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Abstract

An operation M
∗ which constructs from a given structure M a

tree-like structure whose domain consists of the finite sequences of
elements of M is considered. A notion of automata running on such
tree-like structures is defined. It is shown that automata of this kind
characterise expressive power of monadic second-order logic (MSOL)
over tree-like structures. Using this characterisation it is proved that
MSOL theory of a tree-like structure is effectively reducible to that of
the original structure. As another application of the characterisation
it is shown that MSOL on trees of arbitrary degree is equivalent to
first-order logic extended with unary least fixpoint operator.

1 Introduction

In [19] Shelah mentions the following construction. For a structure M =
〈DM , r1, . . . 〉 one considers the structure M ] = 〈D∗

M , son, r
∗
1, . . . 〉, where:

D∗
M is the set of all finite sequences of elements of DM ; relation son(w,wd)

holds for every w ∈ D∗
M and d ∈ DM ; finally r∗(wd1, . . . , wdk) holds iff

r(d1, . . . , dk) holds in the original structure. He refers to an unpublished
paper of Stupp [21] which contains the proof of the fact that the MSO theory
of M ] is decidable whenever the MSO theory of M is decidable.

Semenov [18] presents an extension of this result which he attributes to
Muchnik. The stronger operation M ∗ is considered which creates a structure
M∗ = 〈D∗

M , son, cl , r
∗
1, . . . 〉. The new clone relation, cl , is an unary relation

that holds for all elements of the form wdd where w ∈ D∗
M and d ∈ DM .

The statement of the theorem is also strengthened. It says that for every
sentence ϕ of MSOL over the extended signature one can effectively find an
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MSOL sentence ϕ̂ over the original signature such that for every structure
M of the original signature:

M ² ϕ̂ iff M ∗
² ϕ

Semenov hints an idea of the proof but apparently the proof was never pub-
lished.

In this paper we characterize the power of MSOL on tree-like structures by
means of automata. We use this characterisation to give a proof of Muchnik’s
theorem. We also show that MSOL over unordered trees is equivalent to first-
order logic extended with unary fixpoint operator (FPL).

One of the applications of Muchnik’s theorem is proving decidability of
MSO theories. For example, as the MSO theory of any finite structure is
decidable it immediately follows that MSO theory of a sequence or a tree of
such structures is decidable. In particular, one gets Rabin’s Theorem [16]
when one starts from a two element structure. A different application is
presented in [4]; it gives a relation between the theory of a structure and the
theory of the unwinding of the structure. A general notion of automaton
that is used in this work is also useful in other contexts. Automata for the
mu-calculus [9], an instance of general automata, were the main tool to show
an uniform interpolation theorem for the mu-calculus [5]. The general au-
tomata were used to show the equivalence between the bisimulation invariant
fragment of MSOL and the mu-calculus [10]. The equivalence of MSOL and
FPL over trees can be seen as a similar kind of result but for unwinding in-
stead of bisimulation. More precisely, it implies that a property closed under
unwinding is definable in MSOL iff it is definable in FPL. Of course, both
MSOL and FPL can define properties which are not closed under unwinding.

The proof presented here does not follow the outline given by Semenov
although most certainly profits from his exposition. A natural way to prove
Muchnik’s theorem is to extend some proof of Rabin’s theorem. Stupp mod-
ified the original proof of Rabin. Muchnik took as a starting point his proof
of Rabin’s theorem. Here we take the approach through fixpoint operators
and parity automata that was discovered by Emerson and Jutla [8]. Parity
automata allow considerable simplifications of the proof of Rabin’s theorem.
The fixpoint description of the behaviour of an automaton is essential for our
proofs of the results presented here.

Let us now give an overview of the paper. After a preliminary section
introducing MSOL we give a proof of the forgetful determinacy theorem for
parity games. The proof gives a fixpoint operator describing the set of win-
ning positions. In Section 3 we introduce a general notion of (alternating)
automaton running on tree-like structures. In full generality these automata
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are much too powerful. The idea is to limit their expressive power by re-
stricting the class of allowed transition functions. The goal of Section 3 is to
show what closure properties of the class of transition functions are sufficient
for the automata to be closed under sum, complementation and projection.
In Section 4 we take a particular class of transition functions, namely those
definable by MSOL formulas. We show that this restricted class satisfies the
closure conditions from Section 3. This gives us the automata characterisa-
tion of MSOL on tree-like structures. In Section 5 we use this characterisation
and the fixpoint description of the set of winning positions in parity games to
show Muchnik’s theorem. In particular the fixpoint characterisation allows
us to code a run of automaton on M ∗ directly into M . In Section 6 we further
limit the class of transition functions of our automata to those definable by
some simple first-order formulas. This restriction still leaves enough power
for automata to capture MSOL on trees. We get the equivalence of MSOL
and FPL by coding runs of these automata in FPL.
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2 Preliminaries

We will use N for the set of natural numbers. For a number n ∈ N we write
[n] for the interval {1, . . . , n}.

Let Sig = {r1, . . . } be a signature containing relational symbols only. Let
Var = {X,Y, Z, . . . } be a set of second-order variables. The set of MSOL

formulas over Sig is the smallest set such that:

• X ⊆ Y is a formula for every X,Y ∈ Var ;

• r(X1, . . . , Xk) is a formula for every r ∈ Sig of arity k and every
X1, . . . , Xk ∈ Var ;

• if α, β are formulas then ¬α, α ∨ β, ∃X.α are formulas.

Formulas of the first two kinds are called atomic.
In a model M = 〈DM , r

M
1 , . . .〉 each relation symbol of arity k is in-

terpreted as a k-ary relation on DM , i.e., a subset of (DM)k. The vari-
ables from Var range over subsets of DM . So a valuation is a function
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Val : Var → P(DM). The satisfiability of a formula α in a model M with a
valuation Val (denoted M,Val ² α) is defined by induction on the structure
of the formula:

• M,Val ² X ⊆ Y iff Val(X) ⊆ Val(Y );

• M,Val ² r(X1, . . . , Xk) iff there exist d1 ∈ Val(X1),. . . ,dk ∈ Val(Xk)
such that rM(d1, . . . , dk) holds;

• M,Val ² ¬α if not M,Val ² α;

• M,Val ² α ∨ β if M,Val ² α or M,Val ² β;

• M,Val ² ∃X.α if there is a set S ⊆ DM such that M,Val [S/X] ²

α; where Val [S/X] denotes the valuation identical to Val on all the
variables except X for which Val [S/X] returns S.

Please observe that we allow slightly nonstandard formulas of the form
r(X1, . . . , Xk) where the variables are second-order variables. There are sev-
eral reasonable ways to interpret such formulas. Our choice will simplify
some automata constructions later on.

Many useful predicates are definable in our language. The predicate X =
∅ saying that the meaning ofX is the empty set can be defined by ∀Y. X ⊆ Y .
To say that the meanings of variables X and Y are the same (X = Y ) we can
write X ⊆ Y ∧Y ⊆ X. The predicate Singl(X) saying that the meaning of X
is a singleton can be defined by ¬(X = ∅)∧∀Y. Y ⊆ X ⇒ (Y = X ∨Y = ∅).
This predicate allows us to make some second-order variables to behave like
first-order ones by restricting their range to singleton sets. In particular the
meaning of r(X1, . . . , Xk) when Val(X1), . . . ,Val(Xk) are singletons is just
the standard meaning from first-order logic.

By the remarks above we can simulate first-order variables by second-
order variables ranging over singletons. We will use lower case letters for
such variables. We will use ∃x.α as an abbreviation for ∃x. Singl(x) ∧ α.
Similarly ∀x.α stands for ∀x. Singl(x) ⇒ α.

Next we present some syntax for defining sets of elements of a structure.
In general, given a structure M and valuation Val , we say that a set S is
definable by a formula ϕ(x) iff S = {d ∈ DM : M,Val [{d}/x] ² ϕ(x)}; here
x is some distinguished variable. In order to make this distinguished variable
explicit we will write: {

x : ϕ(x)
}

Such an expression is called MSOL predicate. The intended meaning of such
a predicate is:

‖
{
x : ϕ(x)

}
‖
Val

M
= {d ∈ DM : M,Val [{d}/x] ² ϕ(x)]}
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Finally we introduce the notation for fixpoints of predicates. Suppose
we have MSOL predicate θ. We want to define the meanings of predicates
LFPZ.θ and GFPZ.θ. For a given M and Val the predicate θ defines a set
‖ θ ‖Val

M . Changing valuation of Z may change the set defined by θ. Hence

we get a function from P(DM) to P(DM) given by S 7→ ‖ θ ‖
Val [S/Z]
M . The

meaning of the predicate LFPZ.θ will be the least fixpoint of this function or
the empty set if there is no such fixpoint. Similarly the meaning of GFPZ.θ
will be the greatest fixpoint or the empty set if it does not exist.
Example: Let M = 〈D,E〉 be a graph with vertex set D and the edge
relation E. Let θ =

{
x : ∃y.E(x, y) ∧ (y ∈ Y ∨ y ∈ Z)

}
. For a given

valuation Val the meaning of θ is the set of all the elements d ∈ D from
which there is an edge to Val(Y ) ∪ Val(Z). The meaning of the predicate
LFPZ.θ = LFPZ.

{
x : ∃y.E(x, y) ∧ (y ∈ Y ∨ y ∈ Z)

}
is the set of all d from

which there is a path to an element in Val(Y ). ¤

Remark: Fixpoint predicates are definable in our basic MSOL language.
Hence adding them to the syntax does not increase the expressive power of
the language.

3 Forgetful determinacy for parity conditions

In this section we define parity games and give an explicit description of
winning strategies in such games. We describe the set of winning positions
by a fixpoint expression and derive a winning strategy from this expression
using the concept of signatures. We will extensively use this fixpoint charac-
terisation in later sections.

The notion of signature was proposed by Büchi [2] and independently by
Streett and Emerson [20]. The proof of the existence of memoryless strategies
in parity games was given independently by Emerson and Jutla [8] and by
Mostowski [15]. Klarlund [12] proves a more general fact that a player has
a memoryless winning strategy in a game if he has a winning strategy and
his winning condition is given as a Rabin condition. In [13, 22, 23] one can
find beautiful presentations of the theorem together with discussions on its
applications. The approach here is based on [8]. It is more technical but
gives us a fixpoint characterisation of the winning set.

A parity game is a tuple G = 〈V = V0 ∪ V1, E ⊆ V × V,Ω : V → [n]〉
where V0∩V1 = ∅. Function Ω assigns to each vertex a natural number called
priority of the vertex. We say that v′ is a successor of v if (v, v′) ∈ E.

A play in the game from some vertex v0 ∈ V0 proceeds as follows: first
player 0 chooses a successor v1 of v0, then player 1 chooses a successor v2 of
v1, and so on ad infinitum unless one of the players cannot make a move.
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If a player cannot make a move he looses. The result of an infinite play
is an infinite sequence of vertices v0, v1, v2, . . . Using function Ω we obtain a
sequence of natural numbers Ω(v0),Ω(v1),Ω(v2) . . . Player 0 wins the game iff
this sequence satisfies the parity condition, i.e., the smallest among numbers
appearing infinitely often in the sequence is even. The play from vertices of
V1 is defined similarly but this time player 1 starts.

