR � � R J is the transition relation. If ��U�VN

UXW
�ZY

then H being in the state � and reading � � from the input,
outputs � � and changes its state to �[Y .

A play '\

)� � � � �
� � � �,+-+,+ � is consistent with H if there

is a sequence of memory states
�� � � � �
� � � �,+,+-+ � , such that

� �
 � L and � 0FU�]K^
 N
U]K^"_`W

� 032 � for every .T
 � � ��� � �,+-+,+
.

A strategy automaton H realizes a strategy
<

with (fi-
nite) memory J , defined as follows. For a finite play
'a

��*� �-+,+-+ � ���X? � consistent with H we set

< 	�'�M
b� if
for the memory �M? obtained as above we have �M?PU]dc
 N

U
�

and)���X? � �$4� � .

In case J is a one element set, we call the strategy mem-
oryless.

3 Upper bound

In this section we are going to determine (Theorem 6)
for every winning condition � the number �� such that for
every game with the winning condition � the memory of
size � is sufficient for a winning strategy in this game.

Let ��# % 	 � be a winning condition. Define � ���
as

the set
��� Y �!� ��� Y # � � .

Definition 2 (Zielonka tree of a winning condition) We
define the Zielonka tree of � # % 	 � (denoted by � ��)
inductively:

1. If
��
�!� then � �� 	
�� � 	 where �(
F% 	 � �� � .

2. If
� �!� then the root of �& �� 	 is labelled with

�
. Let� � ��� �

�,+-+,+ �X� ?�� � be all the maximal sets in
���
�#� �� # � � . Then we attach to the root, as its subtrees,

the Zielonka trees of � � � 0 , i.e. � �� 	 ^ � 	 ^ , for .M
� � ���,+-+,+ ����� �
.

The domain of �& �� 	 (denoted by ��� �& �� 	����) is defined as the
set of nodes of the tree. The Zielonka tree � �� 	 can be for-
mally seen as the labelling function � � ��� � �� 	���� � % 	 �
assigning to every node in the domain its label as defined
above. In the sequel we will usually write � to denote� �� 	 , if

�
is clear from the context.

A node of � is a 0-level node if it is labelled with a set
from � . Otherwise it is a 1-level node.

� ? �
. . .

� �

... ...

� ?
�
� �

�
��

� �
� ? �

0-level

1-level

1-level

Figure 1. Example of a Zielonka tree

Example: Let
� �
 ���

�
�,+-+,+ � � � �! � �,+-+,+ �� � � , for every

�I�#" . For a boolean function
� � ��� � ��� � � ��� � ���

define a winning condition � � # % 	 � � as the family� �
�
�,+-+,+ � � ? �
%$ ��& � �-+,+-+ �

& � � # � � � � 	 & � �,+,+-+ �
& �
�

and
& 0M� ��� 0 �! 0 �(' , where

� 0
 �
and

 0
 �
for ev-

ery .
 � �,+,+-+ � � . The root of the Zielonka tree � *) (c.f.
Figure 1) is a 1-level node labelled with the set

� � of all
colours. The

�
children of the root are 0-level nodes la-

belled with
�
�
�-+,+,+ � � ? respectively. Every node labelled

with
� 0
 ��� 0 �

�-+,+,+ � � 0 � � has � children labelled with the
sets

� 0 � �,+-+,+ � � 0 � respectively, where
� 0,+
 � 0 � ��� 0,+ � .-

Let 	A
 	K� � � � � � �
��� �X� �;� be an arena. Now we will

define the notion of an attractor. This will be a subarena of
the arena. For simplicity in the sequel we will often identify
subarenas with the sets of their vertices.

Definition 3 (Attractor) Define the attractor for player .
of a set . in the subarena / #Q� (denoted by 0213154760 	8.�)
in the following way. Construct by transfinite induction the
increasing sequence . � � . � � . � �-+,+-+ of sets of vertices:

9 . �
:.>�;/ ,

9 .=<�2 �
>.=<#? � �C�Z��0��;/ � � � �@.=<

BA �? � �C�Z� � � 0��;/ � � � #C.=< � �
9 if D is a limit ordinal then let . <
FE�G�H < . G .

Set 0215134 60 	8.�
 E < .=< .
Remark: It is easy to show (see [15, 23, 20]) that0213154 60 	8.
 is the set of vertices in / from which player .
can force the play into . using a memoryless strategy.

Let us consider a game �
 	"	 � � with the
winning condition � # % 	 � and the arena 	

	� � � � � � �

��� �X� �;� . We enrich the labels of the Zielonka
tree � �� 	 to contain also sub-arenas of 	 , on which player
0 has winning strategies in respective subgames. We also
remove those subtrees for which the associated subarenas
are empty. In this way we obtain the Zielonka tree of the
game � .

Definition 4 (Zielonka tree of a game) To define the
Zielonka tree �JI of the game � we first define another
labelling K � ��� � �� 	 ��� � % 	� of the Zielonka tree � �� 	 .
The labelling K will assign to the nodes of � �� 	 subarenas
of � . Hence eventually we will have two labelling func-
tions: � as in the definition of � �� 	 , and K which we are
going to define now.

1. Set K 	3L�M
 � if L is the root node, i.e., the root is
labelled with the set � of all vertices of the arena.

2. Suppose that for a node L*Y the function K 	3L Y
�� Y is
already defined and � 	3L Y
 � Y �#� . For every son L Y Y
of L:Y we set K 	5L:Y Y
 � Y(�M0213154�N�O� 	 � � ��	 � YP�M� 	3L:Y Y .

