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Abstract This chapter presents a part of the theory of the mu-calculus
that is relevant to the, broadly understood, model-checking problem. The
mu-calculus is one of the most important logics in model-checking. It is a
logic with an exceptional balance between expressiveness and algorithmic
properties.

The chapter describes in length the game characterization of the semantics
of the mu-calculus. It discusses the theory of the mu-calculus starting with the
tree model property, and bisimulation invariance. Then it develops the notion
of modal automaton: an automaton-based model behind the mu-calculus. It
gives a quite detailed explanation of the satisfiability algorithm, followed by
the results on alternation hierarchy, proof systems, and interpolation. Finally,
the chapter discusses the relations of the mu-calculus to monadic second-order
logic as well as to some program and temporal logics. It also presents two
extensions of the mu-calculus that allow us to address issues such as inverse
modalities.

1 Introduction

The mu-calculus is one of the most important logics in model-checking. It is
a logic with an exceptional balance between expressiveness and algorithmic
properties. In this chapter we present a part of the theory of the mu-calculus
that seems to us most relevant to the, broadly understood, model-checking
problem.
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This chapter is divided into three parts. In Section 2 we introduce the logic,
and present some basic notions such as: special forms of formulas, vectorial
syntax, alternation depth of fixpoints. The largest part of this section is con-
cerned with a characterization of the semantics of the logic in terms of games.
We give a relatively detailed exposition of the characterization, since in our
opinion this is one of the central tools in the theory of the mu-calculus. The
section ends with an overview of approaches to the model-checking problem
for the logic.

Section 3 goes deeper into the theory of the mu-calculus. It starts with the
tree model property, and bisimulation invariance. Then it develops the notion
of modal automaton: an automaton-based model behind the mu-calculus.
This model is then often used in the rest of the chapter. We continue the
section with a quite detailed explanation of the satisfiability algorithm. It is
followed by the results on alternation hierarchy, proof systems, and interpola-
tion. We finish with a division property that is useful for modular verification
and synthesis.

Section 4 presents the mu-calculus in the larger context. We relate the
logic to monadic second-order logic as well as to some program and temporal
logics. We also present two extensions of the mu-calculus that allow us to
express inverse modalities, some form of equality, or counting.

This chapter is short, given the material that we would like to cover.
Instead of being exhaustive, we try to focus on concepts and ideas we consider
important and interesting from the perspective of broadly understood model-
checking problem. Since concepts often give more insight than enumeration
of facts, we give quite complete arguments for the main results we present.

2 Basics

In this section we present some basic notions and tools of the theory of
the mu-calculus. We discuss some special forms of formulas like guarded or
vectorial forms. We introduce also the notion of alternation depth. Much of
this section is devoted to a characterization of the semantics of the logic in
terms of parity games, and its use in model-checking. The section ends with
an overview of model-checking methods and results.

2.1 Syntax and semantics

The µ-calculus is a logic describing properties of transition systems: poten-
tially infinite graphs with labeled edges and vertices. Often the edges are
called transitions and the vertices states. Transitions are labeled with ac-
tions, Act = {a, b, c, . . . }, and the states with sets of propositions, Prop =
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{p1, p2, . . . }. Formally, a transition system is a tuple:

M = 〈S, {Ra}a∈Act , {Pi}i∈N〉

consisting of a set S of states, a binary relation Ra ⊆ S×S defining transitions
for every action a ∈ Act , and a set Pi ⊆ S for every proposition. A pair
(s, s′) ∈ Ra is called an a-transition.

We require a countable set of variables, whose meanings will be sets of
states. These can be bound by fixpoint operators to form fixpoint formulas.
We use Var = {X,Y, Z . . . } for variables.

Syntax. The formulas of the logic are constructed using conjunction, dis-
junction, modalities, and fixpoint operators. The set of µ-calculus formulas,
Fmc is the smallest set containing:

• p and ¬p for all propositions p ∈ Prop;
• X for all variables X ∈ Var ;
• α ∨ β as well as α ∧ β, if α, β are formulas in Fmc ;
• 〈a〉α and [a]α, if a ∈ Act is an action and α is a formula in Fmc ;
• µX.α and νX.α, if X ∈ Var is a variable and α ∈ Fmc is a formula.

Disambiguating parentheses are added when necessary. It is generally agreed
that 〈a〉 and [a] bind more tightly than boolean operators, but opinions vary
on whether µ and ν bind tighter or looser than booleans. We will assume that
they bind looser. For example, consider the important formula ‘infinitely often
p on some path’, which fully parenthesized is νY.

(
µX. ((p ∧ 〈a〉Y ) ∨ 〈a〉X)

)
.

We shall write it as νY. µX. (p ∧ 〈a〉Y ) ∨ 〈a〉X.
We write σX.α to stand for µX.α or νX.α. We will use tt as an abbre-

viation of (p1 ∨ ¬p1), and ff for (p1 ∧ ¬p1). Note that there is no negation
operation in the syntax; we just permit negations of propositions. Actually,
the operation of the negation of a sentence will turn out to be definable.

Semantics. The semantics of the logic is concise and yet of intriguing depth.
We will see later that it pays to study it in detail from different points of
view. A meaning of a formula in a transition system is a set of states satisfying
the formula. Since a formula may have free variables, their meaning should
be fixed before evaluating the formula. As with formulas, the meaning of
a variable will be a set of states of the transition system. More formally,
given a transition system M = 〈S, {Ra}a∈Act , {Pi}i∈N〉 and a valuation V :

Var → P(S) we define the meaning of a formula [[α]]
M
V by induction on its

structure. The meaning of variables is given by the valuation. The meanings
of propositional constants and their negations are given by the transition
system.

[[X]]
M
V = V(X), for every X ∈ V;

[[pi]]
M
V = Pi and [[¬pi]]MV = S − Pi, for every pi ∈ Prop.

Disjunction and conjunction are interpreted as the union and the intersection:
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[[α ∨ β]]
M
V = [[α]]

M
V ∪ [[β]]

M
V [[α ∧ β]]

M
V = [[α]]

M
V ∩ [[β]]

M
V .

The meaning of modalities is given by transitions. The formula 〈a〉α holds
in some state if it has an outgoing a-transition to some state satisfying α.
Dually, the formula [a]α holds in some state if all its outgoing a-transitions
go to states satisfying α:

[[〈a〉α]]
M
V ={s ∈ S : ∃s′.Ra(s, s′) ∧ s′ ∈ [[α]]

M
V },

[[[a]α]]
M
V ={s ∈ S : ∀s′.Ra(s, s′)⇒ s′ ∈ [[α]]

M
V }.

Finally, the µ and ν constructs are interpreted as fixpoints of operators on
sets of formulas. A formula α(X) containing a free variable X can be seen as
an operator on sets of states mapping a set S′ to the semantics of α when
X is interpreted as S′, in symbols: S′ 7→ [[α]]

M
V[S′/X]. Since by definition of

the basic operators of the logic this operator is monotonic, it has well defined
least and greatest fixpoints. Formally,

[[µX.α]]
M
V =

⋂
{S′ ⊆ S : [[α]]

M
V[S′/X] ⊆ S

′},

[[νX.α]]
M
V =

⋃
{S′ ⊆ S : S′ ⊆ [[α]]

M
V[S′/X]}.

We will often write M, s,V � α instead of s ∈ [[α]]
M
V . Moreover we will omit

V or M if it is not important, or clear from the context.

Examples: The simplest formulas are just those of modal logic: 〈a〉tt means
‘there is transition labeled by a’. With one fixpoint, we can talk about ter-
mination properties of paths in a transition system. The formula µX.[a]X
means that all sequences of a-transitions are finite. The formula νY.〈a〉Y
means that there is an infinite sequence of a-transitions. We can then add a
predicate p, and obtain νY. p ∧ 〈a〉Y formula saying that there is an infinite
sequence of a-transitions, and all states in this sequence satisfy p. The for-
mula µX.〈a〉X is just false, but the formula µX. p∨〈a〉X says that there is a
sequence of a-transitions leading to a state where p holds. With two fixpoints,
we can write fairness formulas, such as νY. µX. (p∧〈a〉Y )∨〈a〉X meaning ‘on
some a-path there are infinitely many states where p holds’. Changing the
order of fixpoints we get µX. νY. (p ∧ 〈a〉Y ) ∨ 〈a〉X saying ‘on some a-path
almost always p holds’. To see why these formulas mean what they do, one
can of course use the semantics directly, but it is often easier to use some
alternative approaches that we introduce in the following. As these examples
suggest, the semantics depends on the order of fixpoint operators, and the
expressive power increases with the number of fixpoints (cf. Section 2.2).

Some syntactic conventions. The fixpoint operators µX and νX bind
occurrences of the variable X, in the sense that the meaning of µX.α does not
depend on the valuation of X. We leave to the reader the formal definition



The mu-calculus and model-checking 5

of bound and free occurrence of a variable in a formula. A sentence is a
formula without free variables. In particular, the meaning of a sentence does
not depend on the valuation of variables. By α[β/X] we denote the result of
substitution of β for every free occurrence of X; when doing this we suppose
that the free variables of β are disjoint from the bound variables of α. Clearly
µX.α is equivalent to µY.(α[Y/X]), so we can always make sure that no
variable has at the same time a free and a bound occurrence in a formula.

In order to underline the dependency of the value of α on X, we will often
write µX.α(X) instead of µX.α. In this context we write α(β) for α[β/X].
We immediately employ this notation to introduce the idea of unfolding. A
fixpoint formula µX.α(X) is equivalent to its unfolding , α(µX.α(X)). This
is a very useful rule that allows us to “delay” reasoning about fixpoints. The
equivalence of a formula with its unfolding follows directly from the fact that
µ is a fixpoint operator. Of course the same applies for ν in place of µ.

Semantics based on approximations. There is another very convenient
way of defining meanings of fixpoint constructs. It comes directly from the
Knaster–Tarski theorem characterizing fixpoints in a complete lattice in
terms of their approximations. Let us start with a definition of formal approx-
imations of fixpoint formulas: µτX.α(X) and ντX.α(X) for every ordinal τ .
The meaning of µ0X.α(X) is the empty set. The meaning of µτ+1X.α(X) is
that of α(Z) where Z is interpreted as µτX.α(X). Finally, the meaning of
µτX.α(X) when τ is a limit ordinal is the least upper bound of meanings of
µρX.α(X) for ρ < τ . Similarly for ντX.α(X) but for the fact that ν0X.α(X)
is the set of all states, and the greatest lower bound is taken when τ is a limit
ordinal.

Example: Let us look at the meaning of approximations of a formula µX.[a]X:

µ0X.[a]X = ∅ false

µ1X.[a]X = [a]∅ states with no a-path

µ2X.[a]X = [a][a]∅ states with no aa-path

. . .

µωX.[a]X =
⋃
n<ω

µn states s.t. ∃n. no an-path

. . .