A strategy σ for player 0 is a function assigning to every finite sequence
of vertices ~v ending in a vertex v ∈ V0 one of its successors σ(~v) ∈ V . A
strategy is called memoryless iff σ(~v) = σ(~v′) whenever ~v and ~v′ end in the
same vertex. The strategy is winning iff it guarantees a win for player 0
whenever he follows the strategy. Similarly we define strategies and winning
strategies for player 1. Our main goal is to show that from every node of a
parity game one of the players has a winning memoryless strategy.

For the rest of this section let us fix a game graph:

G = 〈V = V0 ∪ V1, E,Ω : V → [n]〉

To avoid considering two cases we assume that the above number n is even.
Clearly we can do so without a loss of generality. The graph G can be
represented as a relational structure:

M(G) = 〈V,E, V0, V1, P1, . . . , Pn〉

where: V is the carrier; E defines an edge relation between states, and
V0, V1, P1, . . . , Pn are subsets of V . Each Pi (for i = 1, . . . , n) denotes the set
of nodes with priority i, i.e., the set {v : Ω(v) = i}.

Consider the predicate:

F0(Z1, . . . , Zn) =
{
x :
(
V0(x) ⇒ (∃y. E(x, y) ∧

∧

i∈[n]

(Pi(y) ⇒ Zi(y)))
)

∧
(
V1(x) ⇒ ∀y. (E(x, y) ⇒

∧

i∈[n]

(Pi(y) ⇒ Zi(y)))
)}

(1)

We will show that the set of winning positions for player 0 in game G is
precisely the set:

W0 = ‖ LFPZ1.GFPZ2. . . . LFPZn−1.GFPZn.F0(Z1, . . . , Zn) ‖
M(G) (2)

(in the above formula LFP is used to close variables with odd indices and
GFP is used for even indices; n is even by our assumption).

To understand some intuitions behind this formula consider the formula:
LFPZn.F0(Z1, . . . , Zn). This formula holds in a node of the structure M(G)
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if from this node player 0 can force the play in a finite number of steps into
a node of a priority i < n in which Zi holds. Similarly the greatest fixpoint
formula GFPZn.F0(Z1, . . . , Zn) describes that player 0 can either stay forever
in nodes of priority n or he can reach a node of a priority i < n in which Zi
holds. Hence choosing appropriate fixpoint we can decide whether we want
to force a play to reach some smaller priority or whether we can also allow
the play to stay in nodes of a given priority infinitely. As we show below, by
alternating the fixpoints the way we have done in the formula we can express
the parity condition.

Theorem 1 (Forgetful determinacy)
From every node of W0 there is a winning memoryless strategy for player 0.
From every node in V \W0 player 1 has a winning memoryless strategy.

The idea of the proof is the following. For every vertex in W0 we associate
a signature which is a n-tuple of ordinals. Intuitively a signature says how
far is the vertex from something good. We use signatures to define a winning
memoryless strategy for player 0 from vertices in W0. Finally it turns out
that the complement of W0 is defined by a formula of exactly the same shape
as the one defining W0. This gives us a memoryless winning strategy for
player 1 from vertices not in W0.

Definition 2 When applied to n-tuples of ordinals, symbols =, <, ≤ stand
for corresponding relations in the lexicographical ordering (i.e., (a1, . . . , an) <
(b1, . . . , bn) if for the smallest position i on which the elements are different
we have ai < bi). For every i ∈ {1, . . . , n} we use =i to mean that both
arguments are defined and when truncated to the first i positions the two
tuples are equal; similarly for <i and ≤i.

Definition 3 (Consistent signature assignment) A signature is a n-
tuple of ordinals. Let S be a partial function assigning signatures to nodes
of the game. Let U ⊆ V be the domain of S. For a node v ∈ V and its
successor w we say that w is good for v if w ∈ U and

S(w) ≤Ω(w) S(v) and the inequality is strict if Ω(w) is odd. (3)

The assignment S is consistent if for every v ∈ U∩V0 there is a good successor
and for every v ∈ U ∩ V1 every successor of v is good.

When defining MSOL we have introduced means for defining predicates
and fixpoints of predicates. For the next definition we need to extend the
syntax with approximations of fixpoint predicates. These approximations
have the form LFP

τ Z.α(Z), where τ is an ordinal and α(Z) is a formula
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possibly also containing this new constructor. The semantics is defined as
follows:

‖ LFP
0 Z.α(Z) ‖

M

Val = ∅ ‖ LFP
τ+1 Z.α(Z) ‖

M

Val = ‖ α(Z) ‖MV [‖LFP
τ Z.α(Z)‖M

Val
/Z]

‖ LFP
τ Z.α(Z) ‖MVal =

⋃

ρ<τ

‖ LFP
ρ Z.α(Z) ‖MVal (for τ a limit ordinal)

By the Knaster-Tarski theorem ‖ LFPZ.α(Z) ‖MVal =
⋃
τ ‖ LFP

τ Z.α(Z) ‖MVal .
Observe that such approximations are in general not definable in our basic
MSOL language.

Definition 4 (Canonical signatures) A canonical signature, Sig(v), of a
vertex v ∈ V is the smallest in the lexicographical ordering sequence of
ordinals (τ1, . . . , τn) such that:

v ∈ ‖ F0(U1, . . . , Un) ‖
M(G)

where for odd i:

Ui = LFP
τi Zi.GFPZi+1. LFPZi+2 . . .GFPZn.F0(U1, . . . , Ui−1, Zi, . . . , Zn)

and for even i:

Ui = GFPZi. LFPZi+1 . . .GFPZn.F0(U1, . . . , Ui−1, Zi, . . . , Zn)

As for an even i the ordinal τi is not used, the definition implies that τi = 0
for every even i. We prefer to have this redundancy rather than to multiply
or divide indices by 2 again and again.

Fact 5 A vertex v belongs to W0 iff the canonical signature, Sig(v), is de-
fined.

Proof
Suppose v ∈ W0. Let τ be an ordinal of a cardinality bigger than the cardi-
nality of M(G). By the Knaster-Tarski theorem we have:

W0 = ‖ LFP
τ Z1.GFPZ2 . . . LFP

τ Zn−1.GFPZn.F0(Z1, . . . , Zn) ‖
M(G)

Hence (τ, . . . , τ) is an upper bound on the canonical signature for v. So, the
signature is defined.

Conversely, suppose Sig(v) is defined. For every ordinal ρ and every

predicate α(X) we have ‖ LFP
ρX.α(X) ‖M(G) ⊆ ‖ LFPX.α(X) ‖M(G). Thus

v ∈ W0 by monotonicity of F0. ¤
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Fact 6 The assignment v 7→ Sig(v) is a consistent signature assignment.

Proof
We will consider only the case when v ∈ V0. The case when v ∈ V1 is similar.
Let (τ1, . . . , τn) be the canonical signature of v. Using definition of signature

(Definition 4), we have that v ∈ ‖ F0(U1, . . . , Un) ‖
M(G) with U1, . . . , Un as in

that definition. Expanding the definition of F0 we obtain:

v ∈ ‖ {x : ∃y. E(x, y) ∧
∧

i∈[n]

Pi(y) ⇒ Ui(y)} ‖
M(G)

Suppose w is a node to take for the meaning of y, i.e.,

v ∈ ‖ {x : E(x,w) ∧
∧

i∈[n]

Pi(w) ⇒ Ui(w)} ‖
M(G)

Hence E(v, w) holds and w ∈ ‖ Ui ‖
M(G) for i = Ω(w). Assume i is odd, the

case when i is even is easier. By the definition 4 we know that

Ui = LFP
τi Zi.GFPZi+1 . . .GFPZn. F0(U1, . . . , Ui−1, Zi, . . . , Zn)

Ordinal τi may be a limit ordinal but still, by the definition of LFP
τ , there

is a successor ordinal ρ < τi such that:

w ∈ ‖ LFP
ρ Zi.GFPZi+1 . . .GFPZn. F0(U1, . . . , Ui−1, Zi, . . . , Zn) ‖

M(G)

Using the definition of LFP
τ and in particular the fact that LFP

τ+1 Z.α(Z)
is equivalent to α(LFP

τ Z.α(Z)) we have:

w ∈ ‖ GFPZi+1. LFPZi+2 . . .GFPZn. F0(U1, . . . , U
′
i , Zi+1, . . . , Zn) ‖

M(G)

where U ′
i = LFP

ρ−1 Zi.GFPZi+1 . . .GFPZn.F0(U1, . . . , Ui−1, Zi, . . . , Zn). This
shows that there are ordinals τ ′i+1, . . . , τ

′
n such that:

w ∈ ‖ F0(U1, . . . , U
′
i , U

′
i+1, . . . , U

′
n) ‖

M(G)

where for odd j > i we have:

U ′
j = LFP

τj Zj.GFPZj+1. LFPZj+2 . . .GFPZn.F0(U1, . . . , U
′
i , . . . , U

′
j−1, Zj, . . . , Zn)

and for even j > i we have:

U ′
j = GFPZj. LFPZj+1 . . .GFPZn.F0(U1, . . . , U

′
i , . . . , U

′
j−1, Zj, . . . , Zn)
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This shows that (τ1, . . . , τi−1, ρ−1, τ ′i+1, . . . , τ
′
n) is not smaller than the canon-

ical signature of w. So we have

Sig(w) ≤ (τ1, . . . , τi−1, ρ−1, τ ′i+1, . . . , τ
′
n) <i (τ1, . . . , τi−1, ρ, τi+1, . . . , τn) = Sig(v)

which means that Sig(w) <i Sig(v). ¤

Definition 7 (Minimizing strategy) A minimizing strategy is a strategy
that takes for each node v ∈ W0 ∩ V0 a son that has the smallest canonical
signature.

Remark: There may be more than one minimizing strategy as a vertex may
have many successors with the same signature.

The forgetful determinacy theorem follows from the next lemma.

Lemma 8 The minimizing strategy is a winning memoryless strategy for
player 0 from every node in W0. From every node not in W0 player 1 has a
memoryless winning strategy.

Proof
Suppose v0 ∈ W0. It should be clear that the canonical strategy is mem-
oryless. We show that it is winning for player 0. Let P = v0, v1, . . . be a
play when player 0 uses the canonical strategy. To arrive at a contradiction
assume that P is winning for player 1. In other words, the smallest priority
appearing infinitely often on P is some odd number p.

Take an infinite sequence of positions j1 < j2 < . . . such that: no vertex
after vj1 has priority smaller than p, and Ω(vjk) = p for k = 1, . . . From
Fact 6 we obtain that Sig(vjk) >p Sig(vjk+1

). This is a contradiction because
the lexicographical ordering on sequences of ordinals of bounded length is a
well ordering.

To show the second statement of the theorem we use some propositional
logic and dualities of the fixpoint calculus. For a predicate F one can define
the predicate ¬F by

¬Z ≡{x : ¬Z(x)} ¬{x : ψ(x)} ≡{x : ¬ψ(x)}

¬ LFPZ.F (Z) ≡GFPZ.¬F (¬Z) ¬GFPZ.F (Z) ≡ LFPZ.¬F (¬Z)

It can be easily checked that the meaning of ¬F is the complement of the
meaning of F .