3. Suppose that K 	3L Y B
 � Y is already defined and� 	3L:Y
 � Y
� � . Let L-� � L � �,+-+,+ � L ?�� � be all the sons
of L:Y in � �� 	 , and � 	5L:0 4
 � 0 for ./
 � � ���-+,+,+ �!�Q� �

.
Set K 	3L:0 E
�R/0 where the sets R 0 are computed as fol-
lows:

Set initially / � �
 A and iterate through D
� � ��� � �,+-+,+
until / <
%/ <�2 �
TSUSUS�
%/ <�2 ?�� � . The

sequence
3/ < � is defined by transfinite induction. If D
is a limit ordinal then we set / <
 E GUH < / G , and oth-
erwise perform the following computations (see Fig-
ure 2):

(a) Set
� <
 � Y(�M0213154 N�O� 	3/V<� .

(b) Set W�<
 � < �M0215134�XZY� 	 � � ��	 � YP� � � <U[]_^1? � .

���

��� � � ���

	
�
���

��

The shaded region is equal to / <�2 � ; � �
B0215134 N O� 	3/V<� ;� <
 � � ��	 � Y(� � � < []_^1? � ; � �
�0215154�X Y� 	 � < .
Figure 2. Calculating / <�2 �

(c) Take � < to be the winning set for player 0 in the
game 	"	 � W < � � � � � < []_^1? � .

(d) Set /V<�2 �
F0213154�N�O� 	5/ <�?�� < .
Eventually define RE0
�E < � � < � D������ �
 . � .

The domain of the Zielonka tree � I is defined as ��� � I ���O
� L[� ��� � �� 	J��� � K 	3L�

 A � , i.e., the set of nodes labelled
by K with a nonempty subarena of � . Each node L of �MI is
labelled with the pair 	5� 	5L� � K 	5L� .
Definition 5 (Memory of a Zielonka tree) Let � be a
Zielonka tree. A subtree of � is called a 1-subtree, if it
can be obtained from � by leaving at most one child of ev-
ery 1-level node. We define the memory of � to be the set
J��a
 � � � � �,+,+-+ � ��� � , where ��� is the maximal num-
ber of leaves of a 1-subtree of � . We will use J and
�# to denote the memory and the size of memory of the
Zielonka tree �& . Similarly we will use J I and � I when
referring to the memory and the size of memory of the
tree � I . Clearly, for a game �
 	3	 � � we have that��� � I ���`#F��� � ��� , hence � I�� � .

Theorem 6 (Upper bound)
For every game � with the winning condition � , player 0
has a strategy

< I winning from every node of her winning
set and requiring memory of size at most � .

For the rest of this section let us fix a game �!
 	3	 � �
with the arena 	�
 	� � � � � � �

��� �X� �;� . To prove the theo-
rem we will construct an I/O automaton realizing a strategy
in this game. This automaton will have � I states. First we
need some definitions.

We start with the definition of a numbering of the leaves
of � I . Let � be a Zielonka tree and LC� " . We define theL -numbering of � inductively:

1. If the root of � is a leaf, then let L be its number.

2. If the root of � is a 0-level node, then let �/� �,+,+-+ � �G?�� �
be all its immediate subtrees. The L -numbering of �
is obtained by the L 0 -numbering of � 0 for every .
� �-+,+-+ �!� � �

, where L 0
BL�� � 0 � �+"! � � �$# .
3. If the root of � is a 1-level node, then let �/� �,+,+-+ � �G?�� �

be all its immediate subtrees. The L -numbering of �
is obtained by the L -numbering of � 0 for every .Z
� �-+,+-+ �!� � �

.

The numbering of the leaves of ��I we are after is simply
the 1-numbering of �JI . Observe, that this numbering asso-
ciates with every leaf of the Zielonka tree �MI an element of
J:I .

A memory �I�MJ I does not uniquely determine a path
from the root down the Zielonka tree � I . The reason is that
a memory specifies only branchings at 0-level nodes of the
tree, i.e., at a 0-level node we branch into the only subtree
that may possibly contain leaves numbered with � . A pair
)� � �! � � R J I , however, is just enough to single out
such a unique path. To determine the “missing” branchings
at 1-level nodes of � I , we use the fact, that sets of vertices
labelling the children of a 1-level node of ��I are pairwise
disjoint. Thus either we branch to the unique child of a 1-
level node which is labelled with a set of vertices containing
� , or we have reached the end of the path if none such a child
exists.

Definition 7 (Anchor node) We will say that L � ��� � I ��� is
the anchor node for)� � �!��a�IR\J I , if it is the low-
est node on the unique path for)� � �! , as described above,
such that � belongs to the set of vertices labelling L in the
Zielonka tree � I .

Before we describe the strategy for player 0 in the game
� , we shall define the memory update function and the next
move function, which will be the essential components of
the strategy.

Definition 8 (Memory update function) We define the
memory update function %=I � �IRQJ:I � J I . Given
)� � �! � �$RMJ:I we first find the anchor node L � ��� ��I ���
for)� � �! . We define % I)� � �! by cases:

9 If L is a leaf in ��� � I ��� or L is a 1-level node then
% I)� � �!E
 � .

9 Otherwise L is a 0-level node. Find the son L*Y of L , with
a leaf numbered � in the subtree rooted in L*Y . Suppose
it is the . -th son of L .

– If �>� � � ��	5� 	5L� � � 	5L-Y then % I 	�� � �#
 � Y ,
where �ZY �MJ I is the lowest number associated
with a leaf in the 	 	�. � � ����� � -th subtree of L ,
and

�
is the number of children of L in �MI .

– Otherwise % I)� � �!
 � .