If every state has only finitely many a-successors, then the approximation
closes at ω, i.e. µω+1 = µω; but for infinite-branching systems, we may need
to go further, and the approximation closes at the least upper bound of
ordinal heights of an a-tree in the system (cf. Figure 5, page 17). In general,
the least ordinal such that µτX.α = µτ+1X.α in a transition system M is
called the closure ordinal of µX.α in M. The closure ordinal always exists;
its cardinal is bounded by the cardinality of the transition system.
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For a more complex example, consider the formula νY. µX. 〈a〉((p∧Y )∨X)
which is another way of writing ‘along some a-path there are infinitely many
states where p holds’ formula we have seen in the example on page 4. Here
we have to calculate the approximations of the ν formula, and during each
such calculation, we have to calculate the approximations of the µ formula,
relative to the current ν approximation. For ease of tabulation, write ντ for
ντY. µX. 〈a〉((p∧Y )∨X), and µτ,τ

′
for µτ

′
X.(〈a〉((p∧Y )∨X))[ντ/Y ]. Now

we have, with some abuse of notation:

ν0 S

µ0,0 ∅
µ0,1 [[〈a〉((p ∧ S) ∨ µ0,0)]] = [[〈a〉p]]
µ0,2 [[〈a〉((p ∧ S) ∨ µ0,1)]] = [[〈a〉(p ∨ 〈a〉p)]]
. . .

ν1 =µ0,∞ 〈a〉eventually(p)

µ1,1 [[〈a〉((p ∧ ν1) ∨∅)]] = [[〈a〉(p ∧ ν1)]]

µ1,2 [[〈a〉((p ∧ ν1) ∨ µ1,1)]] = [[〈a〉
(
(p ∧ ν1) ∨ 〈a〉(p ∧ ν1)

)
]]

. . . . . .

ν2 =µ1,∞ eventually(p ∧ 〈a〉eventually(p))

. . . . . .

ν∞ infinitely often p

In this example, ‘eventually p’ means ‘on some a-path, p will occur’. If the
modality 〈a〉 were replaced by the [a] modality, then it would mean ‘on every
a-path, p will occur’.

Negation. Since the syntax we propose does not have the negation operation,
it is useful to see that negation can be defined in the language. We first define
by induction on the structure a formal negation operation ¬α on formulas
and then state that it has the required properties.

¬(¬p) = p ¬(¬X) =X

¬(α ∨ β) = ¬α ∧ ¬β ¬(α ∧ β) = ¬α ∨ ¬β
¬〈a〉α = [a]¬α ¬[a]α = 〈a〉¬α

¬µX.α(X) = νX.¬α(¬X) ¬νX.α(X) = µX.¬α(¬X)

Observe that when applying this translation to a formula without free vari-
ables, the final result has all variables occurring un-negated, because of the
two negations introduced when negating fixpoint expressions.
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Fact 1 (Definability of negation) For every sentence α, every transition
system M over the set of states S, and every valuation V:

[[¬α]]
M
V = S − [[α]]

M
V .

Examples: The negation of the ‘everywhere always p’ formula νX. p∧ [a]X is
¬νX. p ∧ [a]X = µX.¬(p ∧ [a](¬X)) = µX.¬p ∨ ¬[a](¬X) = µX.¬p ∨ 〈a〉X,
the ‘eventually somewhere ¬p’ formula.

For a more complicated example let us come back to νY. µX. (p∧ 〈a〉Y )∨
〈a〉X meaning ‘along some a-path there are infinitely many states where p
holds’. Its negation is µY. νX. (¬p ∨ [a]Y ) ∧ [a]X expressing, in a slightly
cryptic way, ‘on every path almost always ¬p’.
Special forms of formulas. Let us mention some useful special forms for
formulas. First, as we have noted above, we can require that bound and free
variables are different. We can also require that every variable is bound at
most once in a formula. If both of these are the case, we say the formula is
well-named . Moreover, we can even ensure that in every formula µX.α(X)
variable X appears only once in α(X). This is because µX.µY.α(X,Y ) is
equivalent to µX.α(X,X). Similarly for νX.α(X).

Another useful syntactic property is guardedness. A variable Y is guarded
in β(Y ) if all occurrences of Y are preceded (not necessary directly) by a
modality. For example, Y is guarded in 〈a〉µX.(X ∧ Y ∧ p). A formula is
guarded if for every subformula σY.β(Y ), variable Y is guarded in β(Y ). It
turns out that every formula is equivalent to a guarded formula.

The algorithm for constructing an equivalent guarded formula uses an
operation of removing open occurrences of a variable. An occurrence of a
variable is open if it is neither guarded, nor preceded by a fixpoint operator.
To see how it works, consider a formula µY.β(Y ) and suppose we want to
obtain an equivalent formula without open occurrences of Y in β(Y ). For this
it suffices to replace every open occurrence of Y in β(Y ) by ff . To see why
this may work, observe that µY. Y ∧ γ(Y ) is equivalent to ff while µY. Y ∨
γ(Y ) is equivalent to µY.γ(Y ). Now, due to laws of propositional logic, the
formula β(Y ) is equivalent to Y ∧ γ(Y ) or Y ∨ γ(Y ) for some γ(Y ) with no
open occurrence of Y . We get that µY.β(Y ) is equivalent to µY.Y ∧ γ(Y ) or
µY.Y ∨γ(Y ). By the observation above, these in turn are equivalent to ff or to
µY.γ(Y ), respectively. The translation for νY.β(Y ) is dual: open occurrences
of Y are replaced by tt .

To convert a formula to a guarded formula we repeatedly remove open
occurrences of variables starting from innermost fixpoint formulas. For ex-
ample, consider a formula νY.µX.α(X,Y ), where α(X,Y ) does not have fix-
point subformulas. We first remove open occurrences of X in µX.α(X,Y ).
In the obtained formula, µX.α′(X,Y ), all occurrences of X are guarded as
the formula does not have proper fixpoint subformulas. In consequence, every
occurrence of Y in α′(µX.α(X,Y ), Y ) is either open or guarded. Hence we
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remove open occurrences of Y in νY.α′(µX.α(X,Y ), Y ) and obtain a guarded
formula.

Fact 2 (Special form of formulas) Every formula can be transformed to
an equivalent guarded, well-named formula. Moreover, one can require that
in every subformula of the form σX.β(X) variable X appears at most once
in β(X).

As observed in [54], contrary to some claims in the literature, the transfor-
mation to a guarded form described above can induce an exponential growth
in the size of the formula. It is not known if there is a better transformation.
Often it is enough to remove open occurrences of bound variables though,
and this transformation does not increase the size of the formula. A way of
avoiding exponential blowup is to use vectorial syntax described below [109].

Vectorial syntax. The original syntax of the mu-calculus allows us to freely
mix all types of operators. In some contexts it is more interesting to have
a formula in a prenex form where all the fixpoint operators are on the out-
side. This is possible in a vectorial syntax we will now introduce. Another
advantage of this syntax is that it is in general more compact, as it allows
the sharing of common subformulas.

A modal formula is a formula of the mu-calculus without fixpoint opera-
tors. As we do not allow negation of a variable in the syntax, this formula is
positive. A sequence α = (α1, . . . , αn) of n modal formulas is a vectorial mu-
calculus formula of height n. If X = X1, . . . , Xn is a sequence of n variables
and α a vectorial formula of height n then µX.α and νX.α are vectorial
formulas of height n.

The meaning of a vectorial formula of height n is an n-tuple of sets
of states. Apart from that, the semantics is analogous to the scalar (i.e.,
ordinary) mu-calculus. More precisely, if α = (α1, . . . , αn) is a sequence
of modal formulas then its meaning in a model M with a valuation V is

[[α1]]
M
V × · · · × [[αn]]

M
V . Observe that with the variables X distinguished, the

meaning of α is a function from P(S)n to P(S)n. The meaning of µX.α is
then the least fixed-point of this function. Similarly for νX.α.

It turns out that vectorial and scalar mu-calculi have the same expressive
power. This is one more example of remarkable closure properties of the
logic. The translation from scalar to vectorial formulas is rather direct. One
introduces a variable for every subformula and then writes a fixpoint formula
in the obvious way. The obtained vectorial formula has the property that the
first component of its meaning is exactly the meaning of the scalar formula.
The translation in the other direction relies on a repeated use of the so-called
Bekič principle [10]:

µ

[
X

Y

]
.

[
α(X,Y )

β(X,Y )

]
=

[
µX.α(X,µY.β(X,Y ))

µY. β(µX.α(X,Y ), Y )

]
.
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This principle allows us to eliminate the prefix of fixpoint operators. In the
result we obtain a vector of formulas. The formula at the i-th coordinate will
give the semantics of the i-th coordinate of the original vectorial formula.

Fact 3 (Vectorial syntax) Every µ-calculus formula can be converted to
an equivalent vectorial formula. Every vectorial formula can be converted to
an equivalent (scalar) µ-calculus formula.

The translation from scalar to vectorial form does not yield a blow-up in
size. It is conjectured that vectorial formulas may be exponentially smaller
than their scalar equivalents.

2.2 Alternation depth

The examples above suggest that the power for the logic comes from fixpoint
operators. While most useful properties can be expressed with few fixpoints,
it is the nesting of the two types of fixpoints that is the source of both
expressive power and algorithmic difficulties. We introduce some notions to
state this formally.

Let α be a well-named formula. So for every bound variable Y we have
a unique subformula σY.βY in α; and it makes sense to say that Y is a µ-
variable or a ν-variable depending on the binder. This syntactic convention
makes it easier to define the notion of alternation depth, otherwise we would
need to refer to specific occurrences of variables.

Definition 1 (Alternation depth). The dependency order on bound vari-
ables of α is the smallest partial order such that X ≤α Y if X occurs free in
σY.βY . The alternation depth of a µ-variable X in formula α is the maximal
length of a chain X1 ≤α · · · ≤α Xn where X = X1, variables X1, X3, . . .
are µ-variables and variables X2, X4, . . . are ν-variables. Alternation depth
of a ν-variable is defined similarly. Alternation depth of formula α, denoted
adepth(α), is the maximum of alternation depths of variables bound in α, or
zero if there are no fixpoints.

Examples: The now-familiar ‘on some a-path there are infinitely many states
where p holds’ formula νY. µX. (p ∧ 〈a〉Y ) ∨ 〈a〉X is a canonical example
of an alternation depth 2 formula since Y has alternation depth 2. Indeed
Y ≥ X in the dependence order, and Y is a ν-variable while X is a µ-
variable. In contrast, the ‘there is a path where p holds almost always’ formula
µX.

(
νY. (p∧ 〈a〉Y )

)
∨ 〈a〉X has alternation depth 1, since X does not occur

free in νY. (p ∧ 〈a〉Y ) and in consequence has alternation depth 1.
The following fact gives a first good reason for this seemingly complicated

definition
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Fact 4 (Alternation depth and unfolding) A formula µX.β(X) has the
same alternation depth as its unfolding β(µX.β(X)). Similarly for the great-
est fixpoint.

Indeed, after renaming bound variables to avoid their repeated use, the depen-
dency order of a sentence β(µX.β(X)) is a disjoint union of the dependency
order for µX.β(X) and that for β(X). The number of alternations in the
latter is not greater than in the former.

Alternation depth is a parameter that appears in many contexts. It is
crucial in translations between the logic and automata. It induces a hierarchy
with respect to expressive power. The complexity of all known model-checking
algorithms depends exponentially on this parameter.

We will see alternation depth often in this chapter. At the moment let
us only observe that this apparently technical definition becomes much more
readable in vectorial syntax: the alternation depth is just the number of
alternations between µ and ν in the prefix. It is tiresome but not difficult to
check that the translations between scalar and vectorial formulas introduced
on page 8 preserve alternation depth.