As W0 is defined by (2), the complement of W0 is defined by:

‖ GFPZ1. LFPZ2. . . .GFPZn−1. LFPZn.¬F0(¬Z1, . . . ,¬Zn) ‖
M(G)
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Using the propositional tautology

¬
(
(p⇒ q) ∧ (¬p⇒ r)

)
≡
(
(p⇒ ¬q) ∧ (¬p⇒ ¬r)

)

we obtain

¬F0(¬Z1, . . . ,¬Zn) =
{
x :
(
V0(x) ⇒ ∀y. E(x, y) ⇒ ¬

∧

i∈[n]

Pi(y) ⇒ ¬Zi(y)
)

(
¬V0(x) ⇒ ∃y. E(x, y) ∧ ¬

∧

i∈[n]

Pi(y) ⇒ ¬Zi(y)
)}

Using the fact that in each vertex of G exactly one of the propositions
P1, . . . , Pn holds, the formula above is equivalent to:

{
x :
(
V0(x) ⇒ ∀y. (E(x, y) ⇒

∧

i∈[n]

Pi(y) ⇒ Zi(y)
)

∧
(
¬V0(x) ⇒ ∃y. E(x, y) ∧

∧

i∈[n]

Pi(y) ⇒ Zi(y)
)}

Consider the game G′ = 〈V, V1, E,Ω
′〉 obtained from G by interchanging

the vertices of player 0 and player 1 and letting Ω′(v) = Ω(v) + 1. It is easy
to see that a winning strategy for player 0 in G′ translates to a strategy for
player 1 in G and vice versa.

In the formulas above let us increase indices of the variables by one.
Adding two dummy variables Z1, Zn+2 we can see that in G′ the complement
of W0 can be described by the formula:

LFPZ1.GFPZ2 . . . . LFPZn+1.GFPZn+2.F
′
0(Z1, . . . , Zn+2)

where

F ′
0(Z1, . . . , Zn+2) =

{
x :
(
¬V0(x) ⇒ ∃y. E(x, y) ∧

∧

i∈{2,...,n+1}

Pi(y) ⇒ Zi(y)
)

∧
(
V0(x) ⇒ ∀y. (E(x, y) ⇒

∧

i∈{2,...,n+1}

Pi(y) ⇒ Zi(y)
)}

(observe that the variables Z1 and Zn+2 are not used). By the first statement
of the lemma it follows that in G′ there exists a memoryless winning strategy
for player 0 from every node not in W0. This strategy translates to a winning
memoryless strategy for player 1 in G. ¤
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4 Automata on trees

In this section we define automata running on trees. In full generality these
automata are too powerful for applications we have in mind. In the later
sections we will limit the power of the automata by restricting the class of
allowed transition functions. The goal of this section is to study which closure
properties of a class of transition functions are sufficient for the corresponding
class of automata to be closed under sum, complementation and projection.
The constructions from this section are variations on known constructions
for automata on binary trees.

Let D be a nonempty set. A full D-tree is D∗, i.e., the set of all finite
sequences of elements over D. For an alphabet Σ a Σ-labelled D-tree is a
function T : D∗ → Σ.

Definition 9 Automaton on Σ-labelled D-trees is a tuple:

A = 〈Q,Σ, D, q0, δ : Q× Σ → (D∗ → P(P(Q×D))),W 〉 (4)

where W ⊆ Qω is a set of infinite sequences over Q.

Intuitively, A is an alternating automaton. Being in a state q and in
a node w labelled with a = T (w) the automaton will choose a set f ∈
δ(q, a)(w). For every (q′, d′) in f it will send in the direction d′ a copy of
itself starting from the state q′. We will often write δ(q, a, w) instead of
δ(q, a)(w).

A winning conditionW is required to be a Borel set of paths of the tree Q∗

(cf. [14, 11]). Most often W will be a parity winning condition. Recall from
the previous section that such a condition is given by a function Ω : Q→ N.
A sequence q0, q1, . . . satisfies the condition iff the smallest integer appearing
infinitely often in the sequence Ω(q0),Ω(q1), . . . is even.
Remark: Please observe that our automata are not exactly finite. There
are only finitely many states but the transition function and the winning
condition are not finite. Usually we will limit ourselves to finitely presented
winning conditions, as for example parity conditions defined above. The
range of the transition function δ may be infinite as soon as D is infinite.
Also δ takes one argument from D∗ which gives the automaton information
about its position in the tree. This argument is a particular feature of our
automata. It will be used in a very limited way but for now we can have it
in full generality without any complications.

Definition 10 Given an automaton A as above and a tree T : D∗ → Σ we
define the game G(A, T ) as follows:

12



• the set of player 0 vertices is V0 = Q×D∗;

• the set of player 1 vertices is V1 = P(Q×D)×D∗;

• the initial position of the game is (q0, ε);

• there is an edge from a vertex (q, w) ∈ V0 to a vertex (f, w) ∈ V1 if
f ∈ δ(q, T (w), w),

• there is an edge from a vertex (f, w) ∈ V1 to a vertex (q, wd) ∈ V0 if
(q, d) ∈ f ;

• a play (q1, w1), (f1, w1), (q2, w2), (f2, w2), . . . is winning for player 0 iff
the sequence of states q1, q2, . . . is in W .

We say that A accepts T if player 0 has a winning strategy in the game
G(A, T ) from the initial position. The language accepted by A, denoted
L(A), is the set of all Σ labelled D-trees accepted by A.

Remark: If W is Borel then by Martin’s Theorem the above game is deter-
mined. This is because whenever W is Borel in Q∗ then its cylindrification
is Borel in (Q ×D)∗ (a cylindrification of W is the set off all the sequences
over Q×D such that the sequence of first components is in W )

Our goal is to show closure properties of the above automata. More pre-
cisely, we would like to study what transformations are needed to construct
from a given automaton A automata accepting the complement, respectively
projections, of L(A). Before this we will give a simple construction of an
automaton accepting the sum of the given two languages.

Let A1, A2 be two automata over the same alphabet Σ:

Ai = 〈Qi,Σ, D, q
0
i , δi : Qi × Σ → (D∗ → P(P(Qi ×D))),Wi〉

Assume that Q1 ∩Q2 = ∅. Take q0 6∈ Q1 ∪Q2. Consider:

A∨ = 〈Q∨ = Q1 ∪Q2 ∪ {q
0},Σ, D, q0, δ∨,W∨〉

where δ∨(q
0, a, w)) = δ1(q

0
1) ∪ δ2(q

0
2) and δ∨(q, a, w) = δi(q, a, w) for i = 1 or

i = 2 depending on whether q ∈ Q1 or q ∈ Q2 respectively. We also define
W∨ to contain all the sequences q0, q1, . . . such that q0 = q0 and q1, q2, . . . is
in W1 ∪W2. Obviously W∨ is Borel.

Lemma 11 L(A∨) = L(A1) ∪ L(A2)

13



Proof
Let T be a tree. Observe that the game G(A, T ) consist of the disjoint sum
of the games G(A1, T ), G(A2, T ) and a new initial position (q0, ε). From this
initial position player 0 can move to every position reachable from the initial
position of G(A1, T ) or G(A2, T ). Hence a strategy for player 0 in G(A, T )
gives us either a strategy in G(A1, T ) or a strategy in G(A2, T ) depending
on the first move. Similarly a strategy for player 0 in G(A1, T ) or G(A2, T )
gives rise to the strategy in G(A, T ). ¤

Now we are going to describe the construction of an automaton accepting
the complement of the given language.

Definition 12 (Cover) The cover of a set F ⊆ P(Q × D) is the set F ⊆
P(Q×D) defined by: f ∈ F iff for every f ∈ F we have f ∩ f 6= ∅.

Lemma 13 Let A be an automaton as in (4). Consider A = 〈Q,Σ, D, q0, δ :
Q× Σ → P(P(D ×Q)),W 〉 where W = Qω \W and δ is defined by:

δ(q, a, w) = F where F = δ(q, a, w)

For every tree T : T ∈ L(A) iff T 6∈ L(A).

Proof
Suppose T ∈ L(A). This means that there is a winning strategy σ for player
0 in the game G(A, T ). We will show how to use this strategy to construct
a winning strategy for player 1 in G(A, T ). This implies that player 0 does
not have a winning strategy in G(A, T ), hence T is not accepted by A.

The initial position in both plays is (q0, ε). Suppose more generally that
the plays continued for some time and the results of the finite plays so far
are p in G(A, T ) and p in G(A, T ). We assume that the play p on G(A, T )
followed the strategy σ. We also assume that the projections of p and p on
V0 are the same (note that the sets of player 0 positions in the two games
are the same). Let (q, w) be the last position in p as well as in p. Now player
0 chooses in G(A, T ) a vertex (f, w) which is a successor of (q, w). We are
going to consult the strategy σ to find an appropriate answer for player 1.

As p was obtained using strategy σ we know that σ(p) is defined. Let
σ(p) = (f, w). By the definition of the game G(A, T ) we know that f∩f 6= ∅.
Let (q′, d′) ∈ f ∩ f . Player 1 in G(A, T ) should choose (q′, wd′). So we put
σ(p(q, w)(f, w)) = (q′, wd′). This is also a possible choice for player 1 in
G(A, T ). The initial parts of the two plays become p(q, w)(f, w)(q ′, wd′) and
p′(q, w)(f, w)(q′, wd′). From this point we can repeat the argument.

Whenever p is a play in G(A, T ) according to the strategy described above
then we have a play p in G(A, T ) such that the projections of p and p on V0

14



are the same. We know that p is wining for player 0 in G(A, T ) because p
was played according to the winning strategy σ. Hence, by the definition of
W play p is winning for player 1 in G(A, T ).

For the implication in the other direction suppose T 6∈ L(A). Let σ1 be
a winning strategy for player 1 in G(A, T ). Such a strategy exists because
G(A, T ) is determined. We are going to construct a winning strategy σ0

for player 0 in G(A, T ). As in the previous case we assume that the plays
continued for some time and the results of the plays so far are p in G(A, T )
and p in G(A, T ). We assume that the play p in G(A, T ) followed the strategy
σ1. We also assume that the projections of p and p on V0 are the same. Let
(q, w) be the last position in p as well as in p′. We must now define σ0(p). For
every choice (f, w) of player 0 from (q, w) the strategy σ1(p(f, w)) is defined.
Let (qf , df ) = σ1(p(f, w)). Let f = {(qf , df ) : (f, w) is a successor of (q, w)}.
By the definition of automaton A we know that (f, w) is a successor of
(q, w) in game G(A, T ). We put σ0(p) = (f, w). Now player 1 chooses some
(q′, d′) ∈ f . By definition of f we can find f such that (q′, d′) = (qf , df ).
We make player 0 in G(A, T ) to choose this f and then use strategy σ1 to
get to (q′, wd′). The positions in the two games become p(f, w)(q′, wd′) and
p(f, w)(q′, wd′). From these positions we can repeat the argument. By the
similar reasoning as before, the strategy σ0 is winning for player 0. ¤

Definition 14 We say that an automaton as in (4) is nondeterministic iff
for every (q, a) ∈ Q × Σ, w ∈ D∗, f ∈ δ(q, a, w) and d ∈ D there is at
most one q′ such that (q′, d) ∈ f . In this case δ is called nondeterministic

transition function.

Nondeterministic automata are interesting because projection operation
is easy for them as we will now describe. The projection of a language L
of trees over an alphabet of the form Σ × {0, 1} is the set of trees over the
alphabet Σ defined by

ΠΣ(L) = {T : ∃T ′∈L. ∀w∈D∗ . ∃b∈{0,1}. T
′(w) = (T (w), b)}.