Definition 9 (Next move function) We define the next
move function � I � �D� R J I � � � . Let 	�� � �#4�M��R J I
and let L:Y be the anchor node for)� � �! . Let 	 � Y � � Y be the
label of L Y . We define � I�	�� � �# by cases:

1. If L:Y is a leaf in ��� � I=��� then � I 	�� � �#
A�`Y for some
� Y��[�Q� � � .

2. If L:Y is a 0-level node, then find the son L*Y Y of L:Y , with
a leaf numbered � in the subtree rooted in L*Y Y . Let
	 � Y Y � � Y Y be the label of L Y Y in the Zielonka tree � I .

(a) If � � � � ��	 � Y � � Y Y then � I)� � �!
 �`Y for
some �`Y��[� �C� � .

(b) Otherwise � I)� � �!M
�� 	��$ where �
� �����

� � is the memoryless strategy “attract to the set� � ��	 � Y(� � Y Y ”.

3. If L Y is a 1-level node and ��
 ����� � D � �
� / < �
(where / < for DZ
 � � � � � �-+,+-+

are the same as calcu-
lated in the definition of K 	3L Y), then � I)� � �!
��)��
where �

� � � � � � is the memoryless strategy “attract
to the set /
	 ”.

Remark: According to our proviso, player 0 has a strategy
from every vertex of the game. With this assumption it can
be shown (see [23]) that indeed � � E < /V< ; hence there
exists � required in the last clause of the above definition.

Definition 10 (The strategy
< I) The strategy

< I in the
game � is realized by the I/O automaton H

J:I � � � � � � � � L �8N � , where � L
 � �>J:I and � UN

U O
�ZY

whenever �`Y , �ZY can be “computed” by performing the fol-
lowing actions:

9 update the memory according to the move of player 1
(�ZY YO
 %)� � �!),

9 compute the move to be performed (� Y
 � 	�� � � Y Y),
9 update the memory according to this move (�!Y

%�	�� Y � � Y Y).

The strategy
< I uses memory J I of size � I � �! (see

Definition 5). To prove Theorem 6 it remains to show that< I is a winning strategy for player 0.

Lemma 11 The strategy
< I is winning for player

�
.

Proof
Consider an infinite play '

�� �

� ��� � ��� �,+-+,+ � consistent
with the strategy

< I and let
�� �
� � � � � � �,+,+-+ � be the se-

quence of corresponding memories, i.e., we have � � +

� I)� � + � � � � � + � � and � +
�%�I�)� + � � + � � , for every

��� � �,+-+,+
, where � �
 � L �PJ:I is the initial memory of< I .

Let
3L � � L:� � L�� �,+-+,+ � be the sequence of the anchor nodes
for the respective pairs 	�� + � � + . Define L�� to be the root
of the lowest subtree of ��I containing almost every L + . Let
	 � Y � � Y be the label of L�� in � I . Let 	 � 0 � � 0 , for .Z
� �-+,+,+ �!� � �

, be the labels of the
�

children of L�� .

Observation 11.1 L � is a 0-level node.

Proof: Suppose L�� is a 1-level node. Let � < for D�
� � ��� � �,+-+,+
be the same as calculated in the definition ofK 	3L�� . Every time L�� is the anchor node for some)� + � � +

the strategy
< I attracts the play to a set � < with a smallerD than before. We can, however, decrease D only finitely

many times, so almost every � + belongs to some fixed
� < #@� � <U[]_^1? � . Thus almost every LU+ belongs to the sub-
tree of � I rooted at 	8D ����� � -th child of L � . This, how-
ever, contradicts the definition of L � .

-

Observation 11.2 L�� occurs infinitely often in

3L � � L � � L � �,+,+-+ � .

Proof: If it did not, then there would exist an . , such that
for almost every

we would have � + �[��0 . This contradicts

the definition of L � .
-

From the definition of L�� it is evident that
687:9)'� # � Y .

From Observations 11.1 and 11.2 it follows that for every
.G
 � �,+-+,+ ��� � �

the strategy
< I attracts the play ' to the set� � ��	 � Y(� � 0 infinitely many times, so in fact we have that687:9 	�'�
� 0 .

As, by Observation 11.1, L is a 0-level node, we have
that

6 7-9)'� � � . Hence
< I is winning for player 0 and

Theorem 6 is proved.
-

Remark: Note that, in particular, if % 	 � � � is closed
under union, i.e., � can be expressed by a Rabin condition
(see [23]), then the strategy

< I is memoryless. Memoryless
determinacy for such games was shown in [7, 13].
Remark: Observe that every 1-subtree of a tree from the
Example on page 4 (Figure 1) has � leaves (labelled with� 0 � �,+-+,+ � � 0 � for some .). From Theorem 6 it follows that
winning strategies for player

�
in every game with such a

winning condition need at most memory of size � 	 �� .

Corollary 12 (Complexity of games) The problem$�	 � � 	 � � � � player 0 has a winning strategy in the game
	"	 � � starting from the vertex �1� of the arena 	 ' is in
NP � co-NP.

Proof
Let �C
 	3	 � � . If player 0 has a winning strategy in � then
the NP-witness is the strategy

< I . To prove that the problem
is in NP it suffices to show, that there is a polynomial time
algorithm to decide if this strategy is winning for player 0.

Let �
 	K� R J ����� be the bipartite graph, such that� 	�� � �# �)�`Y � �ZY �� � ��� if either:
9 �B
 �ZY and 	�� � �`Y �M� � R[��� is an edge of the arena
	 , or

9 � UN
U O
�ZY holds for the I/O automaton realizing

< I .