There is a commonly seen alternative formulation, analogous to the def-
inition of arithmetic hierarchy. Rather than talking about the ‘alternation
depth’, we may classify formulas into a hierarchy of Σµn and Πµ

n classes ac-
cording to the nesting of fixpoint operators. So, for example, Σµ1 consists of
formulas with only µ fixpoints, and Πµ

1 consists of formulas having only ν fix-
points. Then Σµ2 is the closure of Πµ

1 under boolean operations, substitutions,
and µ. Observe that unlike for arithmetic, we need to explicitly mention sub-
stitutions in the definition. Class Πµ

2 is defined similarly but using closure
under ν. It can be shown that a formula has alternation depth n if and only
if it is syntactically both in Σµn+1 and in Πµ

n+1.

Examples: The ‘always on every a-path p’ formula νX.p ∧ [a]X is a Πµ
1 for-

mula, and the ‘on every a-path eventually p’ formula µX.p∨ [a]X is Σµ1 ; both
are alternation depth 1. However, ‘on some a-path p holds almost always’
formula µX.

(
νY. (p ∧ 〈a〉Y )

)
∨ 〈a〉X has also alternation depth 1 but it is

neither Πµ
1 nor Σµ1 . It is Σµ2 because it can be obtained by substituting the

(Πµ
1 and therefore) Σµ2 formula νY. (p∧〈a〉Y ) for Z in the (Σµ1 and therefore)

Σµ2 formula µX.Z ∨ 〈a〉X. It is also Πµ
2 , for the same reason. Note also that

the alternation depth 2 formula ‘on some a-path there are infinitely many
states where p holds’ written νY. µX. (p ∧ 〈a〉Y ) ∨ 〈a〉X is Πµ

2 but not Σµ2 .

2.3 Semantics in terms of games

There are two good reasons why the mu-calculus has the right to its own
chapter in this Handbook: expressive power and algorithmic properties. In-
deed the logic can encode most of the other logics used in verification, and
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still algorithmically it is not substantially more difficult than the others.
Nevertheless, the mu-calculus has been relatively slow in gaining acceptance,
mainly because of its compact syntax. It is quite difficult to decode the mean-
ing of a formula using the semantic clauses presented above. This is why the
semantics in terms of games that we introduce here is conceptually very use-
ful.

s �? [a](p1 ∨ (p2 ∧ p3))

. . . for all t : s
a→ t

t �? p1 ∨ (p2 ∧ p3)

t �? p2 ∧ p3t �? p1

t �? p2 t �? p3

Fig. 1 Game for verifying s �? [a](p1 ∨ (p2 ∧ p3)).

To see what we are aiming at, consider a formula [a](p1∨(p2∧p3)). Suppose
that we want to verify that the formula holds in a state s of some transition
systemM. We describe the verification process as a game between two play-
ers: Eve and Adam. The goal of Eve will be to show that the formula holds,
while Adam aims at the opposite.

The game is presented in Figure 1. The positions of Eve are pointed, and
those of Adam are square. For example, the initial position belongs to Adam,
and he has to choose there a state t reachable from s on an a-transition. The
leaf position t �? pi is winning for Eve iff pi holds in t. Looking at the game,
it should be clear that the initial formula holds iff Eve has a strategy to reach
a winning leaf. Her strategy is to choose in every position t �? p1 ∨ (p2 ∧ p3)
a disjunct that holds in t, if there is one.

To see a more challenging case consider the formula “infinitely often p on
every path” νY.µZ.[a](Z∨(p∧Y )). Observe that apart from the two fixpoints
the formula resembles very much the previous one. The game presented in
Figure 2 is also similar. For fixpoints we just apply the unfolding rule; we
use αY to stand for the whole formula and αZ for its subformula µZ.[a](Z ∨
(p ∧ Y )). We have not marked to whom belong nodes with fixpoint formulas
since it is not important: they always have a unique successor. Observe that
this time the game may be infinite: from the bottom rightmost node we
restart the whole game; from the bottom leftmost node we restart from the
µ-subformula. The main point is to be able to decide who is the winner of
an infinite play. As it will turn out, we cannot just say that all infinite plays
are winning for one of the players. In this example, we will declare a path
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winning for Eve if the path passes infinitely often through the ν-formula (as
in the rightmost bottom node).

s �? νY.µZ.[a](Z ∨ (p ∧ Y ))

s �? µZ.[a](Z ∨ (p ∧ αY ))

s �? [a](αZ ∨ (p ∧ αY ))

t �? αZ ∨ (p ∧ αY )

. . . for all t : s
a→ t

t �? µZ.[a](Z ∨ (p ∧ αY ))

...

t �? p ∧ αY

t �? p t �? νY.µZ.[a](Z ∨ (p ∧ Y ))

...

Fig. 2 Game for verifying s �? νY.µZ.[a](Z ∨ (p ∧ Y )).

In the following we will introduce the notion of a game with parity winning
conditions, sufficient to deal with the mu-calculus. Parity conditions allow us
to express properties like passing infinitely often through some node. Another
chapter [20] of this Handbook describes many more variants of games used in
model-checking. After presenting parity games, we will examine more closely
the reduction of the model-checking problem to the problem of deciding the
winner in a parity game constructed along the lines presented above.

2.3.1 Games

A game is a graph with a partition of nodes between two players, called Eve
and Adam, and a set defining the winning condition. Formally it is a tuple

G = 〈V, VE , VA, T ⊆ V × V,Acc ⊆ V ω〉

where (VE , VA) is a partition of the set of nodes or positions V into those
of Eve and those of Adam, T is the transition relation determining what
are possible successors for each node, and Acc is a set defining the winning
condition.
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A play between Eve and Adam from some position v ∈ V = VE ∪ VA pro-
ceeds as follows: if v ∈ VE then Eve makes a choice of a successor, otherwise
Adam chooses a successor; from this successor the same rule applies and the
play goes on forever unless one of the parties cannot make a move. The player
who cannot make a move loses. The result of an infinite play is an infinite
path v0v1v2 . . . This path is winning for Eve if it belongs to Acc. Otherwise
Adam is the winner.

In the game presented in Figure 3 the positions of Adam are marked with
squares and the positions of Eve with diamonds. Additionally, each position
is given a numerical rank in order to define Acc as we will see below. Observe
that the unique position with no successors belongs to Adam, so he loses
there. Let us say that Eve wins a play if it passes infinitely often through
the position labeled with 2. For instance, if in the unique node for Eve she
always chooses to go down, then she wins as 2 is on the loop. Actually Eve
can also allow herself to go up, as then Adam has to go back to the position
of rank 1. So as long as Eve goes infinitely often down she sees 2 infinitely
often and wins.

2 1 0

0

0

Fig. 3 A parity game.

A strategy for Eve is a function θ assigning to every sequence of nodes v
ending in a node v from VE a node θ(v) which is a successor of v. A play
respecting θ is a sequence v0v1 . . . such that vi+1 = θ(v0 . . . vi) for all i with
vi ∈ VE . The strategy θ is winning for Eve from a node v iff all the plays
starting in v and respecting θ are winning. A node is winning if there exists
a strategy winning from it. The strategies for Adam are defined similarly. A
strategy is positional if it depends only on the last node in the sequence. So
such a strategy can be represented as a function θ : VE → V and identified
with a choice of edges in the graph of the game.

In this chapter we will consider only parity winning conditions. Such a
condition is determined by a function Ω : V → {0, . . . , d} in the following
way:

Acc = {v0v1 . . . ∈ V ω : lim sup
i→∞

Ω(vi) is even} .

Hence, each position is assigned a natural number, called rank , and we re-
quire that the largest among ranks appearing infinitely often is even. This
condition, discovered by Mostowski [88] and independently by Emerson and
Jutla [46], is the most useful condition in the context of the mu-calculus. The
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condition “infinitely often 2, or finitely often both 2 and 1” from the game
in Figure 3 is an example of a parity condition.

The main algorithmic question about such games is to decide who of the
two players has a winning strategy from a given position. In other words to
decide whether a given position is winning for Eve or for Adam. Principal
results that we need about parity games are summarized in the following
theorem. We refer the reader to [115, 20] for more details. We discuss the
complexity issues at the end of Section 2.4.

Theorem 5 (Solving parity games [81, 46, 89]). Every position of a
game with a parity winning condition is winning for one of the two players.
Moreover, a player has a positional strategy winning from each of his winning
positions. It is algorithmically decidable who is a winner from a given position
in a finite game with a parity condition.

2.3.2 Verification game

We want to understand when a µ-calculus sentence α holds in a state s
of a transition system M. We characterize this by existence of a winning
strategy in a specially constructed game G(M, α). More precisely, we want
that M, s � α iff Eve has a winning strategy from a position corresponding
to s and α in G(M, α). As we will need such a game for formulas with free
variables as well, we will also take into account valuations. So, we will define
a game GV(M, α), with G(M, α) being the special case when α is a sentence.

Positions in the game GV(M, α) are of the form (s, β) where s is a state
of M, and β is a formula from the closure of α, that is the smallest set
containing α and closed under subformulas and unfolding. The intention is
that Eve has a winning strategy from (s, β) iff M, s,V � β.

(s, p) if s ∈ P

(s, p) if s /∈ P

(s,¬p) if s ∈ P

(s,¬p) if s /∈ P

(s, α ∨ β)

(s, α) (s, β)

(s, α ∧ β)

(s, α) (s, β)

(s, 〈a〉β)

(t, β)

. . .

(s, [a]β)

(t, β)

. . .

for all t with s
a→ t

(s, µX.β(X))

(s, β(µX.β(X)))

(s, νX.β(X))

(s, β(νX.β(X)))

Fig. 4 Rules of the verification game G(M, α).
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We define the rules of the game by induction on the syntax of the formula
(cf. Figure 4). Clearly (s, p) should be declared winning for Eve if and only
if proposition p holds in s. So we put no transition from this state and make
it belong to Adam iff p holds in s. For a position (s,¬p) we proceed in the
same way but exchange the roles of Adam and Eve. Observe that since there
are no outgoing transitions, the player to whom the position belongs loses in
it. For similar reasons a position (s,X), with X a variable, has no outgoing
transitions and it belongs to Adam iff s ∈ V(X).

From positions (s, α∨ β) and (s, α∧ β) we put transitions to (s, α) and to
(s, β). Position (s, α∨β) should belong to Eve, as α∨β is satisfied in a state
if and only if at least one of α or β is. This means that Eve has to express
her opinion on which of the two formulas holds. Dually, (s, α∧ β) belongs to
Adam.

From positions (s, 〈a〉β) and (s, [a]β) there are transitions to (t, β) for all
t reachable from s by an a-transition, that is for all t such that (s, t) ∈ Ra.
Position (s, 〈a〉β) should belong to Eve as in order for a formula to be satisfied
there should be an a-edge to t satisfying β. Dually, (s, [a]β) belongs to Adam.

Finally, from positions (s, µX.β(X)) and (s, νX.β(X)) there are transi-
tions to (s, β(µX.β(X))) and (s, β(νX.β(X))) respectively. This corresponds
to the intuition that a fixpoint is equivalent to its unfolding. As these po-
sitions have exactly one successor, it does not matter to which player they
belong.