Let A be a nondeterministic automaton over the alphabet Σ×{0, 1}, i.e.:

A = 〈Q,Σ× {0, 1}, D, q0, δ : Q× (Σ× {0, 1}) → (D∗ → P(P(Q×D))),W 〉

where δ is a nondeterministic transition function. We are going to define an
automation for ΠΣ(L(A)).

Aπ = 〈Q,Σ, D, q0, δπ : Q× Σ → (D∗ → P(P(Q×D))),W 〉

where δπ(q, a, w) = δ(q, (a, 0), w) ∪ δ(q, (a, 1), w) for all q and w.

15



Lemma 15 If A is a nondeterministic automaton then L(Aπ) accepts a
projection of the language accepted by L(A), i.e., L(Aπ) = ΠΣ(L(A)).

Proof
If σ is a winning strategy for player 0 in G(A, T ′) then the same strategy
is also winning in G(Aπ, T ). This is because G(Aπ, T ) is obtained from
G(A, T ′) by adding some more choices for player 0.

Suppose σπ is a winning strategy for player 0 in G(Aπ, T ). Because Aπ is
a nondeterministic automaton, for every node w ∈ D∗ there is at most one
state q such that a play respecting σπ reaches the position (q, w). Let p be the
history of this play. We can put T ′(w) = (T (w), 0) if σ(p) ∈ δ(q, (T (w), 0))
and T ′(w) = (T (w), 1) otherwise. This way we define the tree T ′ : D∗ →
Σ× {0, 1}. Now σπ becomes a winning strategy for player 0 in G(A, T ′). ¤

In the rest of this section we will describe how for a given parity automa-
ton to find a nondeterministic automaton accepting the same language. We
prefer to give the construction in a several steps. This will be helpful for the
next sections where we will code transition functions by formulas. First, we
present some operations on transition functions.

Definition 16 (Shift) Let Q′ be a finite set and let q′ ∈ Q′. The shift by
q′ of a set F ⊆ P(Q ×D) is F Â

q’
Q’ ⊆ P((Q′ × Q) ×D) given by: f ′ ∈ F Â

q’
Q’

iff there is f ∈ F such that f ′ = {((q′, q), d) : (q, d) ∈ f}.

Definition 17 (Join) The join of two sets F1, F2 ⊆ P(Q × D) is the set
F ⊆ P(D ×Q) defined by F = {f1 ∪ f2 : f1 ∈ F1 ∧ f2 ∈ F2}.

Definition 18 (Collection) The collection of a set f ⊆ Q × D is the set
col(f) ⊆ P(Q) × D defined by (S, d) ∈ col(f) iff S = {q : (q, d) ∈ f}. A
collection of a set F ⊆ P(Q×D) is the set col(F ) ⊆ P(P(Q)×D) defined
by col(F ) = {col(f) : f ∈ F}.

Let A be an automaton as in (4). We are going to define a nondetermin-
istic automaton An accepting the same language. We let

An = 〈Qn = P(Q×Q),Σ, D, q0
n = {(q0, q0)}, δn,Wn〉

where it remains to define δn and Wn. Before doing this let us describe an
intuition behind the construction. It is very similar to the subset construction
used to determinize automata on finite words. The meaning of a state S ∈ Qn

is that if (q, q′) ∈ S then there is a run reaching q′ and q is a state just before
q′ in this run. This information about the predecessor is what makes the
construction different from the standard one. It is necessary to define the
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acceptance condition. It is needed because we are interested in infinite runs
and not in finite ones as it is the case of automata on finite words.

In order to define δn and Wn let us introduce an abbreviation. For a
state S ∈ Qn we write S ↓ 2 for the set of states appearing as the second
components of the elements of S, i.e., {q′ : ∃q. (q, q′) ∈ S}

We first define δn : Qn × Σ → (D∗ → P(P(Qn ×D))). Take S ∈ Qn and
a ∈ Σ. Let S ↓2 = {q1, . . . , qk}. Let Fi = δ(qi, a, w) Âqi

Q for i = 1, . . . , k. Take
the join F ′ of F1, . . . , Fk. Put δn(S, a, w) = col(F ′).

Finally we want to define Wn, so we are going to say what infinite se-
quences S0, S1, . . . of subsets of Q×Q are winning for player 0. Let a trace in
such a sequence be a sequence of states q0, q1, q2 . . . such that (qi, qi+1) ∈ Si
for all i = 0, 1, 2, . . . . We put the sequence S0, S1, . . . into Wn iff all the
traces in this sequence belong to W .

Lemma 19 If A is a parity automaton then L(A) = L(An) and An is a
nondeterministic automaton.

Proof
To see that An is a nondeterministic automaton observe that for every q, a,
w, we have δn(q, a, w) = col(F ) for some F . By definition of col operation
for every f ∈ col(F ) and d ∈ D there is exactly one state S ∈ Qn such that
(S, d) ∈ f .

Now we want to show that L(A) ⊆ L(An). Let T : D∗ → Σ be a
tree from L(A) and let σ be a winning memoryless strategy for player 0 in
G(A, T ). Such a strategy exists by Theorem 1 because we have assumed
that A is a parity automaton hence G(A, T ) is a parity game. We define a
memoryless strategy σn for player 0 from every position (S,w) ∈ G(An, T )
such that σ(q, w) is defined for every q ∈ S ↓ 2. Given such (S,w) we take
(fq, q) = σ(q, w) for every q ∈ S ↓2. Let f ′ =

⋃
q∈S↓2{((q, q

′), d) : (q′, d) ∈ fq}.
We put σ(S,w) = (col(f ′), w).

Because σ is a winning strategy in G(A, T ) we know that σn({(q0, q0)}, ε)
is defined and whenever (f, w) ∈ σn(S,w) and (S ′, d) ∈ f then σn(S

′, wd) is
defined. Moreover we have that if (q, q′) ∈ S ′ then (q′, d) ∈ fq so player 1 can
reach the position (q′, wd) from (σ(q, w), w). This shows that if S0, S1, . . .
is a result of a play according to the strategy σn then every trace in this
sequence is in W (because it is a play in G(A, T ) according to the strategy
σ). Hence the play is winning for player 0 and σn is a winning strategy.

For the other direction, let σn be a (not necessarily memoryless) winning
strategy for player 0 in G(An, T ). We will describe how player 0 can win
every play in G(A, T ).

The initial positions of the two games are (q0, ε) and ({(q0, q0)}, ε). Sup-
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pose more generally that after some moves we have a history pn of a play in
G(An, T ) and a history p of a play in G(A, T ). Let (S,w) be the last position
in pn. Assume that the last position in p is of the form (q, w) with q ∈ S ↓2.
Let (fn, w) = σn(p). Define f = {(q′, d) : ∃S ′. (S ′, d) ∈ fn ∧ ((q, q′), d) ∈ S ′}.
By the definition of δn, we have f ∈ δ(q, T (w)). We put σ(p) = (f, w). Now
player 1 chooses some position (q′, wd) with (q′, d) ∈ f . We transfer this
move to G(An, T ) by making player 1 choose (Sd, wd) where Sd is (unique)
such that (Sd, d) ∈ fn. Clearly (q, q′) ∈ Sd and we can repeat the whole
procedure.

This way whenever we play according to the above strategy in G(A, T ),
with a result p, we also obtain a play pn in Gn(An, T ) and pn is winning as
it follows σn. Moreover we have that p is trace in pn. Hence p is winning for
player 0 by the definition of Wn. ¤

The drawback of An is its quite complicated acceptance condition. As-
suming that A is a parity automaton we are going to describe how to trans-
form An into a nondeterministic parity automaton. The important obser-
vation is that the set of sequences in Wn is a regular language (of infinite
words over the alphabet P(Q×Q)). Hence we can take a deterministic parity
automaton accepting this language and “synchronize” it with the run of An.

A parity automaton on infinite words over the alphabet Σ = P(Q × Q)
has the form

B = 〈Qb,Σ = P(Q×Q), q0
b , δb : (Qb × Σ) → Qb,Ωb〉

Recall that an infinite word over Σ is a function s : N → Σ. A run of B
on such a word is a sequence of states r : N → Qb such that r(0) = q0

b and
r(i + 1) ∈ δ(r(i), s(i)) for all i ∈ N. A run is accepting iff it satisfies the
parity condition given by Ωb.

Suppose that B accepts exactly those sequences in which all traces satisfy
the parity condition W . It is not difficult to convince oneself that such an
automaton B exists. For this one can first consider the dual property: there
is a trace in the sequence which does not satisfy the parity condition W . It
is easy to construct a nondeterministic automaton accepting the sequences
with this property. Using the fact that word automata with parity conditions
are closed under complementation (cf. [22]) we obtain the desired automaton
B.

Define:
Ap = 〈Qb × P(Q×Q),Σ, D, (q0

b , q
0
n), δp,Ωp〉

where δp((qb, S), a, w) = δn(S, a, w) Âq’b
Qb

with q′b = δb(qb, S) and Ωp(qb, S) =
Ωb(qb).
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Lemma 20 L(Ap) = L(An) and Ap is a parity automaton.

Proof
Let σ be a winning memoryless strategy for player 0 in G(An, T ). If σ(S,w) is
defined then we define σ′((qb, S), w) for every qb ∈ Qb. We put σ′((qb, S), w) =
(f ′, w) where f ′ = σ(S,w) Âqb’

Qb
and q′b = δb(qb, S). With this definition

we have that whenever (S0, w0)(S1, w1), . . . is a play according to σ then
the sequence ((q0

b , S0), w0)((q
1
b , S1), w1), . . . is a play according to σ′, where

q0
b , q

1
b , . . . is the run of B on S0, S1, . . . . By the definition of B, the first play

is winning for player 0 according to Wn iff the second play is winning for
player 0 according to the parity condition defined by Ωp. This shows that σ′

is winning. The other direction is analogous. ¤

Summarizing, we obtain the following corollary of the above construc-
tions.

Corollary 21 Let D be a nonempty set. Suppose that for every n we are
given a subset Def (D, [n]) of the function space D∗ → P(P([n] × D)) (re-
call that [n] stands for {1, . . . , n}). Suppose that whenever F1,F2,F ∈
Def (D, [n]) then:

• (sum) F∪ ∈ Def (D, [n]), where F∪(w) = F1(w) ∪ F2(w)

• (cover) F ∈ Def (D, [n]), where F(w) = F(w) (cf. Definition 12)

• (shift) for every m and k ∈ [m], F Â
k
[m] ∈ Def (D, [n ∗ m]), where

F Â
k
[m](w) = (F(w)) Âk

[m] (cf. Definition 16)

• (join) F∧ ∈ Def (D, [n]), where F∧(w) = {f1 ∪ f2 : f1 ∈ F2(w), f2 ∈
F2(w)} is the join of F1(w) and F2(w) (cf. Defnition 17).

• (collection) col(F) ∈ Def (D, [2n]), where col(F)(w) = col(F(w)) (cf.
Definition 18).

Consider the class of automata with ranges of transition functions restricted
to

⋃
n=1,2,... Def (D, [n]), i.e., automata of the form

A = 〈[n],Σ, D, q0, δ : [n]× Σ → Def (D, [n]),Ω : [n] → N〉

The set of languages recognised by such restricted automata is closed un-
der sum, complementation and projection. Moreover for every restricted
automaton there is an equivalent nondeterministic restricted automaton.
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5 MSOL on tree-like structures

In this section we define certain tree-like structures and characterize the
power of MSOL on such structures in terms of some restriction of automata
from the previous section.

Let Sig = {r1, . . . } be a signature containing relational symbols only. We
start with the definition of an operation constructing tree-like structures. We
call such structures iterated structures.