We restrict � to the vertices reachable from the vertex
)�*� � �[L� , where �ML is the initial memory of

< I . Let the
colouring of the nodes of � be inherited from the colour-
ing of the arena 	 , i.e.,

�)� � �! !
 � 	��$. Deciding if
the strategy

< I is winning for player 0 is clearly equiva-
lent to checking that all the infinite paths in the graph � are
coloured with sets belonging to � .

Now we give a short description of an algorithm to per-
form this task.

Divide � into strongly connected components (s.c.c.). If
for some s.c.c.

�
it holds that �� 	 �
�!� , then clearly

< I is
not winning for player 0.

Otherwise for every s.c.c.
�

of � find all 0-level nodesL �B��� � ��� , such that �� 	 � # � 	3L� , but the inclusion does
not hold for any of the grandchildren of L . For every suchL let L � � L:� �-+,+-+ � L ? be its children in �& . For every .[
��� � �,+-+,+ �!�

check recursively if ��� � � � � � � 	3L:0 �
	 satisfies

� � � 	3L:0 . -
Remark: Corollary 12 can be seen as a generalisation of
the result of Emerson, Jutla and Sistla [10] that the decision
problem for games with Rabin chain (parity) conditions is
in NP � co-NP. In this special case the size of the Zielonka
tree is linear in the number of colours.

By a careful analysis of the strategy synthesis algorithm
implicit in the definition of the strategy

< I one can obtain
the following fact.

Corollary 13 (Strategy synthesis algorithm) There is an
algorithm that given a game ��
 	"	 � � computes a win-
ning strategy for player 0 in time �
	 	 � 	 ����$��$; here is
the maximal degree of a node and

�
is the height of the

Zielonka tree �& .

4 Lower bounds

4.1 The �! lower bound

Here we consider the lower bound on the size of memory
needed by a winning strategy in case when the size of a
graph is not limited by the number of colours. We show
that in this case the upper bound of Theorem 6 is tight.

Theorem 14 (Lower bound)
For every winning condition � there is an arena 	 such
that every winning strategy for player 0 in the game 	3	 � �
requires memory of size at least � .

Proof
Let � # % 	 � . Assume that

� � � . Otherwise we take a
son L:Y of the root, such that, there is a 1-subtree with �
leaves below L Y . Then we can take the label

� Y of L:Y and
continue our construction for � � � Y instead of � .

Let . be a 1-subtree of the Zielonka tree � with �!
leaves and let � �

�,+-+,+ � ����� be all the leaves of . . We
define the arena 	 as follows. For every set of colours�
 ���

�
�-+,+-+ � ��� �

we define a subarena Pick 	 � as on
Figure 3(a). In the square (uncoloured) vertex player 1
makes a choice to visit a vertex coloured with one of the
colours in

�
. To facilitate the description of the whole

arena let us use the sequence of labels on the path lead-
ing to a node of . to identify this node. A notation�
�
�
�
+,+-+�� � � � 	 � � 2 � denotes a leaf to which leads a path

with labels
�
�
�
�
+,+,+X� � � � or

�
�
�
�
+,+-+�� � � � � � 2 � . For

every leaf �
 �
�
�
�
+,+,+�� � � � 	 � � 2 � of . we define a

subarena Box 	 � as on Figure 3(b). Again, in the square
(uncoloured) vertex player 1 makes a move. Finally the
arena 	 is defined as on Figure 3(c), where in the circle
(uncoloured) vertex player 0 makes a move.

Observe that a play on the arena 	 consists of an infi-
nite sequence of the following choices:

1. Player 0 chooses Box 	 � for some leaf �
�
�
�
�
+-+,+�� � � � 	 � � 2 � of . .

2. Player 1 chooses one of the indices
 � � ���,+-+,+ � � � .

3. Player 1 picks a vertex coloured with one of the colours
in
� + and then a vertex coloured with one of the

colours in
� +J� � + .

Claim 14.1 Player 0 has a winning strategy in the game
	"	 � � .
Proof: The only significant choices of player 0 are made
in step 1. In the strategy we are defining her choice will
depend on the choice made by player 1 in step 2 of the pre-
ceding round of the play. Suppose that player 0 has chosen
Box 	 � and player 1 has chosen the index

in step 2. Then

in the next round player 0 chooses Box 	 � Y , where � Y is
some leaf in the subtree of . rooted in the next child of
the node

�
�
�
�
+,+-+�� + , after the child

�
�
�
�
+,+,+X� + � + . (If�

�
�
�
+,+-+�� + � + is the last child of its parent then pick a leaf

� in the subtree rooted in the first child of
�
�
�
�
+-+,+�� + .)

Now we will argue that the strategy just described is win-
ning for player 0. Consider a play ' consistent with the
strategy. Let ��
 �

�
�
�
+-+,+�� 0 be the root of the lowest

subtree of . containing all the leaves of . chosen infinitely

(a) (c)(b)

� ��
� . . .

Box 	 � � . . .
. . .

Pick 	 � � � � � Pick 	 � � � � �
Box 	 � ���

Pick 	 � � Pick 	 � �

Figure 3. The arena 	 .

often by player 0 in step 1. Let � +
 �
�
�
�
+,+-+�� 0 � 0 # for

 � �,+-+,+ ���
be all the children of � in . . Observe that for

every

 � �,+,+-+ �!�

there is a leaf � + in the subtree rooted in��+ , such that the index . is chosen by player 1 in step 2
infinitely often in Box 	 � +� . This, however, implies that687-9)'�
� 0 # for every

 � �,+-+,+ ���
. On the other hand it

is not hard to see that
687:9 	�'� # � 0 , hence

687:9 	�'� �"� .
-

If the size of the memory of a strategy for player 0 in the
game 	"	 � � is less than �! , then clearly there is a leaf
� of . , such that player 0 playing according to this strategy
never visits Box 	 � . Hence, the following claim establishes
the lower bound of the theorem.