It remains to assign ranks to positions. We will be interested only in for-
mulas starting with µ or ν; that is of the form µX.β(X) or νX.β(X). For
a position with a formula of this form, we assign a rank in such a way that
those starting with µ have odd ranks and those starting with ν have even
ranks. Moreover, if γ is a subformula of β we require that the rank of γ is
not bigger than that of β. One way to assign the ranks like this is to use the
alternation depth (cf. Definition 1)

Ω(γ) =2 · badepth(X)/2c if γ is of the form νX.γ′(X)

Ω(γ) =2 · badepth(X)/2c+ 1 if γ is of the form µX.γ′(X)

Ω(γ) =0 otherwise

Observe that we are using alternation depth of X and not that of γ in this
definition. This is because γ may contain formulas of big alternation depth
not related with X. The sketch of the proof presented below provides more
intuitions behind this definition of rank.

Examples: Consider formulas from the example on page 10. The rank of
formula νX.p ∧ [a]X is 0, while the rank of µX.p ∨ [a]X is 1. The rank of
µX.

(
νY. (p ∧ 〈a〉Y )

)
∨ 〈a〉X is also 1 since the alternation depth of X is 1.

But the rank of νY. µX. (p ∧ 〈a〉Y ) ∨ 〈a〉X is 2.
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Having defined GV(M, α), and G(M, α) that is a special case when α is a
sentence, we are ready to formulate one of the main theorems of this chapter.

Theorem 6 (Reducing model-checking to parity games [46]). For
every sentence α, transition system M, and its state s: M, s � α iff Eve has
a winning strategy from the position (s, α) in G(M, α).

The rest of this subsection is devoted to the proof of this theorem.
We fix M and α. For a valuation V we will denote by GV the game

GV(M, α). By induction on the structure of the formula we show that for
every state s and valuation V:

M, s,V � β iff Eve wins from (s, β) in GV .

The cases when β is a proposition or a variable follow directly from the
definition. Among the other cases, the interesting ones are for the fixpoint
operators. We will do the one for µ. In the proof we do not assume that M
is finite, and this is why we need to consider ordinals.

Take a formula µX.β(X) and consider left to right implication. Using the
characterization of µ via approximations, we know that there is an ordinal
τ such that M, s,V � µτX.β(X). We can suppose that τ is the smallest
such ordinal. Directly from definitions of approximations (cf. page 5), it then
follows that τ is a successor ordinal, so τ = ρ+ 1. In other words:M, s,Vρ �
β(X), where Vρ is V modified so that the value of X is [[µρX.β(X)]]

M
V . We

will do additional induction on ρ.
The outermost induction on the structure of the formula gives a winning

strategy for Eve from (s, β(X)) in the game GVρ . This strategy may reach a
winning position (s′, X) for some s′ ∈ Vρ(X). Since Vρ(X) = [[µρX.β(X)]]

M
V ,

the induction assumption on ρ tells us that Eve has a winning strategy
from (s′, µX.β(X)) in GV . So the winning strategy for Eve in GV from
(s, µX.β(X)) is to go to (s, β(µX.β(X)) and then follow the winning strat-
egy from (s, β(X)) in the game GVρ . If a play respecting this strategy reaches
(s′, µX.β(X)), Eve can change to a winning strategy that exists there.

For the implication in the other direction, we suppose that Eve has a win-
ning strategy from (s, µX.β(X)) in GV . Note that this position has an odd
rank, say r. The first crucial observation is a refinement of Fact 4. For ev-
ery subformula σY.γ(Y ) of β(µX.β(X)) there are two possibilities: (i) either
µX.β(X) is not a subformula of γ(Y ), or (ii) adepth(Y ) ≤ adepth(X) and
the inequality is strict if Y is a ν-variable. Indeed suppose that µX.β(X) is
a subformula of σY.γ(Y ) that is itself a subformula of β(µX.β(X)). Then
µX.β(X) can be written as µX.θ(X,σY.γ′(X,Y )), and the required inequal-
ities between the alternation depths of X and Y follow by the definition.
This observation would not be true if we have defined the rank of a posi-
tion using the alternation depth of µX.β(X) instead of the alternation depth
of the variable X. For example, when µX.β(X) has a subformula νY.γ(Y )
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that itself has a subformula with an alternation depth bigger than that of
µX.β(X).

The observation from the preceding paragraph implies that if a game from
a position (s, µX.β(X)) reaches some position (s′, β′) of a rank bigger than r
then µX.β(X) is not a subformula of β′. As the rank r is odd and every play is
winning, this means that on every play there are finitely many positions of the
form (s′, µX.β(X)) for some s′. We call such positions critical. Consider a tree
of all plays starting in (s, µX.β(X)) and respecting the winning strategy for
Eve. We can assign to every critical position an ordinal, bounding a number
of occurrences of critical positions on the paths starting from it. We call
this ordinal the height of the position. All critical positions that do not have
critical positions in their subtree will have height 1. Then, by induction, we
take a critical position p such that all critical positions in its subtree have
already a height assigned. Let τ be the least upper bound of these heights.
We assign to p the height τ + 1. It is not difficult to see that this procedure
will assign a height to every critical position. Figure 5 gives an example of a
tree where this procedure needs infinite ordinals.

ω + 1

1 2

1

3

2

1

. . .

Fig. 5 A transition system where the closure ordinal of µZ.[a]Z is infinite

Now, by induction on the ordinals assigned to critical positions we show
that if (s′, µX.β(X)) has height τ thenM, s,V � µτ .β(X). First take a posi-
tion (s′, µX.β(X)) of height 1. This means that Eve has a winning strategy
from this position that never enters another critical position. But then Eve
has also a winning strategy from (s′, β(X)) in the game GV1 where V1 is a
valuation assigning ∅ to X. By induction hypothesisM, s,V1 � β(X), which
is equivalent toM, s,V � µ1X.β(X). By a similar argument if we take a crit-
ical position (s′, µX.β(X)) of height τ + 1 then Eve has a strategy winning
from (s′, β(X)) in the game GVτ where Vτ is a valuation assigning to X the
set of all nodes s′′ such that (s′′, µX.β(X)) has the height at most τ . By
induction hypothesis M, s,Vτ � β(X). From the induction on the height we

can deduce that Vτ (X) ⊆ [[µτX.β(X)]]
M
V . We obtainM, s,V � µτ+1X.β(X).

This completes the induction and the proof.
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2.4 Model-checking

The model-checking problem for the mu-calculus is: given a sentence α, a
transition system M, and its state s, decide if M, s � α. Formulating the
question in such a way, we silently assume thatM is finite and given explic-
itly.

One approach to model-checking is to use directly the mu-calculus seman-
tics, or its variation through approximations. Since M is finite, there is a
finite number of sets of states of M and such a computation will terminate.

The semantics via games gives a more efficient way to treat the problem.
Observe that the size of the game G(M, α) is linear both in the size ofM and
in the size of α. So there is a linear time reduction from the model-checking
problem to deciding a winner in a parity game. We should remark that the
reduction is also linear for formulas in vectorial syntax.

Theorem 7 (Equivalence of games and model-checking [46, 43]).
The model-checking problem is linear-time equivalent to the problem of decid-
ing if Eve has a winning strategy from a given position in a given parity game.
The game constructed from a transition system of size m and a formula of
size n has size O(m ·n), the number of ranks in the game is equal to one more
than the alternation depth of the formula. Conversely, from a game one can
construct a transition system and a formula. The transition system is of the
same size as the game. The formula depends only on the ranks used in the
game, its size is linear in the number of ranks, and its alternation depth is
not bigger than the number of ranks.

The increase by 1 of the number of ranks in the game in the above theorem
is less disturbing than it looks. Such an increase can appear for formulas that
are both in Σµ

n and in Πµ
n classes (cf. page 10). For example, the formula

(µX.[a]X) ∧ (νY.〈a〉Y ) is of alternation depth 1, and the constructed game
needs rank 1 for µ, and rank 0 for ν (cf. page 15). This does not really increase
the complexity of solving the game as there will be no strongly connected
component of the game graph containing both ranks 0 and 1. In general, in
every connected component of a game constructed from a transition system
and a formula of alternation depth d, the number of ranks in a connected
component will be not bigger than d. Games with this property can be solved
as quickly as games with d ranks.

The problem of solving parity games is in its turn equivalent to checking
emptiness of alternating automata on infinite sequences over a one-letter
alphabet. The latter is the same as checking emptiness of nondeterministic
tree automata. For definitions of these types of automata we refer the reader
to [120, 114, 60] and to the automata chapter of this Handbook [77]. Here we
just state the corollary that is a consequence of these equivalences.

Theorem 8 (Equivalence of model-checking and automata empti-
ness). Model-checking problem is linear-time equivalent to checking empti-
ness of alternating parity word automata over a one-letter alphabet. It is also
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equivalent to checking emptiness of nondeterministic parity tree automata.
The automata in question have the same number of states as there are nodes
in the graph of the game from Theorem 7, and the same parity condition as
the game.

Going back to Theorem 7, we briefly discuss the reduction from games
to model-checking as the other reduction is already provided by Theorem 6.
It turns out that once the ranks are fixed, one can write a formula defining
Eve’s winning positions in a game with those ranks. Moreover, the size of
this formula is linear in the number of ranks. More precisely, let us suppose
that the ranks range from 0 to 2d+1. A game G = 〈V, VE , VA, T ⊆ V ×V,Ω :
V → {0, . . . , 2d+ 1}〉 can be represented as a transition systemMG where V
is the set of states, and T is a transition relation on some letter, say b. The
additional information as to whether a position belongs to VE , and what is
its rank is coded with auxiliary propositions: pEve , pAdam , p0, . . . , p2d+1. To
write a formula defining the winning position we take variables Z0, . . . , Z2d+1,
one for every possible value of the rank. The formula is:

µZ2d+1.νZ2d . . . µZ1.νZ0. γ(Z0, . . . , Zd) where (1)

γ(Z0, . . . , Zd) is
∧

i=0,...,2d+1

pi ⇒
[(
pEve ∧ 〈b〉Zi

)
∨
(
pAdam ∧ [b]Zi

)]
The subformula γ(Z0, . . . , Zd) verifies what is the rank of a position using
propositions pi; this determines the fixpoint variable to be used. The formula
also makes a choice of using a 〈b〉 or [b] modality depending on whether the
position belongs to Eve or Adam, respectively. The alternation of fixpoints
captures the parity condition. It can be verified that the above fixpoint for-
mula defines the set of positions from which Eve has a winning strategy.
Indeed the formula is constructed in such a way that the model-checking
game G(MG , γ) is essentially the same as G. If the range of Ω function is not
as we have assumed, then it is enough to extend the range, write a formula
for the extended range, and then remove the unnecessary fixpoint variables.

Hierarchical boolean equations. Games are not the only way to simplify
the structure of the model-checking problem. It turns out that the problem is
equivalent to checking if a vectorial mu-calculus formula holds in a particu-
larly simple model: the one containing just one state and no transitions. The
later problem is known as hierarchical boolean equations because the value
of a variable is a boolean: it can be either the empty set or the singleton
containing the unique state.

Let M0 = 〈{s}, {Ra}a∈Act , {Pi}i∈N〉 be the transition system with one
state s and all transition relations and predicates empty: Ra = ∅, Pi = ∅.
The meaning of every variable is then either ∅ or {s}. All formulas 〈a〉α are
equivalent to ff , and formulas [a]α are equivalent to tt . Hence essentially we
are left with boolean connectives and fixpoints. Relying on the equivalence
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between games and model-checking described above, the following fact states
the announced reduction.