Definition 22 (Iterated structure) Let M = 〈DM , r1, . . . 〉 be a structure
of the signature Sig . A iterated structure over the extended signature Sig ∗ =
Sig ∪ {son, cl} is M ∗ = 〈D∗

M , son cl , r∗1, . . . 〉 where D∗
M is the set of all finite

sequences over DM and the relations are defined by:

son ={(w,wd) : w ∈ D∗
M , d ∈ DM}

cl ={wdd : w ∈ D∗
M , d ∈ DM}

r+ ={(wd1, . . . , wdk) : w ∈ D∗
M , (d1, . . . , dk) ∈ rM}

(r ∈ Sig , k-ary)

Example: Consider the structure M = 〈{0, 1}, l, r〉, where l holds only for
0 and r only for 1. The structure M+ has as a domain the set {0, 1}∗. The
relation sonM(w,w′) holds if w′ = w0 or w′ = w1. The relation l(w) holds
iff w ends with 0, similarly r(w) holds if w ends with 1. The clone relation
holds for elements of the form w00 and w11. Hence M ∗ is the full binary
tree with additional relations saying if a node is a left or a right son. The
clone relation is not very useful in this example. ¤

Example: Consider the structure M = 〈N,≤〉, where N is the set of natural
numbers and ≤ is the usual order. N

∗ with son∗ relation gives a tree of
infinite countable branching. The relation ≤∗ linearly orders all siblings, i.e.,
nodes with the same father. The clone relation holds for a node w iff w is
n-th son of a father that is itself n-th son (more formally if w = w′nn for
some n). This clone relation may be already useful. For example we can
define in M ∗ the structure 〈N,≤, P 〉 where P holds for numbers of the form
l(l + 1)/2. Elgot and Rabin [7] show decidability of the monadic theory of
〈N, <, P 〉 using different arguments.

The structure M ∗ and the construction is presented in Figure 1. The
empty circles show the clone relation. The arrows show the path isomorphic
to the structure 〈N,≤, P 〉. Predicate P holds in targets of downwards arrows.

We define in M ∗ the set of nodes {vi : i ∈ N} where vi is a sequence of
subsequent numbers from 0 to i (that is vi = 012 . . . i). This is easy using the
clone relation because given vi the node vii (the sequence vi extended with
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Figure 1: Part of structure M ∗

number i) is the son of vi which is the clone. Then vi+1 is the next son of
vi. On the picture vertices vi are the sources of downwards arrows. Having
defined {vi : i ∈ N} we can take a path starting from v0 and going from each
vi to vi0 then vi1 up to vi+1 = vii and then to its son vi+10 and so on. It is easy
to see that this path is definable by a formula. Our path and the monadic
predicate which interpretation is the set {v′i : v′i is a successor of some vi}
form a structure isomorphic to 〈N,≤, P 〉. ¤

The goal of this section is to give an automata characterisation of MSOL
on tree like structures. For this we need a correspondence between models
of formulas and labelled trees as inputs of automata.

Let M be a structure. Recall that a Σ-labelled tree over DM is a function
T : D∗

M → Σ. An MSOL formula ϕ(Z1, . . . , Zk) defines the set of valuations
Val : {Z1, . . . , Zk} → P(D∗

M) such that M ∗,Val ² ϕ(Z1, . . . , Zk). A valua-
tion Val defines a tree TVal : D∗

M → P({1, . . . , k}) where TVal(w) = {i : w ∈
Val(Zi)}. Conversely, every such tree determines a valuation.

We say that an automatonA over the alphabet P({1, . . . , k}) is equivalent

to a formula ϕ(Z1, . . . , Zk) if

L(A) = {TVal : M∗,Val ² ϕ(Z1, . . . , Zk)}

Fact 23 For every MSOL formula one can effectively construct an equivalent
automaton.

Proof
The construction of the automaton proceeds by induction on the structure
of ϕ. By Corollary 21 our automata are closed under sum, complementation
and projection. Hence it is enough to show how to handle atomic formulas:
Zi ⊆ Zj, ρ(Zi1 , . . . , Zik), son(Zi, Zj), and cl(Zi). All four automata for these
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four kinds of formulas will have the form:

Am = 〈Qm,Σ = P({1, . . . , k}), DM , q, δm,Ωm〉

with Qm, δm and Ωm different for the four cases. Before giving the definitions
below let us observe that if δ(q, a, w) = ∅ then the automaton cannot accept
in this configuration. If δ(q, a, w) = {∅} then the automaton unconditionally
accepts from this configuration. Now let us consider the atomic formulas one
by one.

• For Zi ⊆ Zj we take Q1 = {q}, Ω1(q) = 0 and

δ1(q, a, w) =

{
{{(q, d) : d ∈ D}} if i 6∈ a or j ∈ a

∅ otherwise

This automaton checks whether labels of all the nodes satisfy the con-
dition: i 6∈ a or j ∈ a.

• For r(Zi1 , . . . , Zik) we put Q2 = {q, t1, . . . , tk} and Ω(q) = Ω(t1) =
· · · = Ω(tk) = 1. We define the transition function by:

δ2(q, a, w) ={{(q, d)} : d ∈ D} ∪ {{(t1, d1), . . . , (tk, dk)} : rM(d1, . . . , dk)}

δ2(tj, a, w) =

{
{∅} if j ∈ a

∅ otherwise

This automaton finds nondeterministically a vertex d and its sons
d1, . . . , dk such that r(d1, . . . , dk) and d1, . . . , dk are labelled by the ap-
propriate letters.

• For son(Zi, Zj) we put Q3 = {q, t}, and Ω3(q) = Ω3(t) = 1. The
transition function is defined by:

δ3(q, a, w) =

{
{{(q, d)} : d ∈ D} if i 6∈ a

{{(q, d)} : d ∈ D} ∪ {{(t, d)} : d ∈ D} otherwise

δ3(t, a, w) =

{
{∅} if j ∈ a

∅ otherwise

This automaton nondeterministically finds a vertex w with i ∈ T (w)
and its son wd with j ∈ L(wd).
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• For cl(Zi) we put Q4 = Q3 and Ω4 = Ω3. To define the transition
function we let:

δ4(q, a, w) =

{
{{(q, d)} : d ∈ D} if w = ∅

{{(q, d)} : d ∈ D} ∪ {{(t, d0)}} if w = w′d0

δ4(t, a, w) =

{
{∅} if i ∈ a

∅ otherwise

Observe that this is the only case when the transition function depends
on its third parameter.

¤

Of course there are automata that are not equivalent to any formula. To
see this it is enough to take a subset R ⊆ DM not definable by a MSOL
formula in M ∗ (this is possible as soon as M is infinite and the signature
is at most countable). It is straightforward to construct an automaton AR

recognizing all the trees T : D∗
M → {0, 1} such that T (w) = 1 iff w ∈ R.

Hence AR is not equivalent to any MSOL formula over M ∗.

Automata characterisation of MSOL

The goal of this subsection is to limit the power of our automata so that for
every automaton there will be a formula equivalent to it. The idea is to use
MSOL formulas in the definition of transition functions.

In order to define a function D∗
M → P(P([n]×DM)) for some n ≥ 1 we

can use a MSOL formula ϕ(C,X1, . . . , Xn) with free second-order variables
as displayed. Actually for all the functions f : D∗

M → P(P([n] × DM)) the
value f(w) will depend only on the last element of the sequence w.

Definition 24 Let M be a structure. A MSOL formula ϕ(C,X1, . . . , Xn)
determines a function 〈〈ϕ(C,X1, . . . , Xn)〉〉M from D∗

M to P(P([n] × DM))
defined by

• f ∈ 〈〈ϕ(C,X1, . . . , Xn)〉〉M(wd) iff there exist S1, . . . , Sn ⊆ DM such
that M ² ϕ({d}, S1, . . . , Sn) and f = {(q, d) : d ∈ Sq}

• f ∈ 〈〈ϕ(C,X1, . . . , Xn)〉〉M(ε) iff there exist S1, . . . , Sn ⊆ DM such that
M ² ϕ(∅, S1, . . . , Sn) and f = {(q, d) : d ∈ Sq}

Let Def (DM , [n]) be the set of all functions determined by MSOL formulas
with free variables C,X1, . . . , Xn. A restricted automaton over M ∗ has the
form

A = 〈[n],Σ, DM , δ : [n]× Σ → Def (DM , [n]),Ω : [n] → N〉
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Suppose in the above Σ = P({1, . . . , k}). We say that a restricted au-
tomatonA is equivalent over a structureM ∗ to a MSOL formula ψ(Z1, . . . , Zk)
if for every valuation Val : {Z1, . . . , Zk} → P(D∗

M) we have:

M∗,Val ² ψ(Z1, . . . , Zk) iff TMVal ∈ L(Aϕ)

Theorem 25
Let M be a structure of signature Sig. For every MSOL formula there is an

equivalent over M ∗ restricted automaton. For every MSOL automaton there

is an equivalent over M ∗ MSOL formula.

Proof
Let us consider the first statement. We construct an automaton by induction
on the structure of the formula. For the cases of atomic formulas we show
that the transition functions described in the proof of Fact 23 can be defined
by MSOL formulas. This is done as follows:

δ1(1, a) =

{
∀z. Y1(z) if j ∈ a or i 6∈ a

false otherwise

δ2(1, a) =(∃z. Y1(z)) ∨ (∃z1, . . . , zk. r(z1, . . . , zk) ∧
∧

i=1,...,k

Yi+1(zi))

δ2(j + 1, a) =

{
true if ij ∈ a

false otherwise

δ3(1, a) =

{
∃z. Y1(z) if i 6∈ a

(∃z. Y1(z)) ∨ (∃z. Y2(z)) otherwise

δ3(2, a) =

{
true if j ∈ a

false otherwise

δ4(1, a) =(∃z.Y1(z)) ∨ (∃z. C(z) ∧ Y2(z))

δ4(2, a) =

{
true if i ∈ a

false otherwise

For more complex formulas we use Corollary 21. For this we need to show
that all the constructions required in the corollary are definable by MSOL
formulas. Let ϕ, ϕ1 and ϕ2 be MSOL formulas with free variables among
C,X1, . . . , Xn. We construct:

• sum: ϕ∨ = ϕ1 ∨ ϕ2

• cover: ϕ = ∀Y1, . . . , Yn. ϕ(C, Y1, . . . , Yn) ⇒
∨
i=1...,n Yi ∩Xi 6= ∅
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• join: ∃Y1, . . . , Yn, Y
′
1 , . . . , Y

′
n.ϕ1(C, Y1, . . . , Yn.) ∧ ϕ2(C, Y

′
1 , . . . , Y

′
n) ∧∧

i=1,...,n Yi ∪ Y
′
i = Xi

• shift for some m and k ∈ [m]: ϕ(C,Xk∗n+1, . . . , Xk∗n+n)

• collect: ∃Y1, . . . , Yn.ϕ(C, Y1, . . . Yn) ∧
∧
S⊆[n] ∀z. (z ∈ XS) ⇔ (

∨
i∈S z ∈

Yi)

For the second statement of the theorem observe that by Corollary 21
every restricted automaton is equivalent to a nondeterministic restricted au-
tomaton. It is easy to write a formula guessing a run of a nondeterministic
automaton on M ∗. ¤

Until now we have limited our considerations to an arbitrary but fixed
structure of the signature Sig . It is useful to observe that the constructions
from the above proof did not depend on this structure. Hence we get a more
general notion of an automaton capable of running on every structure M ∗

with M a structure of the signature Sig .