Claim 14.2 Consider a strategy for player 0 in the game
	"	 � � and a leaf � in the tree . . If player 0 never visits
Box 	 � when playing according to the strategy, then the
strategy is not winning for player 0.

Proof: Let �
 � �
�
�
+,+,+�� � � � 	 � � 2 � . We will now pro-

vide a counter-strategy for player 1 allowing him to make
one of

� 0 ’s the set of frequent colours. Which
� 0 it will

turn out to be depends on the actual behaviour of the strat-
egy of player 0.

To play according to his counter-strategy player
�

keeps
in his memory a tuple � � �

� R S�SUS R
� � to remember

which element of each
� 0 is currently his target.

Assume that player 0 chooses Box 	 � such that
�
�

�
�
�
+,+-+�� + � Y+ +-+,+ with

� Y+

 � + , i.e.,

is the smallest
index at which � and

�
differ. Player 1 responds making the

following choices in Box 	 � :
1. Choose Pick 	 � + and then pick a vertex coloured

with + , where 	 � �,+-+,+ � � is the current memory of
player 1.

2. From Pick 	 � + � � Y+ choose a vertex coloured with
some � � � + . It is possible to do so, because

� +�� � +

and
� + � � Y+

BA .

After performing these moves player 1 updates his current
memory 	 � �-+,+,+ � � by changing its

-th component to

the next element of
� + in some fixed linear order (or to the

minimal element of
� + in this order, if �+ was maximal).

Now we will argue that this counter-strategy guarantees
a win for player 1. For a play ' formed according to this
counter-strategy consider the set � of indices

chosen in-

finitely often in the way described above. Set .
 ���	��	
�
and observe that from some moment of the play ' only
colours in the set

� 0 ? � 032 � ?QSUSUS ?
� �
 � 0 appear (recall

that
� ��� � � 2 � for
 ���,+-+,+ � � � �

). Moreover, each
colour of

� 0 is hit infinitely often. Thus
687:9 	�'�E
 � 0 . This

completes the proof since
� 0 is a winning set for player 1.- -

Remark: The arena 	 constructed in the proof of Theo-
rem 14 is roughly of size �� . Hence, if for a family of con-
ditions
 � � � �$��� the number �" *) grows superpolynomially
in the number of colours of � � , then our lower bound does
not apply to the case when we restrict ourselves to arenas of
size polynomial in the number of colours. We do not know
whether the � bound is strict in this case.

4.2 Optimality of the LAR’s

Now we show a factorial lower bound establishing opti-
mality of the LAR data structure even for games with arena
sizes bounded linearly in the number of colours of the win-
ning condition. Optimality of LAR’s in the case when we
do not bound the size of the game follows from the previous
section.

Theorem 15 (LAR’s are optimal)
There is a family of games
 � � � �$��� , such that the arena of
� � is of size �
	��� and every winning strategy for player 0
in � � has memory of size at least �&% .

Proof
The game � � has the arena 	 �
 	� � ��� � � �

��� ��� � �;� ,
where: � �
 � � � �-+,+-+ �U� ���

, � �
 � ���-+,+-+ � � � , �
$�	 � . � � 	�. �U� � . � � � ���-+,+,+ � � � ' and
� �
S� . We

identify vertices with colours setting
� 	��$P
 � , for ev-

ery � �B� . The winning condition of � � is defined as
� �
 � � # � � � � � �Z� � �1
 ����� 	 � �Z� � � .

It is not difficult to see that player 0 has an LAR winning
strategy in � � (in fact it suffices to consider LAR’s over
colours from the set ��� only).

Suppose that H
 	J � ��� � � �
� ��� �XN is an I/O automa-

ton realizing a strategy for player 0. For the sake of this
proof by the transition graph of H we will understand the
graph 	KJ � � with edges labelled by elements of �O� , where
�bU�V� �ZY if there is a � � �Z� � , such that � U�VN

UXW
�ZY holds.

In the following lemma we slightly strengthen the state-
ment of the theorem, in order for the proof by induction on
� to go through.

Lemma 16 Let H be the I/O automaton realizing a winning
strategy for player 0 in � � . Then there is a state � �FJ
reachable from the initial state of the transition graph of H ,
and a finite sequence � �>� �� with at least one occurrence
of every element of � � , such that:

1. � �� � � , i.e., the path in the transition graph of the au-
tomaton H , labelled with the input word � and starting
in state � is a loop,

2. � J � � � �&% , where J � is the set of states of H on the
path described above.

Proof: W.l.o.g. we can assume that the transition graph of
the automaton H is strongly connected. Otherwise we could
restrict the transition graph of H to one of its strongly con-
nected components (s.c.c.), that is reachable from the initial
state, and is final in the acyclic graph of all s.c.c.’s of H
(i.e., there are no edges going out of this s.c.c. in the tran-
sition graph of H). As player 1 can in a finite number of
moves force the play into a reachable final s.c.c., clearly af-
ter such a restriction the remaining strategy is still winning
for player 0.

The base case of the induction follows immediately from
the assumption that the transition graph of H is strongly con-
nected.

Let � �
�-+,+-+ � � � be sub-games of � � , such that �!0 is ob-

tained by removing
� . from ��� and � from � � . It is easy

to see that I/O automata H �
�,+-+,+ � H � obtained by straight-

forward restrictions1 of H realize winning strategies for
player 0 in games � �

�,+,+-+ � � � . From the induction hypoth-
esis it follows that there are states � �

�,+-+,+ � � � � J , and

1More precisely, in order to obtain ��� we restrict the input alphabet of� to 	�
��������� , and change the output component of the transition relation
whenever it is � to, for example, �����

���
.

finite sequences � �
�,+,+-+ � � � , such that � 0 � 	���2� � � . � �

and � J>0!� � 	�� � � % , where J>0 is the set of states on the
path �Z0 � ^� � �Z0 .