Fact 9 (Model-checking and hierarchical boolean equations) For ev-
ery game G and its position v there is a vectorial formula αG,v, of height equal
to the number of positions in G and size linear in the number of edges in G,
such that for the one state transitions system M0 described above:
the first coordinate of [[αG,v]]

M0 is equal to {s} iff v is winning for Eve in G.

We will briefly explain this reduction. Given a finite game

G = 〈V, VE , VA, T ⊆ V × V,Ω : V → N〉

we write a vectorial formula of height n = |V |. We introduce variables Xv
i

where v ∈ V is a position, and i ∈ Ω(V ) is one of the possible ranks. Then
we define a formula:

αv =

{∨
{Xv′

Ω(v′) : T (v, v′)} if v is a position of Adam,∧
{Xv′

Ω(v′) : T (v, v′)} if v is a position of Eve.

Let us fix some arbitrary order on positions V, assuring that our chosen
position is the first one in this order. We get a vectorial formula α =
(αv1 , . . . , αvn). Let Xi stand for the vector Xv1

i . . . Xvk
i . Then the desired

formula is
νXd.µXd−1. . . . νX0.α. (2)

Observe that this formula does not have free variables. While the presented
translation is superficially quadratic, it should be clear that out of the vari-
ables Xv

1 . . . X
v
d , only the one with the subscript Ω(v) is used. So the size of

the formula not counting dummy variables is proportional to the number of
edges in the game.

Complexity of model-checking. The complexity of model-checking is the
great unanswered question about the modal mu-calculus. Effectiveness on
finite systems is easy: the obvious algorithm based on the semantics via ap-
proximations has complexity O(nd+1), where n is the size of the state-space,
and d is the alternation depth of the formula. The reduction to parity games
quickly gives some new insights. To decide if Eve wins from a given position
it is enough to guess a strategy and check that it is winning. By Theorem 5
one can restrict to positional strategies, that are nothing else but subsets of
edges of the game graph. It is not difficult see that one can check in a polyno-
mial time if a given positional strategy is winning. The algorithm essentially
involves analysis of strongly connected components in the game graph. Con-
sequently, solving the game is in NP, and since everything is closed under
negation, also in co-NP. The obvious lower bound is Ptime since alternating
reachability is a very simple instance of parity games.
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Most of the effort on complexity analysis of the model-checking problem
concentrated on the game formulation [48, 46, 43, 84, 125, 72, 122, 18, 73, 103,
20], although it is worth mentioning also the approaches through vectorial
syntax and boolean equations [79, 108]. In the discussion below let n stand for
the number of vertices in the game and d for the number of ranks. In terms
of model-checking problem, n is the product of the sizes of the transition
system and the formula, while d is the alternation depth of the formula.

One of the most classical approaches to solve parity games is based on re-
moving positions of the highest rank and recursively analysing the resulting
subgame [84, 125, 114]. Since the subgame is analysed twice, this approach
gives O(nd) complexity. A different technique proposed by Jurdziński [72] is
based on so called progress measures and gives an O(ndd/2e) algorithm. More
recently, Schewe [103] used a combination of the two to obtain O(ndd/3e)
algorithm. Better approaches are known if there are many priorities with
respect to the number of nodes, more precisely if d = Ω(n(1/2)+ε). The ran-

domized algorithm of Björklund et al. [18] gives nO(
√
n/ log(n)) complexity. If

the out-degree of all vertices is bounded then the same complexity is achieved
by a relatively simple, and very clever, modification of McNaughton’s algo-
rithm [73] proposed by Jurdziński, Paterson and Zwick. In the case when
there is no bound on the degree, the same algorithm is only slightly worse:
nO(
√
n). For all of those algorithms superpolynomial, or exponential lower

bounds are known [72, 103, 53].
There exists another class of algorithms, based on strategy improvement

techniques [66]. The idea is that one puts an order on positional strategies,
so that the biggest elements in this order are the optimal strategies. The
algorithm is an iteration of improvement steps: in each step some edges of
the strategy are changed to improve with respect to the order on strategies.
This technique has been used in many contexts. It has been adapted to par-
ity games by Vöge and Jurdziński [122]. Later Schewe [104] has proposed
a modification of the strategy improvement policy. Even for this improve-
ment, Friedmann gives examples of games requiring exponential numbers of
iterations [52].

It is actually not that surprising that the quest for polynomial time algo-
rithm for model-checking is still on. The problem is closely related to other
stubborn questions of a similar type, as for example: solving mean pay-off
games, discounted pay-off games, turn based simple stochastic games [71, 36].
Not much more is known about fragments of the logic. The reduction to games
gives an easy model-checking algorithm for the alternation depth 2 fragment.
This algorithm is quadratic in the size of the formula and the model. No
essentially better algorithms are known, but it is worth to mention in this
context a recent advance on related problems [32]. Let us note that model-
checking for alternation-free mu-calculus (alternation depth 1) can be done
in linear time [7, 34, 3].
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3 Fundamental properties

In this section we will give an overview of the theory of the mu-calculus.
Our intention is to cover a representative selection of results having in mind
applications in verification. We will start with some basic results on theory of
models: the tree-model property, and bisimulation invariance. Then we will
introduce modal automata: an automata model for the mu-calculus. We will
discuss some basic features of this model, and in particular disjunctive form
for automata. Disjunctive modal automata can be seen as a nondeterministic
counterpart of modal automata. Among other things, these automata allow
us to treat the satisfiability problem. We present a relatively short proof
of Exptime-completeness of the problem. On the way we also get a small
model theorem. Next, we briefly describe another central result of the theory:
strictness of the alternation hierarchy. It is followed by the completeness the-
orem, and two other properties of more syntactical nature: the interpolation
theorem, and the division property.

3.1 Bisimulation invariance and the tree-model
property

Bisimulation was introduced in the context of modal logics as an attempt to
formulate the notion of similarity between models. Later it turned out that
it is perfectly adapted to express the intuition that two systems behave in
the same way. Formally, a bisimulation between two transition systems

M1 = 〈S1, {R1
a}a∈Act , {P 1

i }i∈N〉 and M2 = 〈S2, {R2
a}a∈Act , {P 2

i }i∈N〉

is a relation ≈ between S1 and S2 such that if s1 ≈ s2 then

• s1 and s2 satisfy the same propositions;
• for every action a, and s′1 such that R1

a(s1, s
′
1) there is s′2 with R2

a(s2, s
′
2)

and s′1 ≈ s′2;
• and symmetrically, for every a, and s′2 such that R2

a(s2, s
′
2) there is s′1 with

R1
a(s1, s

′
1) and s′1 ≈ s′2;

We say that a state of M1 is bisimilar to a state of M2 if there is a bisimu-
lation relating the two states.

The intuition that the mu-calculus is about behaviors finds further sup-
port in the following result saying that the logic cannot distinguish between
bisimilar states.

Theorem 10 (Invariance under bisimulation). If a state s1 of a tran-
sition system M1 is bisimilar to a state s2 of a transition system M2 then
for every µ-calculus sentence α: M1, s1 � α iff M2, s2 � α.
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A consequence of this theorem is the tree-model property. A transition
system is a (directed) tree if it has a state with a unique path to every other
state in the transition system. This special state is called the root. A tree can
be obtained as an unfolding of a transition system from a state s by taking
all the paths starting in s as states of the unfolding. In the result, state s of
the initial system and the root of the unfolding are bisimilar.

Proposition 1 (Tree models). Every satisfiable sentence of the mu-calculus
is satisfied in a root of some tree transition system.

Theorem 10 can be deduced from the semantics of the mu-calculus in
terms of games. To see this, we define bisimulation relation between games
as a bisimulation between transition systems representing games (cf. page 19).
A parity game G = 〈V, VE , VA, T ⊆ V × V,Ω : V → N〉 can be considered
as a transition system with V being a set of states and T the transition re-
lation on some action. The additional information as to whether a position
belongs to VE and the rank of a position are coded with auxiliary proposi-
tions: pEve , pAdam , p0, . . . , pd. So bisimulation relation between games will be
a bisimulation relation between their representations as transition systems.
It is obvious that if a position v1 in G1 is bisimilar to a position v2 in G2
then Eve has a winning strategy from v1 iff she has a winning strategy from
v2. The proof of Theorem 10 follows from the fact that if a state s1 of M1

is bisimilar to a state s2 of M2 then the positions (s1, α) in G(M1, α) and
(s2, α) in G(M2, α) are bisimilar. This reasoning is a good example of the use
of the semantics in terms of games. Let us point out though that Theorem 10
is one of the rare facts in the theory of the mu-calculus that can be proven
directly by induction on the syntax of the formula, using approximations in
the case of fixpoint formulas (cf. page 5).

3.2 Modal automata

The characterization of the semantics of the mu-calculus in terms of games
suggests a kind of operational understanding of the logic. This idea is pushed
a bit further here, by introducing an automata model that corresponds to the
logic. As we will see the automata model is very close to formulas, but has its
technical advantages. First, automata come with a notion of state and this
helps in some constructions (cf. Sections 3.3, 3.7). Moreover, modal automata
have a very convenient special form called disjunctive modal automata. It
is used, for example, to prove the interpolation property (cf. Section 3.6).
Modal automata can be also smoothly generalized to give extensions of the
mu-calculus with good properties (cf. Section 4.3).

Fix finite sets ΣA ⊆ Act of actions, ΣP ⊆ Prop for propositions, and Q
of states. The set of modal formulas over these three sets, Fm(ΣA, ΣP , Q),
is the smallest set containing ΣP ∪ Q and closed under taking conjunction
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(α ∧ β), disjunction (α ∨ β) and two modalities (〈b〉α and [b]α), for b ∈ ΣA.
Observe that modal formulas are just like mu-calculus formulas but without
the fixpoint constructs.

An modal automaton is a tuple:

A = 〈Q, ΣA, ΣP , q0 ∈ Q, δ : Q→ Fm(ΣA, ΣP , Q), Ω : Q→ N〉.

It has a finite set of states Q, finite action and proposition alphabets ΣA
and ΣP , one initial state q0, and the parity acceptance condition given by
Ω. The least standard part of the automaton is its transition function: the
dependence on the alphabet is hidden in modal formulas.

Example: Let us write an automaton to represent the formula µX.p1 ∨ 〈b〉X.
The alphabets of the automaton are ΣA = {b}, ΣP = {p1}. It has one state
q, and we let δ(q) = p1 ∨ 〈b〉q. Since the formula uses the least fixed point we
put Ω(q) = 1.

A modal automaton accepts transition systems with distinguished states.
The acceptance is defined by games. Given a transition system M =
〈S, {R}a∈Act , {Pi}i∈N〉 we consider the acceptance game G(M,A):

• The set of positions V of the game consist of pairs (s, α) where s ∈ S is
a state of M, and α is a subformula of δ(q) for some q ∈ Q. A position
(s, α) is for Eve if α is of one of the forms: q, β′ ∨ β′′, or 〈a〉β′. Eve also
has a position (s, p) if s 6� p, and a position (s,¬p) if s � p. The remaining
positions are for Adam.

• From (s, α ∨ β) and (s, α ∧ β) there are transitions to (s, α) and (s, β).
From (s, 〈a〉α) and (s, [a]α) there are transitions to (t, α) for all t such that
(s, t) ∈ Ra. From (s, q) there is a unique transition leading to (s, δ(q)).