Definition 26 For a fixed signature Sig an MSOL automaton has the form

A = 〈Q = {1, . . . , n},Σ, q0, δ : Q× Σ → Form(n),Ω : Q→ N〉

where Form(n) is the set of all MSOL formulas in the signature Sig with the
free variables C,X1, . . . , Xn. For a given structure M with the carrier DM

such an automaton instantiates to an automaton on M ∗:

AM = 〈Q,Σ, DM , q
0, δM : Q× Σ → (D∗

M → P(P(Q×DM))),Ω : Q→ N〉

where δM is defined by δM(q, a) = 〈〈δ(q, a)〉〉M (c.f. Definition 24).

The following corollary follows directly from the inspection of the proof
of the previous theorem.

Corollary 27 Fix a relational signature Sig . For every MSOL formula
ψ(Z1, . . . , Zk) there is an MSOL automaton Aψ over the alphabet Σ =
P({1, . . . , k}) such that for every structure M of signature Sig and every
valuation Val : {Z1, . . . , Zk} → P(D∗

M):

M∗,Val ² ψ(Z1, . . . , Zk) iff TMVal ∈ L(Aϕ)

From the proof of Theorem 25 we get also the following corollary show-
ing how limited is our use of variable C (or equivalently D∗ parameter) in
transition functions.
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Corollary 28 If a formula does not use the clone relation then in the au-
tomaton obtained from the translation given in Theorem 25 no formula in
the range of the transition function refers to the free variable C.

A formula ϕ is called monotone in variables X1, . . . , Xn if for every
structure M and valuations Val , Val ′ such that Val(Xi) ⊆ Val ′(Xi) for all
i = 1, . . . , n we have that M,Val ² ϕ implies M,Val ′ ² ϕ. With our def-
inition of the run it is not necessary that the formulas in the image of the
transition function are monotone. On the other hand we can require that
without a loss of expressive power.

Corollary 29 Restricting the range of transition functions of automata to
formulas monotone in the variablesX1, . . . , Xn (but not necessarily monotone
in C) does not limit the power of MSOL automata.

Proof
Let A be an automaton and suppose that for some state q and letter a
the formula δ(q, a) = α(C,X1, . . . , Xn) is not monotone. We can take its
closure α′ = ∃Y1, . . . , Yn.Y1 ⊆ X1 ∧ · · · ∧ Yn ⊆ Xn ∧ α(C, Y1, . . . , Yn). Clearly
α′(C,X1, . . . , Xn) is monotone in X1, . . . , Xn. We can put δ(q, a) = α′. The
automaton A′ obtained after the change is equivalent to A. This follows
directly from the definition of acceptance. Intuitively, this holds because
the smaller the chosen sets in transitions are the easier it is to construct an
accepting run. ¤

6 Muchnik’s theorem

Recall that Sig is our arbitrary but fixed signature and Sig ∗ is its extension
with son and cl relations. In this section we want to give a proof of Muchnik’s
theorem which is:

Theorem 30
For every MSOL sentence ϕ over the signature Sig∗ one can effectively find

a MSOL sentence ϕ̂ over the signature Sig, s.t. for every Sig-structure M :

M ² ϕ̂ iff M ∗
² ϕ

Take a MSOL sentence ϕ. By Corollary 27 we have a MSOL-automaton
equivalent to ϕ over all iterated structures of the signature Sig ∗. The input
alphabet of this automaton has just one letter as ϕ is a sentence. To prove
the above theorem it remains to show:
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Lemma 31 For every MSOL automaton A over one letter alphabet one can
effectively find a MSOL sentence ϕ̂ such that for every structure M :

M ² ϕ̂ iff M ∗ is accepted by A

Here, slightly overloading the notation, M ∗ stands for the unique Σ-labelled
DM -tree with Σ a singleton alphabet.

The proof of this lemma consists of several steps which fill the rest of this
section.

MSOL transductions First we will need a tool for constructing another
structure from a given one. It is called the method of interpretations or
transductions [17, 3]. We will need a quite simple instance of the general
method.

Let Sig ′ be a relational signature. A (Sig , Sig ′)-transduction is a tuple:

∆ = 〈k, {θχ}χ∈Sig
′

∗[k]
〉

where

• k > 0 is a natural number,

• Sig ′ ∗ [k] = {(r′,~c) : r′ ∈ Sig ′,~c ∈ [k]ρ(r
′), ρ(r′) arity of r′},

• every θ(r′,~c) is a MSOL formula with as many free (second-order) vari-
ables as the arity of r′.

Let M = 〈DM , r1, . . .〉 be a Sig-structure. The structure ∆(M) defined
by the transduction ∆ has the form 〈DM × [k], r′1, . . .〉 where:

r′((d1, i1), . . . , (dl, il)) iff M, [{d1}/X1] · · · [{dl}/Xl] ² θχ(X1, . . . , Xl)

for χ = (r′, (i1, . . . , il))

A well known important property of such transductions [3] is

Fact 32 For every MSOL sentence ϕ′ of signature Sig ′ one can effectively
find an MSOL sentence ϕ of signature Sig such that for every Sig-structure
M we have:

M ² ϕ iff ∆(M) ² ϕ′
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Constructing structure M(A) Let us fix an automaton:

A = 〈Q = [n], q0, δ : Q→ Form(n),Ω : Q→ N〉

where we have intentionally omitted the alphabet (as being a singleton it
plays no role in the behaviour of the automaton). Recall that Form(n) is
the set of MSOL formulas with free variables among C,X1, . . . , Xn. Without
loss of generality we can assume that n is even and that Ω(i) = i.

Take a structure M = 〈DM , r
M
1 , . . .〉 of the signature Sig . Although our

construction will be independent from the choice of a structure it is easier to
describe it having a structure at hand.

Recall that we also use M ∗ to denote the unique DM -tree over one letter
alphabet. Consider the game G(A,M ∗) as described in Definition 10. An
important observation is that the game looks the same from every two po-
sitions (q, wd) and (q, w′d), i.e., positions whose second components end in
the same element. This allows us to identify all positions of the form (q, wd)
and take (q, d) as the representative of all of them. In the result we obtain a
smaller game G′(A,M) defined by:

• the set of vertices of player 0 is V0 = Q×DM ;

• the set of vertices of player 1 is V1 = P(Q×DM);

• the initial position of the game is (q0, ε);

• there is an edge from a vertex (q, d) ∈ V0 to f ∈ V1 if f ∈ 〈〈δ(q)〉〉M(d)
(cf. Definition 24)

• there is an edge from a vertex f ∈ V1 to (q, d) ∈ V0 if (q, d) ∈ f ;

• a play (q1, d1), f1, (q2, d2), f2, . . . is winning for player 0 iff the sequence
of states q0, q1, . . . satisfies the parity condition Ω.

Lemma 33 Player 0 has a winning strategy from a vertex (q, wd) in game
G(A,M ∗) iff he has a winning strategy from the vertex (q, d) in gameG′(A,M).

Proof
The unwindings of G(A,M ∗) from (q, wd) and of G′(A,M) from (q, d) are
isomorphic. ¤

The game G′(A,M) can be presented as the structure

M(A) = 〈V0 ∪ V1, E, eq2, V0, V1, s1, . . . , sn, r1, . . .〉

where:
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• M(A) ² E(e, e′) iff there is an edge from e to e′ in G′;

• M(A) ² eq2(e, e
′) iff there are q, q′, d such that e = (q, d) and e′ =

(q′, d), i.e., the second components of e and e′ are the same;

• M(A) ² Vi(e) iff e ∈ Vi;

• M(A) ² sq(e) iff e ∈ V0, e = (q, d) for some d ∈ DM ;

• M(A) ² rj(e1, . . . , el) iff M ² rj(d1, . . . , dl) and there is q ∈ Q such
that e1 = (q, d1),. . . ,el = (q, dl).

Let M(A)|V0 denote the restriction of M(A) to V0, i.e., the structure:

M(A)|V0 = 〈V0, eq2, s1, . . . , sn, r1, . . .〉

Observe that all the above relations were defined only on V0 also in M(A).
The relation E is missing as it relates elements of V0 with the elements of V1.

Lemma 34 For a given automatonA there is a transduction ∆ defining from
every Sig-structure M the structure ∆(M) = M(A)|V0 described above.

Proof
Recall that the set of states of A is Q = {1, . . . , n}. We have Sig ′ =
{eq2, s1 . . . , sn}∪Sig . We define (Sig , Sig ′) transduction ∆ = 〈n, {θw}Sig

′

×[n]
〉

where:

θeq2,(i,j) =(X1 = X2) for all i, j ∈ [n]

θsi,i =true for all i ∈ [n]

θsi,j =false for i 6= j

θr,(i1,...,il) =r(X1, . . . , Xl) if i1 = i2 = · · · = il

θr,(i1,...,il) =false if not the case above

¤

Describing the winning set in M(A) Theorem 1 gives us an MSOL
predicate defining the set of winning positions for player 0. Rewriting this
predicate for the special case of our structure M(A) we obtain

F ′
0(Z1, . . . , Zn) =

{
x :

(
V0(x) ⇒ ∃y.(xEy ∧ y ∈ Zn)

)
∧

(
V1(x) ⇒ ∀z.(xEz ⇒

∧

i∈[n]

(si(z) ⇒ z ∈ Zi))
)}

(5)
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The simplification in the first line is possible because whenever x ∈ V0 and
xEy then y ∈ V1 and sn(y) holds. The set of winning vertices for player 0 is
given by:

S = ‖ LFPZ1 . . .GFPZn.F
′
0(Z1, . . . , Zn) ‖

M(A)
(6)

We are interested in the set S ∩ V0 so we can simplify the formula even
further. We use the fact that our graph is bipartite so every edge from a
vertex in V1 leads to a vertex in V0. This allows to replace F ′

0 with the
predicate:

F ′′
0 (Z1, . . . , Zn) =

{
x : V0(x)∧

∃y ∈ V1.(xEy ∧ (∀z.yEz ⇒
∧

i∈[n]

(si(z) ⇒ z ∈ Zi)))
}

(7)

It is straightforward to check:

Lemma 35 For every valuation Val the predicates GFPZn.F
′
0 and GFPZn.F

′′
0

define the same subset of V0 in the structure M(A).

Hence in (6) instead of GFPZn.F
′
0 we can take GFPZn.F

′′
0 and we will

obtain the same set of vertices from V0.

Restricting to elements from V0 The above tells us how to describe the
winning positions for player 0 in the acceptance game G(A,M ∗) as a subset
of M(A). The problem is that we cannot define M(A) from M by means
of a transduction. What we can do is to define M(A)|V0 by a transduction.
So we will refine the formula (7) to define the set of winning positions in
M(A)|V0.

As V1 = P(Q×DM) = P(V0) an element e ∈ V1 can be represented by a
set of elements of V0. Hence instead of writing ∃y ∈ V1 in (7) we can write
∃Y ⊆ V0. Then we also need to express the edge relation somehow. We are
going to write a formula α(x, Y ) such that for every valuation Val we have:

M,Val ² xEy iff M,Val [S/Y ] ² α(x, Y )

where S = {(q, d) ∈ V0 : (q, d) ∈ Val(y)}

and moreover in α(x, Y ) all quantifiers will be restricted to V0.
Suppose we have such a formula. Then we could define.