Observe that the outputs produced by H on any path
� 0 � ^� � � 0 for .
 � �,+,+-+ � � do not contain any occurrence
of �$�@� � . Otherwise, the infinite input sequence 	�� 0 ��
would form a play winning for player 1. This, however,
would contradict the assumption that H realized a winning
strategy for player 0 in � � .

We will now argue, that if .

 then J\0-� J +
�A . This
would immediately imply that �� E

�0 ! � J(0���
� � � 	 � � �

�&% . Assume the contrary, i.e., that there is a state � �[J�0��
J + for some .

 . Then there are partitions � 0E
 � � S:�O�
and � +
 � � S:� � , such that � 0! �W� � �]� � � 0 and � + U8W� �
� U�]� � � + . So there is a loop �]#" *W$" U�]$" U8W��� � � . Hence, the
infinite input sequence 	�� � S�� � S�� � S1� � %� induces a play
winning for player 1, because the sequence � � S,� � S,� � S,� �
contains occurrences of all � elements of �O� , and the output
generated by H does not contain a occurrence of �@� � � .
This, however, contradicts the assumption that H realized a
winning strategy for player 0.

To finish the proof of the Lemma it remains to show that
the sequences � 0 for .T
 ���-+,+,+ � � can be composed to yield
a sequence � , such that � �� � � for some � � J and
this cycle includes all cycles �M0 � ^� � �Z0 as its sub-paths.
Again, the assumption of strong connectedness of the tran-
sition graph of H makes this task trivial.

- -

5 Polynomially representable strategies

The lower bound of the previous section indicates that
the size of the memory of I/O automata realizing winning
strategies may be inherently big as a function of the size of
the arena. Here we consider a representation of strategies
in terms of so called p-automata, which are parallel com-
positions of I/O automata. It turns out that p-automata are
capable of encoding strategies in a more succinct way than
I/O automata.

One would like to measure the size of a winning strat-
egy in a game in terms of two parameters: the size of the
arena and the size of the winning condition. From the per-
spective of program synthesis it seems natural to assume
that the arena is given just as a graph. On the other hand
it is much too restrictive to assume that winning conditions
are given in Muller form. For example, Rabin conditions
can be sometimes exponentially more succinct than Muller
conditions. To avoid these problems of different representa-
tions we propose to represent winning conditions by means
of Turing machines, or equivalently, by p-automata. For a
function & 	��� , we will say that a family ' of winning con-
ditions is & 	 �� -recognisable if for every winning condition
� �(' with � colours there exists a p-automaton of size

& 	��� recognizing � . Hence our notion of recognizability
will be a non-uniform one. We find it more intuitive to ex-
press this notion in terms of p-automata.

The main result of this section is that if a family of win-
ning conditions is & 	��� -recognisable for some polynomial
& 	��� then winning strategies in games with these condi-
tions are representable by polynomial size p-automata. We
also show that it is difficult to characterize all families of
winning conditions admitting polynomial size strategies in
terms of p-automata. For this we recall that it is an open
problem to show an example of a Boolean function not com-
putable in nonuniform NC � . Every family of conditions not
admitting polynomial size strategies would give an example
of such a function. Hence, although there are many fami-
lies of winning conditions that do not admit polynomial size
p-strategies, it is not easy to come across one of them.

Definition 17 (p-automaton) Let
�� 0 � �0 ! � be a tuple of I/O
automata, each of the form � 0
 	�� 0 ��� 0 � ����� 	�

��
 0 �
 N 0 .
We assume that there is a special letter �!� � 0 � � � � 	� . If
�
 N 0�
 Y then, intuitively, the automaton does not read from

the input; similarly for
�
 N 0� but then the automaton out-

puts nothing. A p-automaton is a sequence of I/O automata

�� 0 � �0 ! � together with a set

�����
� of external letters.

One can think of such an automaton as of a parallel com-
position of automata
�� 0 � �0 ! � restricted on actions not in� ���

� . In other words, it can be considered to be a CCS pro-
cess: 	�� � ��� +,+,+ ��� � � � 	 	 � 0 � ? ��� 	�

��� ���
� . The semantics

of p-automata is based on this intuition.
A sequence
�� 0 � �0 ! � and a set

� ���
� as above de-

fine a global I/O automaton �
 	�� � R S�SUS!R
� � ��� 0 � ��� � 	�

� 	
 �
�-+,+,+ ��
 � �
 N�� with the transition

function defined by the rules:

 0 �
 N ��
 Y0 � ��� � � ��� �
	 +,+-+ ��
 0 �,+,+-+ �
 N �� 	 +,+,+ ��
 Y0 �-+,+,+

 0 �
 N��
�

 Y0
 + �
 N���
 Y+ �
� ����� �
	 +,+-+ ��
 0 �-+,+,+ ��
 + �,+,+-+ �
 N��

� 	 +,+,+ ��
 Y0 �-+,+,+ ��
 Y+ �,+,+-+
We can use p-automata to succinctly represent languages

over some alphabet
�

. For this we let
�����

�

� ? ��� � �����

and say that a word �&� � �
is accepted by a p-automaton

if the global automaton outputs
� �

after reading � .
A Muller sequence
�' � � ����� is a sequence of sets of

winning conditions, such that every � � ' � is a condition
using at most � colours.