• The rank of a position of the form (s, q) is Ω(q), all other positions have
rank 0.

The automaton accepts a transition systemM from the state s iff Eve has a
winning strategy in the game G(M,A) from the position (s, q0); recall that
q0 is the initial state of A. We will denote this by (M, s) ∈ L(A), so the
language of A is the set of transition systems with distinguished states.

(s0, q) (s0, p1 ∨ 〈b〉q) (s0, 〈b〉q)

(s0, p1)

(s1, q) · · ·

Fig. 6 The acceptance game G(M,A) for a modal automaton.

Example: Let us take the automaton A from the previous example and some
structure M. Figure 6 shows how the game G(M,A) looks like. Starting in
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the position (s0, q) the unique next position is (s0, p1∨〈b〉q). If p1 holds in s0
then Eve can choose this disjunct and win. Otherwise she chooses 〈b〉q, and
then she chooses a successor s1 of s0 by a b-transition. The game reaches the
position (s1, q), and the whole reasoning repeats. It is possible that the game
does not end. In this case Eve loses as the rank of q is odd. Observe that for
this simple automaton Adam has no choice to make. Hence the automaton
accepts iff there is a path of b-transitions leading to a state satisfying p1.

Example: It may be instructive to see how nondeterministic automata on
binary trees [114] can be represented as modal automata. A full labeled binary
tree over an alphabet ΣP is a function t : {l, r}∗ → ΣP with the empty word ε
being the root and every word w ∈ {l, r}∗ being a node with a label t(w), the
left successor wl, and the right successor wr. Such a tree can be represented as
a transition systemM = 〈{l, r}∗, Rl, Rr, {p}p∈ΣP 〉. A transition function of a
nondeterministic tree automaton has a shape δB : Q×ΣP → P(Q×Q), that
is, to each state and letter it assigns a set of pairs of states: the state to send
to the left child, and the state to send to the right child. The corresponding
transition function for modal automaton becomes:

δA(q) =
∨
p∈ΣP

(
p ∧

∨
(ql,qr)∈δ(q,a)

〈l〉ql ∧ 〈r〉qr
)
.

The first element of the conjunct checks what is the label of the node, the
second conjunct applies one of the possible transitions.

Equivalence with the mu-calculus. We say that a modal automaton A
is equivalent to a µ-calculus sentence α if for every transition systemM and
its state s:

(M, s) ∈ L(A) iff M, s � α.

Thanks to the form of automata, it is easy to show that automata are equiv-
alent to the logic.

Theorem 11 (Modal automata [69]). For every sentence of the mu-
calculus there is an equivalent modal automaton. Conversely, for every modal
automaton there is an equivalent sentence of the mu-calculus.

It is worth looking at the constructions involved in this theorem. For the
first statement of the theorem we take a formula α where every variable is
bound at most once. This means that for every variable Y bound in α there is
precisely one fixpoint subformula of α binding Y , we will denote it by σY.βY .

We construct an equivalent automaton Aα. Let ΣA be the set of actions
appearing in α, let ΣP be the set of propositions appearing in α. We take as Q
the set containing q0 and all bound variables appearing in α. The initial state
of the automaton is q0, and the acceptance condition Ω is defined using the
notion of alternation depth (cf. Definition 1). The value Ω(q0) is irrelevant
since the automaton will never come back to q0; for the other states we have:
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Ω(Y ) = 2 · badepth(Y )/2c if Y is bound by ν in α,

Ω(Y ) = 2 · badepth(Y )/2c + 1 if Y is bound by µ in α.

It remains to define the transition function of the automaton. For a sub-
formula γ of α, we denote by γ̂ the formula obtained by replacing every
fixpoint subformula σY.βY by the variable Y . So γ̂ is a modal formula from
Fm(ΣA, ΣP , Q). With a help of this notation we put:

δ(q0) = α̂; and δ(Y ) = β̂Y for every Y ∈ Q.

In order to see that the automaton defined in such a way is equivalent to
α, it suffices to observe that the evaluation game G(M, α) is isomorphic to
the acceptance game G(M,A); in the former valuation is irrelevant as α is a
sentence.

For the second statement of Theorem 11 let us take an automaton
A = 〈Q,ΣA, ΣP , q0, δ : Q → Fm(ΣA, ΣP , Q), Ω : Q → N〉. We construct
the desired formula in the vectorial syntax. The values of the transition
function, δ(q), are from Fm(ΣA, ΣP , Q). These are formulas where the el-
ements of Q play the role of variables. We introduce fresh variables Xq

i for
every state q ∈ Q, and every possible rank i ∈ Ω(Q). Let αq be the for-

mula δ(q) with every state q′ replaced by Xq′

Ω(q′). With this notation we set

α = (αq0 , . . . , αqn) where q0, . . . , qn is some enumeration of Q. The formula
we are after is σXd . . . µX1.νX0.α; where the least fixed point is used to bind
variables with odd index, and the greatest fixed point is used for variables
with even index. Using the semantics of formulas in terms of games it is not
difficult to show the equivalence of the formula with the automaton.

Closure properties of modal automata. From the above theorem it fol-
lows that modal automata are closed under boolean operations because the
µ-calculus is. The proof also shows that one can directly use logical laws
on transitions of modal automata without changing the accepted language.
More precisely, if A1 and A2 are two automata over the same alphabet and
the same set of states such that for every q ∈ Q, δ1(q) is equivalent as a
modal formula to δ2(q) then A1 and A2 accept the same structures. This
observation allows us to simplify transitions of automata.

As a side remark let us observe that unlike nondeterministic automata on
binary trees, modal automata are not closed under projection. This is not
a surprise since we want the automata to be equivalent to the mu-calculus.
The automata, and logic, are closed under a weaker form of projection as
explained in the interpolation section below.

Disjunctive normal form for automata. Modal automata are essentially
alternating automata [90, 77]. This is so because conjunction appearing in
modal formulas permits the encoding of universal choice. In some contexts
though, nondeterministic automata are much easier to handle than alter-
nating automata. It is well-known that over binary trees every alternating
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automaton can be converted to a nondeterministic one. Here we present a
similar result for modal automata.

A simple solution to define nondeterministic automata would be to disallow
conjunctions in modal formulas. This is not satisfactory though as we would
have no way to write properties like (〈a〉p1)∧ (〈a〉p2). There is an interesting
modal operator that allows control over the use of conjunction. If Γ is a finite
set of formulas and a is an action then

(a→ Γ ) stands for
(∧
{〈a〉α : α ∈ Γ}

)
∧ [a]

(∨
Γ
)
.

We adopt the convention that the conjunction of the empty set of formulas
is equivalent to tt , and its disjunction is equivalent to ff . So for example
(a→ ∅) says that there are no successors on action a. The new operator can
express both existential and universal modalities:

〈a〉α is (a→ {α, tt}) and [a]α is (a→ {α}) ∨ (a→ ∅).

This operator was introduced in [69] and independently in [87] in the context
of coalgebraic approach to modal logic.

Define a disjunctive formula to be a disjunction of formulas of the form
α∧

∧
a∈Σ(a→ Γa) where α is a conjunction of propositions and each Γa is a

set of states. Let DF(ΣA, ΣP , Q) denote the set of disjunctive formulas over
the three alphabets. A disjunctive modal automaton is a modal automaton
using disjunctive modal formulas in its transitions.

Theorem 12 (Disjunctive modal automata [69]). Every modal automa-
ton is equivalent to a disjunctive modal automaton.

As we have noticed, modal automata may exhibit alternating behavior. Let
us see why disjunctive modal automata have only nondeterministic behavior,
that is they do not have universal branching. For this we need to look at their
behavior on some transition systemM that is a tree. The crucial property is
that for every strategy of the automaton in the semantics game induced by
M, if two plays respecting the strategy differ at some position then they do
not visit the same state of M after this position. So in the tree of all plays
respecting a strategy, no state ofM can appear in two different subtrees. This
property corresponds to the fact that a run of a nondeterministic automaton
on a binary tree can be presented as a labeling of the tree with states. Observe,
incidentally, that the translation of nondeterministic tree automata to modal
automata presented in an example on page 25 gives in fact a disjunctive modal
automaton. Similarly to nondeterministic automata, the emptiness problem
is easier for disjunctive modal automata: it suffices to guess a subgraph of the
transition graph of the automaton. Complexity-wise the problem is in NP,
while the emptiness problem for modal automata is Exptime-complete.
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3.3 Satisfiability

Suppose that we want to decide if given two formulas are equivalent. For this
we should decide if the two formulas are satisfied in the same set of models;
in other words, decide if the logical equivalence of the two formulas holds in
every model. Thus formula equivalence is nothing else than the satisfiability
problem: deciding if there exists a model and a state where the formula is
true. In this subsection we will discuss what is needed to solve the satisfiability
problem.

Theorem 13 (Satisfiability [45, 47]). The satisfiability problem for the
µ-calculus is Exptime-complete.

Using the correspondence between modal automata and µ-formulas, cf.
Theorem 11, instead of studying the satisfiability problem we can study
the emptiness problem for modal automata: a formula is satisfiable iff the
language of the modal automaton is not empty. Our goal is to reduce the
emptiness problem for modal automata to the same problem for alternating
automata on binary trees. Although it would be much simpler to use disjunc-
tive automata, we do not follow this path, as we have not discussed how to
obtain disjunctive automata. Indeed, a translation to disjunctive automata
would contain all the complexity of the satisfiability problem. The argument
we present below is an example of an interesting technique of simplifying a
problem by enriching transition systems with additional information.

Recall that a modal automaton is a tuple

A = 〈Q,ΣA, ΣP , q0 ∈ Q, δ : Q→ Fm(ΣA, ΣP , Q), Ω : Q→ N〉,

where Fm(ΣA, ΣP , Q) is a set of modal formulas over actions in ΣA, propo-
sitions in ΣP , and with variables in Q. The acceptance is defined in terms of
existence of a winning strategy for Eve in the game G(M,A); cf. page 24.

Our first step will be to define witnesses for existence of such a winning
strategy. A witness will be a deterministic transition system over a bigger
alphabet such that all its paths satisfy certain condition (Lemma 1). Then
we will encode such a witnesses into a binary tree, and construct an alternat-
ing automaton recognizing all encodings of all possible witnesses. This will
give a reduction of the satisfiability problem to the emptiness problem for
alternating automata on binary trees.

The whole argument crucially depends on the fact that in parity games
it is enough to consider positional strategies (Theorem 5). Positions in the
acceptance game G(M,A) are of the form (s, α) where s is a state ofM and
α a subformula of δ(q) for some q ∈ Q. In particular, the set of formulas
appearing in positions of the game is finite. A positional strategy for Eve
makes two kinds of choices: (i) in a position of the form (s, α ∨ β) it chooses
(s, α) or (s, β); (ii) in a position of the form (s, 〈a〉α) it chooses (s′, α) for
some state s′. So for a fixed state s the information provided by the strategy is
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finite: for every disjunction one disjunct is chosen, for every diamond formula
〈a〉α a successor state is chosen. These choices can be encoded in a label of
a node, and we will still have only a finite number of labels.

Take a positional strategy σ for Eve in G(M,A). We introduce new propo-
sitions and actions. A proposition pαα∨β will hold in s when σ(s, α∨β) = (s, α).
A transition on action b〈a〉α from s to s′ will mean that σ(s, 〈a〉α) = (s′, α).