F
(3)
0 (Z1, . . . , Zn) =

{
x : V0(x)∧

∃Y ⊆ V0. α(x, Y ) ∧ (∀z. z ∈ Y ⇒
∧

i∈[n]

(si(z) ⇒ z ∈ Zi)))
}
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This predicate is equivalent to F ′′
0 and refers only to the vertices from V0.

Hence it defines the same set of vertices in M(A) and in M(A)|V0.

Lemma 36 For every valuation Val :

‖ F
(3)
0 (Z1, . . . , Zn) ‖

Val |V0

M(A)|V0
= ‖ F ′′

0 (Z1, . . . , Zn) ‖
Val

M(A)

where Val |V0 is the valuation defined by Val |V0(X) = {e ∈ V0 : e ∈ Val(X)}.
In the consequence:

‖ LFPZ1 . . .GFPZn.F
(3)
0 (Z1, . . . , Zn) ‖M(A)|V0

=

‖ LFPZ1 . . .GFPZn.F
′′
0 (Z1, . . . , Zn) ‖M(A)

Constructing α(x, Y ) To write the formula α(x, Y ) we must recall how
the edge relation of the game is defined. From a node (q, d) there is an edge
to f ∈ P(Q ×DM) if f ∈ 〈〈δ(q)〉〉M(d). Denoting δ(q) by βq(C,X1, . . . , Xn)
and using Definition 24 we have:

f ∈ 〈〈δ(q)〉〉M(d) iff M ² βq({d}, {d : (1, d) ∈ f}, . . . , {d : (n, d) ∈ f})

Let S1 = {(1, d) : d ∈ DM}. Clearly S1 is a subset of V0. Let In1(X)
be the predicate which holds iff the value of X is a subset of S1. Next we
construct β

(1)
q which is βq with all quantifiers relativized to S1 (i.e., to sets

X satisfying In1(X))

β′q(C,X1, . . . , Xn) = In1(C) ∧ In1(X1) ∧ · · · ∧ In1(Xn) ∧ β
(1)
q (C,X1, . . . , Xn)

Hence if M(A),Val ² β ′q then Val(C),Val(X1), . . . ,Val(Xn) are subsets of
S1 and moreover for every Val : Var → P(DM) we have

M,Val ² βi iff M(A),Val ′ ² β′i

where Val ′(Y ) = {(1, d) : d ∈ Val(Y )} for every variable Y .
Let us write the formula

γq(x, Y ) = ∃C, Y1, . . . , Yn. β
′
q(C, Y1, . . . , Yn) ∧ (Singl(C) ∧ eq2(C, x))

∧ Collapse(Y, Y1, . . . , Yn)

where the second part of this formula says that C = {(1, d)} for d such
that x = {(q, d)} for some q. The formula Collapse(Y, Y1, . . . , Yn) says that
Y = {(q, d) : (1, d) ∈ Yq}; it can be written as:

∀y.
∧

q∈[n]

(
(y ∈ Y ∧ sq(y)) ⇔ (∃y′. y′ ∈ Yi ∧ eq2(y, y

′) ∧ In1(y
′))
)
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The formula α(x, Y ) to be constructed is

∧

q∈[n]

sq(x) ⇒ γq(x, Y )

Putting it all together (Proof of Theorem 30)
By Lemma 36

W0 = ‖ LFPZ1 . . .GFPZn.F
(3)
0 (Z1, . . . , Zn) ‖

M(A)|V0

is the set of winning positions from V0 in the game G′(A,M). More precisely
(q, d) belongs to W0 iff player 0 can win from position (q, d) in G′(A,M). By
Lemma 33 it means that he can also win from (q, d) in the acceptance game
G(A,M ∗). Player 0 can win in the game G(A,M ∗) from the initial position
(q0, ε) iff he can find f ∈ 〈〈δ(q0)〉〉M such that for every (q, d) ∈ f he can win
from (q, d). This can be expressed in M(A)|V0 by the sentence:

∃C, Y1, . . . , Yn, Y, Z. C = ∅ ∧ β(1)
0 (C, Y1, . . . , Yn)∧

Collapse(Y, Y1, . . . , Yn) ∧ Y ⊆ W0 (8)

where β
(1)
0 is a formula obtained by relativizing all quantifiers in β0 = δ(q0)

to S1, exactly as in the construction of α(x, Y ) above. The above sentence
holds in M(A)|V0 iff player 0 has a winning strategy in the acceptance game
G(A,M ∗). Because M(A)|V0 is definable by a transduction from M , there
is a sentence ϕ̂ such that M ² ϕ̂ iff formula(8) is satisfied in M(A)|V0 which
is exactly when A accepts M ∗.

7 MSOL on trees of arbitrary degree

In this section we will show an automata characterisation of MSOL over
trees of arbitrary degree. From this characterisation we will deduce that
MSOL over trees is equivalent to first-order logic with a unary least fix point
operator (FPL for short).

A tree can be represented as a structure over the signature consisting of
one binary relation son. A tree is a structure satisfying the axioms: there is
unique root; from every node there is unique finite path from the root to the
node; every element has a son. Let Trees stand for the class of trees. Observe
that we only consider trees were every node has finitely many predecessors.
Equivalently we could say that each of our trees is a prefix closed subset of
A∗ for some set A; where A∗ is the set of all finite sequences over A.
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To define the syntax of first-order logic extended in with unary fixpoint
operator (FPL) fix sets {x1, x2, . . . } and {X1, X2, . . . } of first-order and
second-order variables respectively. The atomic formulas of FPL are of the
form son(xi, xj) and Xi(xj). The set of formulas is closed under boolean
connectives, first-order quantification and the following rule for constructing
fixpoints:

if ψ(X, z) is a formula of FPL with variableX occurring only posi-
tively in ψ then [LFPX(z).ψ(X, z)](z) and [GFPX(z).ψ(X, z)](z)
are formulas of FPL.

Recall that an occurrence of X in a formula is positive if it is preceded by
an even number of negations.

To define the meaning of a formula in a tree T we need a valuation Val

assigning a node of T to every first-order variable and a set of nodes of T to
every second-order variable. Then we have:

• T,Val ² Xi(xj) if Val(xi) ∈ Val(Xj),

• T,Val ² son(xi, xj) if Val(xj) is a son of Val(xi) in T

• all first-order constructs are interpreted in the standard way

• T,Val ² [LFPX(z).ψ(X, z)](z) iff Val(z) belongs to the least fixpoint
of the monotone operator that for a set S ⊆ T returns the set {c :
T,Val [S/X][c/z] ² ψ(X, z)}.

• T,Val ² [GFPX(z).ψ(X, z)](z) is defined similarly to the previous
clause but taking the greatest fixpoint this time.

There is an easy translation giving for every FPL formula an equiva-
lent MSOL formula (translating first-order variables to second-order vari-
ables ranging over singletons). The goal of this section is to show that there
is a translation in the opposite direction giving an equivalent formula over
Trees .

Theorem 37
For every MSOL formula ϕ there is a FPL formula ψ s.t., Trees ² ϕ⇔ ψ.

Let Set be the class of structures over the empty signature. These are
just plain sets considered as relational structures. Consider Set ∗, the class
of structures M ∗ for M in Set . A structure M ∗ from Set∗ is a structure of
the signature {son, cl}. It is the full tree over M with not very useful clone
relation.
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We have a characterisation of the expressive power of MSOL over such
structures in terms of MSOL automata. Our goal is to show that we can
“translate” these automata into FPL formulas. Recall that in MSOL au-
tomata the transition function has the from δ : Q × Σ → Form(|Q|) where
Form(|Q|) are all MSOL formulas with free variables in C,X1, . . . , X|Q|. Here
we are interested only in the formulas not referring to the clone relation.
Hence by Corollary 28 we can assume that variable C does not appear in the
formulas defining the transition function of an automaton. By Corollary 29
we can assume that all the formulas in the range of the transition function
are monotone.

To get an even simpler form of automata we now show that every mono-
tone MSOL formula over Set is equivalent to a first-order formula of a very
simple form.

For every n > 0 we define n-type to be a formula of the form:

τ(z) = (
∧

i∈S

Xi(z)) ∧ (
∧

i∈[n]\S

¬Xi(z))

for some S ⊆ [n]. For a tuple of variables y1, . . . , yk let diff(y1, . . . , yk) be a
formula saying that the meanings of the variables are pairwise different.

Let BF(n), the set of basic formulas with n variables, be the set of sen-
tences of the form:

∃y1, . . . , yk. diff(y1, . . . , yk) ∧ θ1(y1) ∧ · · · ∧ θk(yk)

∧ ∀z. diff(z, y1, . . . , yk) ⇒
∨

j=1,...,l

θ′j(z) (9)

where k, l ∈ N, and for every i = 1, . . . , k and j = 1, . . . , l the formulas θi(z)
and θ′j(z) are positive parts of n-types, i.e., are of the form

∧
s∈S Xs(z) for

some S ⊆ [n]. A DBF(n) formula is a finite disjunction of BF(n) formulas.

Lemma 38 Every monotone MSOL formula with free variables X1, . . . , Xn

is equivalent over Set to a DBF(n) formula.

Proof
Let ϕ be a monotone MSOL formula with free variables X1, . . . , Xn. By a
standard argument using Ehrenfeucht-Fräıssé games (c.f. [6]) ϕ is equivalent
to a finite disjunction α =

∨
i∈I αi with each αi of the form:

∃y1, . . . , yk. diff(y1, . . . , yk) ∧ τ1(y1) ∧ · · · ∧ τk(yk)

∧ ∀z. diff(z, y1, . . . , yk) ⇒
∨

j=1,...,l

τ ′j(z)
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for some types τ1, . . . , τk, τ
′
1, . . . , τ

′
l .

If we assume that the initial formula was monotone then we can “forget”
about the negative parts of types. More formally consider α obtained from
α by deleting from each τi and τj all negative atoms, i.e., formulas of the
form ¬Xs(x). It is easy to check that if for some structure M ∈ Set and
valuation Val we have M,Val ² α then there is Val ′ such that M,Val ′ ² α
and Val ′(X) ⊆ Val(X) for all X ∈ Var . ¤

Now, from Corollary 27 we obtain:

Lemma 39 For every MSOL formula over the signature {son} with free
variables Z1, . . . , Zk there is an equivalent, over Set∗, automaton of the form:

〈Q = [n],Σ, q0, δ : Q× Σ → DBF(n),Ω : Q→ N〉 (10)

where Σ = P({1, . . . , k}).

To prove equivalence of MSOL and FPL over Set ∗ it is enough to give
a translation of automata of the above kind into FPL formulas. This is
essentially what we are going to do but first we have to overcome one technical
difficulty. We want to show that the logics are equivalent not over Set ∗ but
over a slightly bigger class Trees of structures. The difference is that Set ∗

contains only full trees while in Trees there can be trees with varied degrees of
nodes. Of course every tree T ∈ Trees can be represented in some M ∗ ∈ Set∗

for sufficiently big M . This is formalized in the definition below.