Definition 18 (Polynomially representable Muller se-
quence) We say that a Muller sequence
�' � � ����� is polyno-
mially representable if there exists a polynomial & 	 �� , such

that for every � � ' � there is a p-automaton of size & 	���
representing � ; here we consider � to be a set of sequences
of colours.

We can also use p-automata to succinctly represent “se-
quential” I/O automata (as in Definition 1). Such an au-
tomaton H , represented by � , has all the same compo-
nents as � but the transition relation. This relation is de-
fined by: �
 � �
 N��� �
 � if there are states �
 Y and �
 Y Y , such that,

�
 � �
 N �
� �
 Y �
 N ��� �
 Y Y �
 N �� �
 � . In other words, we can read

an input, do some number of � moves, and then give an
output.

Definition 19 (Polynomially representable strategies)
We say that a Muller sequence
�' � � �$��� has polynomially
representable strategies if there exists a polynomial & 	��� ,
such that for every game 	"	 � � � with � � � ' � , there is
a parallel automaton of size & 	!� 	;� representing a winning
strategy for player 0 on her winning set.

Let us give an example of savings that can be made with
this representation. Consider the game � � as defined in the
proof of Theorem 15. Player 0 has a winning strategy in this
game that consists of keeping LAR memory and choosing a
number equal to the number of negative integers appearing
before the change pointer in the LAR (for a description of
LAR memory see [20]). To implement this strategy using a
p-automaton, we can take � I/O automata, each for storing
one coordinate of the LAR. Then we add a component that
takes care of input/output and of updating the other com-
ponents. It should be obvious that the size of each of the
components is linear in � . Hence there is a constant � , s.t., a
winning strategy in � � can be represented by a p-automaton
of size � � . On the other hand Theorem 15 states that every
“sequential” winning strategy for � � must have size � 	 �&% .

Not every game is so easy. A simple counting argument
shows:

Proposition 20 There exists a Muller sequence
�' � � �$���
that does not have polynomially representable strategies.

Next we will show that every polynomially representable
Muller sequence has polynomially representable strategies
and p-automata realizing these strategies can be constructed
in polynomial time.

Proposition 21 There exists an algorithm that given
a game � with the arena 	 and the winning con-
dition represented by a p-automaton � , constructs
in time �
	 &! �" 	 � 	;� � � � � a p-automaton � of size
�
	 &# �" 	 � 	 � � � �F� realizing a winning strategy for player 0
on her winning set.

Proof
A careful inspection of the definition of the strategy

< I as-
sures that given an oracle for recognizing sets in the winning
condition, the whole winning strategy can be in fact com-
puted (however not necessarily output) in space polynomial
in 	 . The polynomial space Turing machine . computing
the strategy can be in a straightforward way encoded by a p-
automaton � of size linear in the size of configurations of . .
Hence, to obtain the p-automaton � realizing the strategy

< I
it is enough to “compose” � and � so that the oracle ques-
tions of � are answered by � . After “composition” with �
we finally obtain a p-automaton of size � 	 &# �" 	!� 	;� � � �F� .-
Remark: This proposition does not contradict the fact that,
in general, constructing sequential strategy automata is dif-
ficult. It may be difficult to construct a sequential strat-
egy automaton from the parallel one. The reason is that p-
automaton may sometimes do a long sequence of � -moves
before answering the next move.

Corollary 22 Suppose that a family of winning conditions
can be recognised by a Turing machine working in a space
polynomial in the number of colours used in the condition.
It follows that winning strategies in games with these con-
ditions can be represented by polynomial size p-automata.
In particular Rabin or Street winning conditions with the
number of pairs polynomial in the number of colours admit
polynomial size strategies.

It would be tempting to say that if a Muller sequence
admits polynomially representable strategies then the se-
quence itself is polynomially representable. This turns out
to be false.

Proposition 23 There exists a Muller sequence
�' � � �$���
that has polynomially representable strategies, but is not
polynomially representable.

Proof
Take a boolean function

� � ��� � ����� � ��� � ���
that is not

polynomially representable. Define the Muller sequence

�' � � �$��� by ' � � � �
 A and ' � �
 � � � � for ev-
ery �@
 ��� � �,+-+,+

, where � � is as defined in the example
on page 4. Clearly the Muller sequence
�' � � �$��� is not
polynomially representable. Nevertheless, from the The-
orem 6 it follows that
�' � � �$��� has polynomially repre-
sentable strategies (see the second remark after the proof of
Lemma 11).

-
The problem of characterizing families of winning con-

ditions having polynomially representable strategies is at
least as difficult as giving an answer to one of the main
questions in nonuniform complexity theory. We will now
show that if we had such a characterisation then we could

show an example of a function
������� � �����
� ��� � ���

that is
not computable in nonuniform NC � . This is known to be the
major open question about nonuniform complexity classes
(see [2] pp. 763-764 for the description of the problem).

. . .

�
�

� �

 �
�

 �

� � �

�

Figure 4. The arena of the game � 	 � � ��
We show that arbitrary characterisation of Muller se-

quences having polynomially representable strategies will
allow us to decide whether a function is computable in
PSPACE/poly.

Let
� �
��� � ������� ��� � ���

be a function. For every �
construct a game � 	 � � �� as in Figure 4. Player 1 moves in
square vertices and player 0 in the circle vertex. The set of
colours is

� �
 ���
�
�,+-+,+ � � � �! � �,+-+,+ �� � �

� � ���
. The winning

condition is the smallest set closed under union that contains
the sets

��&
�
�-+,+,+ � & � � � 	 & � �,+-+,+ �

& � � ; where
& 0 � ��� 0 �� 0 �

and
� 0
 ��� 0
 �

, for every .G
 ��� � +,+,+ � � .
It should be clear that player

�
has a winning strategy in

this game. The simplest one is to give correct answers each
time. Intuitively also all other strategies should be “aware”
of the correct values of

�
.