Let Σ̂P and Σ̂A be the alphabets of these new propositions and actions. Let
σ(M) stand for the transition system obtained from M by adding the new
propositions and transitions in the way we have described.

We claim that looking at σ(M) we can decide if σ is winning in G(M,A).
To make it precise we define a notion of a trace. It is a sequence of pairs (s, α)
consisting of a state of σ(M) and a formula, such that:

• (s, q) is followed by (s, δ(q));
• (s, α ∧ β) is followed by (s, α) or (s, β);
• (s, α ∨ β) is followed by (s, α) if pαα∨β holds in s, and by (s, β) otherwise;
• (s, 〈a〉α) is followed by (s′, α) if there is transition from s to s′ on action
b〈a〉α;

• (s, [a]β) is followed by (s′, β) if for some α there is transition from s to s′

on action b〈a〉α.

Examining this definition one can observe that a trace in σ(M) is just a play
in G(M,A) respecting the strategy σ. So we can say that a trace is winning
if it is winning when considered as a play in G(M,A). Finally, we say that
σ(M) is trace-accepting from (s0, q0) if all the traces starting in (s0, q0) are
winning.

The first observation is that without loss of generality we can assume that
σ(M) is deterministic, in a sense that from every state, there is at most one
outgoing transition on each action. Indeed, if σ(M) is trace accepting and
it has a state with two outgoing transitions on action b〈a〉α then we can just
remove one of them. This operation cannot add new traces, so the resulting
structure is trace-accepting: the structure is even of the form σ′(M) for some
strategy σ′.

Lemma 1. For our fixed modal automaton A and alphabet Σ̂: there is a
transition system accepted by A iff there is a deterministic transition system
over Σ̂ that is trace-accepting.

We have defined σ(M) and a notion of a trace in such a way that if σ
is a positional winning strategy in G(M,A) then σ(M) is trace accepting.
As noted above σ(M) can be made deterministic. This shows left to right
implication of the lemma.

For the converse implication, let us take a deterministic transition system
N over the alphabet Σ̂. We define the structure M′ by keeping the states
of N and putting a transition on a from s to s′ if there is a transition form
s to s′ on b〈a〉β for some formula β. The positional strategy σ′ in the game
G(M′,A) can be read from N as follows: σ′(s, α∨β) = α if s satisfies pαα∨β in
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N , and σ′(s, 〈a〉α) = (s′, α) if there is a transition from s to s′ on 〈a〉α. It can
be verified that σ(M′) is isomorphic to N . Moreover every play in G(M′,A)
respecting σ′ and starting from a position (s, q) is a trace in N starting in
(s, q). Hence if N is trace-accepting from (s0, q0) then σ′ is winning from
(s0, q0). Since q0 is the initial state of A, this means that the pair (M′, s0)
is accepted by A.

The above lemma permits us to reduce the satisfiability problem to the
problem of finding a deterministic structure N over the alphabet Σ̂ that is
trace-accepting. Observe that ifM is a tree then σ(M) is also a tree. Hence,
by the tree model property, Corollary 1, if there is such a structure N then
there is one that is a deterministic tree. Since the set of labels of transitions
is finite, N is a tree of bounded degree.

We have reduced the satisfiability problem to the problem of finding a tree
of bounded degree satisfying trace-acceptance condition. Using a straight-
forward encoding of bounded degree trees into binary trees we can reduce
the problem to a question about full binary trees. So finally we need to con-
struct an automaton recognizing binary trees that are encodings of bounded
degree trees satisfying trace acceptance condition. Such an automaton B3
can be constructed in three steps: (i) taking a simple nondeterministic par-
ity automaton B1 recognizing paths having a trace that is not winning; (ii)
dualizing B1 to obtain an alternating parity automaton B2 recognizing paths
on which all traces are winning; and (iii) constructing an alternating parity
tree automaton B3 running B2 on every path of a tree.

Theorem 14 (Satifiability via automata emptiness [46]). For a given
mu-calculus formula of size n and alternation depth d, one can construct
in linear time an alternating automaton over trees such that the formula is
satisfiable iff there is a tree accepted by the automaton. The automaton has
O(n) states and d+ 1 ranks.

This theorem gives an algorithmic solution to the satisfiability problem. As
the emptiness check for such automata can be done in Exptime, this gives
an upper bound on the complexity of the satisfiability problem as announced
in Theorem 13. The matching lower bound can be obtained, for example, by
encoding of the universality problem for root-to-leaves automata over finite
trees [107].

The above construction proves also the small model theorem. A regular
tree can be presented as a graph with a distinguished root vertex: the tree
is obtained by unfolding such a graph, that is taking all the paths starting
in the root. If an alternating automaton accepts some tree then it accepts a
regular tree that is the unfolding of a transition system of size exponential in
the size of the automaton.

Theorem 15 (Small-model property [113]). A satisfiable formula of the
mu-calculus is satisfied in a transition system of size exponential in the size
of the formula.
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3.4 Alternation hierarchy

We have seen that the alternation depth (cf. Definition 1) of a formula appears
to give a strong measure of its complexity, both psychological and computa-
tional: formulas rapidly become incomprehensible above alternation depth 2,
and all algorithms known so far depend exponentially or super-polynomially
on the alternation depth (cf. Section 2.4). Recall the definition of sets Σµ

n and
Πµ
n from page 10. Roughly, Σµ

n is the set of formulas of alternation depth n
where all variables of alternation depth n are µ-variables. Similarly for Πµ

n

but for ν-variables.
For a number of years, it was open whether ‘the alternation hierarchy is

strict’ in terms of expressive power, that is, whether for every n there is a Σµn
formula that is not equivalent to any Πµ

n formula – and consequently, whether
alternation depth n+ 1 is strictly more expressive than alternation depth n.
The first proof by Bradfield [28] used the standard technique of diagonaliza-
tion, via a transfer to arithmetic, relying on the small model property for the
transfer back. Subsequently, Arnold [6] gave a version of the proof in which
diagonalization was effected with a topological argument – as this is probably
the simplest proof, we will sketch it here.

Theorem 16 (Strictness of the alternation hierarchy [28]). For every
n > 0, there is a formula in Σµn which is not equivalent to any formula of Πµ

n.

The proof relies on the semantics of formulas in terms of games (Sec-
tion 2.3). Recall that by Theorem 6 for a transition M and a formula β we
can construct a game G(M, β) such that M, s � β if and only if Eve has a
winning strategy from the node (s, β) in G(M, β). If β ∈ Σµ

n then G(M, β)
is a parity game over the ranks {1, . . . , n} or {0, . . . , n − 1}; depending if n
is odd or even, respectively. Let us suppose that it is {1, . . . , n}, the argu-
ment for the other case is very similar. As we have discussed on page 19, the
game G(M, β) can be represented as a transition system. A small but crucial
observation is that if we start with a sufficiently large alphabet then we can
actually suppose that this new transition system is over the same alphabet
as M. Hence a formula β determines a function Fβ on transition systems
over some fixed alphabet: for a transition system M, the system Fβ(M) is
the transition system representing the game G(M, β).

We have supposed that games we consider are over ranks {1, . . . , n}. Now
recall the formula from (1) on page 19 defining the set of winning positions
for Eve in a parity game over priorities {0, . . . , n}. Let us call this formula
αn. It means that for every position (s, γ) in game G(M, β): formula αn
holds in (s, γ) iff (s, γ) is winning for Eve. Combining this with the previous
paragraph we get that for every transition system M and formula β ∈ Σµ

d :
M, s � β iff F (M), (s, β) � αn. For our argument we will need a slightly
more refined construction that works on tree transition systems: transition
systems whose underlying graph is a tree. We fix a sufficiently big alphabet,
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a variation of formula αn adapted to this alphabet, and construct a function
F ′β such that for every tree transition system N :

N , root � β iff F ′B(N ), root � α′n ;

here root stands for the root node of a tree transition system. We will omit
exact definition of F ′β . Formula αn belongs to Σµ

n , and the same will be true
for formula α′n. We will show that it cannot belong to Πµ

n .
Trees can be equipped with the usual metric: trees are 2−n apart if they

first differ at a node of depth n. The set of infinite trees with this metric is
a complete metric space. So the mapping F ′β described above is a mapping
on a complete metric space. It turns out that this mapping is contracting.
The Banach Fixed Point Theorem says that every contracting mapping on
a complete metric space has a fixpoint. In our case it means that for every
formula β there is a tree transition system Nβ such that Nβ = F ′β(Nβ).

We want to show that αn 6∈ Πµ
n . Suppose conversely. Then there is a

formula γ ∈ Σµ
n equivalent to ¬αn. We consider the mapping F ′γ and its

fixpoint Nγ . We get Nγ , root � γ iff F ′γ(Nγ), root � αn. But Nγ is a fixpoint
of F ′γ so F ′γ(Nγ) = Nγ ; a contradiction.

This proof shows concrete examples of formulas at each level of the hierar-
chy: the formulas αn expressing existence of a winning strategy. Nevertheless
the hierarchy is far from being well understood. We do not know for ex-
ample if the semantic alternation depth, the smallest alternation depth of
an equivalent formula, is a decidable property. This is an area of active re-
search, that mostly is formulated in terms of automata theory rather than
the mu-calculus.

3.5 Proof system

In order to show that a formula is satisfiable it is enough to exhibit a
model for it. Theorem 15 tells us that every satisfiable formula has a fi-
nite model. So there is always a finite witness of satisfiability. The question
arises, what about unsatisfiability? Since satisfiability is a decidable property
(Theorem 13) the run of the algorithm is such a witness. A proof system gives
a much more informative witness, moreover it gives reasoning principles that
can be used to simplify formulas. To look at the question more positively, one
prefers to talk about validity instead of unsatisfiability: a formula is valid if
its negation is not satisfiable.

Validity of mu-calculus formulas can be axiomatized. It means that for
a valid formula one can provide a finite witness, a proof, of its validity. To
describe the proof system we will use inequalities α ≤ β. We will say that
such an inequality is valid if the implication α⇒ β is valid. In other words,
whenever under some valuation formula α is true in some state of a model
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then β is true too in the same state with the same valuation. For example, a
formula α is valid iff tt ≤ α is valid; and a formula β is satisfiable iff β ≤ ff is
not valid. We present a finitary proof system allowing us to deduce all valid
inequalities. As examples of useful inequalities consider:

µX.α ≤ νX.α µX.νY.α ≤ νY.µX.α

The proof system proposed by Kozen [76] consists of axioms and rules for
modal logic together with an axiom and a rule determining the semantics of
the least fixpoint:

α(µX.α) ≤ µX.α
α[β/X] ≤ β
µX.α(X) ≤ β

The last rule expresses rather directly the semantic clause defining the least
fixpoint (cf. page 4). Additionally to these two, there is a dual axiom and a
rule for the greatest fixpoint operator. This system is finitary as it contains
only a finite number of axioms and rule schemes. The system is sound and
complete in a sense that it proves exactly the valid inequalities.

Theorem 17 (Completeness [123]). For every formula α: there is a proof
of tt ≤ α in the system if and only if the formula is valid.