Definition 40 Let T ∈ Trees be a tree and Val : Var → P(T ) a valuation.
Let Y̆ be a distinguished variable. We say that (M ∗,Val ′) represents (T,Val)
if Val ′ : Var ∪ {Y̆ } → P(T ) and

• there is an isomorphism h from T to Val ′(Y̆ )

• for every X ∈ Var we have Val ′(X) = h(Val(X))

Lemma 41 For every MSOL formula ϕ there is an MSOL formula ϕ∗ such
that for every tree (T,Val) and every (M ∗,Val ′) representing (T,Val) we
have: T ² ϕ iff (M ∗,Val ′) ² ϕ∗

Proof
Let Y̆ be the distinguished variable defining T in M ∗. We assume that Y̆
does not appear in ϕ. Formula ϕ∗ is obtained from ϕ by relativizing all the
quantifiers to Y̆ . ¤

Putting together the above lemma and Lemma 39 we obtain for every
MSOL formula over Trees an automaton over Set ∗ accepting exactly the
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representations of trees satisfying the formula. The next step is to obtain
automata running directly on Trees . The only problem here is to define what
happens if the automaton reaches a leaf. The simplest solution is to extend
the definition of the automaton by adding a set F of terminal states:

A = 〈Q = [n],Σ, q0, δ : Q× Σ → DBF(n), F ⊆ Q,Ω : Q→ N〉 (11)

The notion of acceptance for such an automaton is essentially the same as
for MSOL automata except for the fact that player 0 wins if he reaches a leaf
with a state from F . Let us nevertheless spell out the definition more formally
to avoid possible confusion and profit from some simplifications coming from
the fact that the automaton runs on trees.

Definition 42 Given an automaton A as above (with Σ = P({1, . . . , k}))
and a tree T with a valuation Val : {Z1, . . . , Zk} → P(T ) we define the game
G(A, (T,Val)) as follows:

• The set of player 0 vertices is V0 = Q× T .

• The set of player 1 vertices is V1 = ({X1, . . . , Xn} → P(T )).

• The initial position of the game is (q0, ε).

• Let Mw be the set of sons of w. If Mw 6= ∅ then there is an edge
from a vertex (q, w) ∈ V0 to f ∈ V1 if Mw, f ² δ(q,Val(w)), where
f : {X1, . . . , Xn} → P(Mw) is a valuation and Val(w) denotes the
letter {i : w ∈ Val(Zi)} ∈ Σ.

• There is an edge from a vertex (f, w) ∈ V1 to (q, w′) ∈ V0 if w′ ∈ f(Xq).

• A finite play terminating in a position (q, w) with w a leaf is winning
for player 0 iff q ∈ F .

• An infinite play (q1, w1), (f1, w1), (q2, w2), (f2, w2), . . . is winning for
player 0 iff the sequence Ω(q0),Ω(q1), . . . satisfies the parity condition.

We say that A accepts (T,Val) if player 0 has a winning strategy in the game
G(A, (T,Val)) from the initial position.

Remark: The only important difference between the above definition and
automata on iterated structures (c.f. Definition 10) is that we have to take
care of the situation when a node of a tree has no sons. This is done by
putting no edges from vertices (q, w) with w a leaf and adding a new winning
condition for such vertices.
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Lemma 43 For every MSOL formula ϕ with free variables Z1, . . . , Zk there
is an automaton Aϕ over the alphabet Σ = P({1, . . . , k}) such that for every
tree T ∈ Trees and valuation Val we have: T,Val ² ϕ iff A accepts (T,Val).

Proof
Let ϕ(Z1, . . . , Zk) be a MSOL formula in the signature {son}. By Lemma 41
there is a formula ϕ∗(Z1, . . . , Zk, Y̆ ) such that for every tree T with a val-
uation Val and for every structure M ∗ with a valuation Val ′ representing
(T,Val): T,Val ² ϕ iff M ∗,Val ′ ² ϕ∗. By Lemma 39 there is an automaton:

A∗ = 〈Q = [n],Σ = P({1, . . . , k + 1}), q0, δ : Q× Σ → DBF(n),Ω〉

equivalent to ϕ∗. Observe that whenever (M ∗,Val ′) represents (T,Val) then
for every v ∈ DM \Val ′(Y̆ ) we have that v 6∈ Val ′(Z) for every Z. Hence the
tree from every node not in Val ′(Y̆ ) is the same: it is isomorphic to (M ∗,Val ∅)
where Val ∅ is the valuation assigning the empty set to every variable. Let
F be the set of states from which the automaton accepts infinitely many
structures of the form (M ∗,Val ∅). Consider then the tree automaton with F
as the set of finial states:

A∗ = 〈Q = [n],Σ = P({1, . . . , k}), q0, δ∗ : Q× Σ → DBF(n), F,Ω〉

where δ∗(q, a) = δ(q, a ∪ {n + 1}). This is the automaton required by the
lemma. ¤

It remains to translate tree automata to FPL formulas.

Lemma 44 For every automatonA as in (11) over an alphabet Σ = P({1, . . . , k})
there is an FPL formula ψ with free variables {Z1, . . . , Zk}, such that, for
every tree T and valuation Val : {Z1, . . . , Zk} → P(T ):

(T,Val) is accepted by A iff T,Val ² ψ(Z1, . . . , Zk)

Proof

Let A be a tree automaton:

A = 〈Q = [n],Σ, q0, δ : Q× Σ → DBF(n), F ⊆ Q,Ω : Q→ N〉

with Σ = P({1, . . . , k}). For simplicity of the notation we assume that
Ω(i) = i. This way the state itself carries information about its priority.

The game G(A, (T,Val)) can be represented as a relational structure
MG = 〈V0 ∪ V1, E, V0, V1, s1, . . . , sn〉 where:

• MG ² E(e, e′) iff there is an edge from e to e′ in G(A, (T,Val)) ;
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• MG ² Vi(e) iff e ∈ Vi;

• MG ² sq(e) iff e ∈ V0 and the first component of e is q;

By Theorem 1 the set of winning positions in the game G(A, (T,Val))
can be described in MG by the MSOL predicate

LFPX1.GFPX2 . . . LFPXn−1.GFPXn.F0(X1, . . . , Xn)

where

F0(X1, . . . , Xn) ={x :
(
V0(x) ⇒ ∃y. E(x, y) ∧

∧

i∈[n]

si(y) ⇒ y ∈ Xi

)

∧
(
V1(x) ⇒ ∀y. E(x, y) ⇒

∧

i∈[n]

si(y) ⇒ y ∈ Xi

)
}

Using the fact that sn holds for all the elements of V1 and that the game
graph is bipartite with the partition (V0, V1) we can simplify F0 to F ′

0:

F ′
0(X1, . . . , Xn) = {x :

(
∃y. E(x, y) ∧ (∀z. E(y, z) ⇒

∧

i∈[n]

si(z) ⇒ z ∈ Xi)
)
}

Next we will use the fact that E is defined by first-order formulas and
translate this formula to a FOL formula over trees.

First, for every q ∈ Q we define a projection function hq : P(V0) → P(T )
by hq(S) = {w : (q, w) ∈ S}. In particular player 0 wins in G(A, (T,Val)) iff
the root of T is in hq0(W0) where q0 is the initial state of A and W0 the set
of winning positions for player 0 in the game. To define hq0(W0)) in (T,Val)
we will construct formulas γiq for all i ∈ [n+ 1] and q ∈ Q. The formulas will
have the property that for every valuation Val : Var →MG we have:

{w : T,Val ² γiq(w, h1(Val(X1)), . . . , hi−1(Val(Xi−1)))} =

hq(‖ LFP
GFP

Xi . . .GFPXn.F
′
0(X1, . . . , Xn) ‖

Val

MG
) (12)

where LFP
GFP

Xi is LFPXi or GFPXi depending on whether i is odd or even
respectively.

As a base case for the induction we define γn+1
q for all q ∈ Q:

γn+1
q (x,X1, . . . , Xn) =

∧

a∈Σ

a(x) ⇒ [δ(q, a)]x (13)

where we must still define a(x) and [δ(q, a)]x. For a letter a ∈ Σ = P({1, . . . , k})
the formula a(x) is (

∧
i∈aXi(x))∧(

∧
i6∈a ¬Xi(x)). The formula [δ(q, a)]x is ob-

tained from δ(q, a) by relativizing all the quantifiers to the sons of x. Recall
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that δ(q, a) is a disjunction of formulas of the form ∃y1, . . . , yk.β1 ∧∀z.β2. In
[δ(a, q)]x each disjunct is changed to ∃y1, . . . , yk. son(x, y1)∧· · ·∧son(x, yk)∧
β1 ∧ ∀z. son(x, z) ⇒ β2.

For i ≤ n we define γiq assuming all γi+1
q′ are defined. For γii we put

γii = [ LFP
GFP

Xi(x).γ
i+1
i ](x)

and for γiq with q 6= i we put

γiq =
∧

a∈Σ

a(x) ⇒
[
δ(q, a)(X1, . . . , Xi−1, γ

i
i , γ

i+1
i+1 [γ

i
i/Xi], . . . , γ

i+1
n [γii/Xi])

]
x

The fact that γn+1
q satisfies the property (12) follows from the inspection

of the definition of MG. To see that γiq satisfies the property (12) observe
that for every ordinal τ we have:

{w : T, V ² [ LFP
GFP

τXi.γ
i+1
q (x, h1(Val(X1)), . . . hi−1(Val(Xi−1)))](w)} =

hq(‖ LFP
GFP

τXi. LFP
GFP

Xi+1 . . .GFPXn.F
′
0(X1, . . . , Xn) ‖

Val

MG
)

(here LFP
GFP

τXi stands for the τ -th approximation LFP
τ Xi or GFP

τ Xi depend-
ing on whether i is odd or even respectively). This observation follows from
the induction hypothesis saying that the property (12) holds for γ i+1

q and from
the distributivity of hq over unions and intersections, i.e., hq(

⋃
B) =

⋃
hq(B)

and hq(
⋂
B) =

⋂
hq(B) . To show that γiq with i 6= q satisfies the prop-

erty (12) one can use the induction hypothesis and the unwinding rule which
says that LFPZ.F (Z) is equivalent to F (LFPZ.F (Z)) (and analogously for
the GFP operator). ¤

The proof of Theorem 37 follows from Lemmas 43 and 44. By the first
lemma for every formula of MSOL there is an equivalent tree automaton. By
the second lemma there is a FPL formula equivalent to this automaton.

7.1 Concluding remarks

We have considered an operation M ∗ of constructing tree-like structures and
defined automata working on the structures of this kind. These automata
are parametrised by a class of allowed transition functions. We have given
some conditions on the class of transition functions which guarantee that
automata are closed under sum, complement and projection. We use this
parametrisation to give two different results using different classes of transi-
tion functions.
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Other classes of transition functions are possible. One can consider tran-
sition functions of alternating automata on binary trees or the ones corre-
sponding to the mu-calculus on arbitrary trees [9]. In all these cases transition
functions can be defined by some special first-order formulas. One can also
consider transition functions defined by a superset of MSOL formulas, as for
example MSOL with counting modulo predicates. It would be interesting to
know the connection of these automata to MSOL with counting and to the
fixpoint logic with counting. One can also try to use the automata on more
complicated structures than just tress. For example one can consider struc-
tures M ∗ for M being a countable well-order. A conjecture is that MSOL on
such structures is equivalent to the unary fixpoint logic. For the proof of it
one should presumably use Büchi’s automata on countable ordinals [1] and
characterize their expressive power using fixpoint logic. Then the machinery
presented in this paper can probably be used. Another question concerning
the operation M ∗ is to investigate to which extent the first-order counterpart
of Muchnik’s Theorem holds. Suppose we know that the first-order theory of
M is decidable, what can be said about decidability of the first-order theory
of M∗?
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