If
�

is computable in PSPACE/poly then, by Proposi-
tion 21, for every � there is a polynomially representable
strategy in the game � 	 � � �� . If the strategies for all the
games are polynomially representable then we claim that

�
is in PSPACE/poly. Let us take � and a p-automaton � � of
size & 	��� realizing a winning strategy in the game � 	 � � �� .
To calculate the value of the function

�
on some arguments&

�
�,+-+,+ � & � we simulate a particular play in � 	 � � �� . In this

play we make player
�

repeatedly choose
&
�
�,+-+,+ � & � and

see what are the answers of � � in this play. The first an-
swer may not be correct but eventually the answers of � �
must stabilize at the correct answer. This should happen
after no more than steps, where is the number of con-
figurations of � � . It should be clear that this simulation can
be performed in PSPACE/poly.

6 Acknowledgements

The first two authors are grateful to Damian Niwiński for
spiritual support and a wonderful introduction to the theory
of automata on infinite objects.

References

[1] M. ABADI, L. LAMPORT AND P. WOLPER, Realizable and
unrealizable specifications of reactive systems, in: Proc. 16th
Int. Coll. Automata, Languages and Programming, LNCS 372
(1989) 1–17.

[2] R. B. BOPPANA AND M. SIPSER, The complexity of finite
functions, in: J. VAN LEEUWEN Ed., Handbook of Theoreti-
cal Computer Science, Volume A, Elsevier, 1990, 757–804.

[3] J. BRADFIELD, J. ESPARZA AND A. MADER, An effective
tableau system for the linear time � -calculus, in: Proc. 23rd
Int. Coll. Automata, Languages and Programming, LNCS
1099 (1996) 98–109.

[4] J. R. BÜCHI AND L. H. LANDWEBER, Solving sequential
conditions by finite state strategies, Trans. Amer. Math. Soc.
138 (1969) 295–311.

[5] O. BURKART AND B. STEFFEN, Model checking for context-
free processes, in: Proc. 4th Int. Conf. on Computer Aided
Verification, LNCS 630 (1992) 123–137.

[6] M. DAM, CTL � and ECTL � as a fragments of the modal � -
calculus, in: CAAP’92, LNCS 581 (1992) 145–165.

[7] E. A. EMERSON, Automata, tableaux, and temporal log-
ics (Extended abstract), in: Logics of Programs, LNCS 193
(1985) 79–88.

[8] E. A. EMERSON AND C. S. JUTLA, The complexity of tree
automata and logics of programs, in: Proc. of 29th Annual
IEEE Symp. on Foundations of Computer Science (1988)
328-337.

[9] E. A. EMERSON AND C. S. JUTLA, Tree automata, mu-
calculus and determinacy, in: Proc. of 32nd Annual IEEE
Symp. on Foundations of Computer Science (1991) 368-377.

[10] E. A. EMERSON, C. S. JUTLA AND A. P. SISTLA, On
model-checking for fragments of � -calculus, in: Proc. 5th
Int. Conf. on Computer Aided Verification, LNCS 697 (1993)
383–396.

[11] Y. GUREVICH AND L. HARRINGTON, Trees, automata, and
games, in: Proc. of 14th Annual ACM Symp. on Theory of
Computing (1982) 60–65.

[12] H. LESCOW, On polynomial-size programs winning finite-
state games, in: Proc. 7th Int. Conf. on Computer Aided Ver-
ification, LNCS 939 (1995) 239–252.

[13] N. KLARLUND, Progress measures, immediate determinacy,
and a subset construction for tree automata, in: Proc. of 7th
Annual IEEE Symp. on Logic in Computer Science (1992)
382-393.

[14] O. MALER, A. PNUELI AND J. SIFAKIS On the synthesis
of discrete controllers for timed systems, in: Proc. of 12th
Annual Symp. on Theoretical Aspects of Computer Science,
LNCS 900 (1995) 229–242.

[15] R. MCNAUGHTON, Infinite games played on finite graphs,
Ann. Pure Appl. Logic 65 (1993) 149–184.

[16] A. NERODE, J. B. REMMEL AND A. YAKHNIS, Mc-
Naughton games and extracting strategies for concurrent pro-
grams, Ann. Pure Appl. Logic 78 (1996) 203–242.

[17] A. PNUELI AND R. ROSNER, On the synthesis of a reactive
module, in: Proc. 16th Annual ACM Symp. on Principles of
Programming Languages (1989) 179–190.

[18] C. STIRLING, Modal and temporal logics for processes, to
appear in LNCS.

[19] W. THOMAS, Automata on Infinite Objects, in: J. VAN

LEEUWEN Ed., Handbook of Theoretical Computer Science
Volume B, Elsevier, 1990, 133–192.

[20] W. THOMAS, On the synthesis of strategies in infinite games,
in: Proc. of 12th Annual Symp. on Theoretical Aspects of
Computer Science, LNCS 900 (1995) 1–13.

[21] I. WALUKIEWICZ, Completeness of Kozen’s axiomatisation
of the propositional mu-calculus, in: Proc. of 10th Annual
IEEE Symp. on Logic in Computer Science (1995) 14–24.

[22] I. WALUKIEWICZ, Pushdown processes: games and model
checking, in: Proc. 8th Int. Conf. on Computer Aided Verifi-
cation, LNCS 1102 (1996) 62–74.

[23] W. ZIELONKA, Infinite games on finitely coloured graphs
with applications to automata on infinite trees, Technical Re-
port, Universitè Bordeaux I, 1994, to appear in TCS.