3.6 Interpolation property

Craig interpolation is a desirable property of a logic. It testifies some kind
of adequacy between the syntax of the logic and its semantics. On a more
practical side, it allows us to simplify formulas by just looking at their vocab-
ulary [83]. Interpolation properties are scarce. Many program logics, such as
LTL, CTL, CTL∗ for example, do not have the interpolation property [80].
Propositional logic, and modal logic do have interpolation property. So does
the mu-calculus.

In order to simplify the presentation, let us restrict here to the mu-calculus
where the only propositions are tt and ff . In this case, the Craig interpolation
property says that given two formulas α and β over sets of actions Σ1 and
Σ2 respectively, if α ⇒ β is valid then there is a formula γ over the set of
common actions Σ1 ∩ Σ2 such that α ⇒ γ ⇒ β. Actually even a stronger
version of interpolation holds for the mu-calculus. In this version γ does not
depend on β but only on its alphabet.

Theorem 18 (Interpolation [37]). Given a formula α over the set of ac-
tions Σ1 and another set of actions Σ2, there is a formula γ over Σ1 ∩ Σ2
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such that α⇒ γ is valid and for every formula β over the set of actions Σ2:
if α⇒ β is valid then γ ⇒ β is valid.

The construction of γ as required in the theorem is very straightforward
once we have a disjunctive automaton for α (Theorem 12). For every action
a not appearing in Σ1 ∩ Σ2 it is simply enough to replace every formula
(a→ Γ ) by tt if the formula is satisfiable and by ff otherwise.

3.7 Division property

We want to present one more interesting closure property of the mu-calculus.
The motivation comes from modular verification and synthesis. As in the
previous subsection, we will consider mu-calculus formulas with only two
propositional letters: tt and ff . This restriction simplifies the notion of a
product of transition systems. In a product M × N the states are pairs
(sm, sn) of states of the two systems. We have a transition from (sm, sn) to
(s′m, s

′
n) on a letter a iff there is one from sm to s′m and one from sn to s′n. As

we do not have propositions we do not need to say which propositions hold
in (sm, sn).

Imagine that we fix a transition systemM together with a formula α and
face the task: given a transition system N verify if M× N � α. That is
to verify if the product of a fixed system with a system given on the input
satisfies the fixed formula. A straightforward way to solve this problem is to
construct the product M×N and then apply a model-checking algorithm.
It is possible though to do some pre-processing and construct a formula α/M
as stated in the following theorem.

Theorem 19 (Division operation [4]). For every transition system M
and every mu-calculus formula α, there is a mu-calculus formula α/M such
that for every transition system N :

N � α/M iff M×N � α .

The construction of α/M is particularly short using the formalism of modal
automata (cf. Section 3.2). So below we will talk about A/M instead of
α/M. Consider a modal automaton A = 〈Q,Σ, q0, δ : Q→ F(Σ,Q), Ω〉 and
a transition systemM = 〈S, {Ra}a∈Σ〉, the two over the same set of actions.
In the two we just have propositions tt and ff ; this justifies writing F(Σ,Q)
instead of F(Σ, {tt ,ff }, Q). Our goal is to construct an automaton A/M.

We first define a division α/s for α a formula from F(Σ,Q), and s a state
of M. The result is a formula from F(Σ,Q× S):



The mu-calculus and model-checking 35

q/s = (q, s)

(α ∨ β)/s = α/s ∨ β/s (α ∧ β)/s = α/s ∧ β/s

(〈a〉α)/s = 〈a〉
∨
{α/s′ : s

a→ s′} ([a]α)/s = [a]
∧
{α/s′ : s

a→ s′}

The set of states of A/M will be Q/ = Q×S. The rank function will be inher-
ited from A: Ω/(q, s) = Ω(q). Finally, the transition function will be defined
using the above operation: δ/(q, s) = δ(q)/s. Recall that δ(q) ∈ F(S, Q), so
δ(q)/s ∈ F(S, Q × S) as required. Once again, the semantics in terms of
games gives the tools to prove correctness of the construction. One can show
that Eve can win in G(N ,A/M) iff she can win in G(M×N ,A).

The division operation lets us solve some kinds of synthesis problems.
Suppose that we are given a finite transition system M modeling behaviors
of a device. We want to restrict these behaviors so that the result satisfies
a specification given by a formula α. The restriction is modeled by taking a
product ofM with another transition system C. This is a restriction in a sense
that every path in M×C is a path in M. Transition system C is considered
to be a controller for M. One may also want to put some constraints on C.
For example one can single out a set of uncontrollable actions and demand
that these actions cannot be restricted by C. This constraint translates to
the requirement that from every state of C there is a transition on every
unobservable action. Hence, this condition can be written as a mu-calculus
formula βunc . The synthesis problem then becomes: given M and α find C
such that

M×C � α and C � βunc .

Thanks to Theorem 19 the latter is equivalent to

C � (α/M) ∧ βunc .

Thus finding a controller C is reduced to the satisfiability problem for the mu-
calculus (Theorem 13). Let us remark that the Church synthesis problem [33,
117] for the mu-calculus formulas is an instance of the above for a particular
choice of M.

Not all important constraints though can be expressed in the mu-calculus.
For example one can ask that some actions of the system are invisible to a
controller. This translates to the requirement that in C transitions on these
actions should be self-loops. This requirement is not invariant under bisimula-
tion, and in consequence is not expressible in the mu-calculus (Theorem 10).
Fortunately, it turns out that similar constructions to the above work for the
mu-calculus with the self-loop predicate [9], and that the extended logic is
still decidable in Exptime.
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4 Relations with other logics

In this section we look at the mu-calculus in a wider context. Monadic second-
order logic (MSOL) is a reference for all temporal and program logics because
it is a classical formalism capturing recognizability on words and trees [114].
We will explain why the mu-calculus is closely related to MSOL, and why
it is in some sense is the strongest behavioral logic included in MSOL. It is
no surprise then that other well-known temporal and program logics can be
translated to the mu-calculus. We briefly present the translations of some
of them, and discuss their properties. In order to give a broader picture,
we briefly describe two interesting extensions of the mu-calculus. One has
a semantical flavor: we add some structure on successors of a node in a
transition system. The other is more syntactic: we add a fragment of first-
order logic into the mu-calculus.

4.1 MSOL, binary trees and bisimulation invariance

A transition system M = 〈S, {Ra}a∈Act , {Pi}i∈N〉 can be considered as a
model of first-order logic, over the signature consisting of binary relations Ra
and unary relations Pi. This logic is not sufficiently expressive for verification
as it cannot express such a fundamental property as reachabilty: there is a
path from x to y. For this and many other reasons [114] it is interesting to
consider monadic second-order logic, MSOL. This is an extension of the first-
order logic with set variables, denoted X,Y, . . . , the membership predicate
y ∈ X, and quantification using set variables ∃X.ϕ. For example the formula

∀X.
[
(y ∈ X) ∧ ∀z, z′. (z ∈ X ∧Rb(z, z′))⇒ z′ ∈ X

]
⇒ (y′ ∈ X),

expresses that y′ is reachable from y by a sequence of b actions. The formula
literally says that for every set X if y is in X, and X is closed under taking
successors with respect to b actions then y′ is in X.

We writeM, V � ϕ to say that an MSOL formula ϕ holds in the transition
system M under valuation V . Observe that V assigns states of M to first-
order variables in ϕ and sets of states of M to set variables in ϕ. If s is a
state ofM, and ϕ(x) is a formula with unique free first-order variable x then
we simply write M, V � ϕ(s) for M, V [x 7→ s] � ϕ(x), i.e., to say that ϕ(x)
is true under a valuation that maps x to s.

Since the satisfiability problem for first-order logic over transition systems
is undecidable, so is the one for MSOL. The situation is much more interesting
for tree transition systems. Rabin’s theorem [99, 114] says that MSOL over
tree transition systems is decidable. So it is natural to try to compare its
expressive power with that of the mu-calculus over trees. To this end we
need to find a common ground for the two logics. A small problem we need
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to overcome is that MSOL talks about the truth in a tree, while the mu-
calculus about the truth in a node of the tree. Then also we need to take care
of first-order variables that are allowed in MSOL, but not in the mu-calculus.
We will discuss these points in more detail.

It is quite straightforward to translate the mu-calculus to MSOL. The
translation goes by induction on the structure of the formula. For a formula
α of the mu-calculus we construct a formula ϕ(x) of MSOL with the same
second order variables and one free first-order variable x. The translation has
the property that for every transition system M, its state s, and valuation
of second-order variables V we have:

M, s, V � α iff M, V � ϕ(s). (3)

For example, we translate a variable Y of the mu-calculus to a formula x ∈
Y . Similarly, a proposition p is translated to P (x). We translate boolean
connectives to the same boolean connectives. For modalities and fixpoints we
express semantic clauses from page 4 in MSOL.

The translation in the other direction is not that evident. First of all, we
restrict to formulas with only one free first-order variable x. So below when we
talk about MSOL we consider only such formulas. We say that such a formula
is equivalent to a mu-calculus formula α if the equivalence (3) holds. Observe
that MSOL can express properties that are not bisimulation invariant, like for
example “a node has three successors” or “there is a cycle”. Since the mu-
calculus can express only bisimulation invariant properties (Theorem 10),
it cannot be equivalent to MSOL over transition systems. This observation
justifies the restriction to deterministic tree transition systems where every
successor has a unique name, and there are no cycles.

Theorem 20 (Equivalence with MSOL [91]). Over deterministic tree
transition systems MSOL is equivalent to the mu-calculus.

An interesting variation of MSOL, called weak-MSOL, is obtained by re-
stricting the set variables to range over finite sets only. Another interesting
class is that of Σ1 MSOL formulas, which have a prefix of (unrestricted) ex-
istential quantifiers followed by a formula without second-order quantifiers.
Rabin has shown [100] that an MSOL formula is equivalent to a weak-MSOL
formula iff both a formula and its negation are equivalent to a Σ1 MSOL
formula. He has also shown that Σ1 MSOL formulas are equivalent to tree
automata with Büchi acceptance conditions. It turns out that weak-MSOL
is equivalent to the alternation-free fragment of the mu-calculus (which we
recall is the fragment consisting of formulas of alternation depth 1, cf. page 9).

Theorem 21 (Equivalence with weak-MSOL [91]). Over determinis-
tic tree transition systems: weak-MSOL is equivalent to alternation-free mu-
calculus. The Σ1 fragment of MSOL is equivalent to Πµ

2 fragment of the
mu-calculus.
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If we drop the determinacy restriction then there is a simple extension of
the mu-calculus that captures MSOL on tree transition systems. It is enough
to introduce counting modalities 〈b〉=nα for every action b and natural num-
ber n. The meaning of this modality is that there are exactly n distinct
b-successors of a node satisfying α. This observation is an instance of a more
general framework described in Section 4.3.1.

Let us come back to the case of transition systems with no restrictions.
We have noted above that if an MSOL formula ϕ(x) is equivalent to the
mu-calculus formula then it is bisimulation invariant : if a formula holds in a
state then it holds in every state bisimilar to it. It turns out that the converse
implication holds.

Theorem 22 (Expressive completeness [70]). The mu-calculus is ex-
pressively equivalent to the bisimulation invariant fragment of MSOL: if an
MSOL formula ϕ(x) is bisimulation invariant then it is equivalent to a mu-
calculus formula.

Recall that the satisfiability problem for MSOL over transition systems is not
decidable [42]. In consequence, it is not decidable if a given MSOL formula
is bisimulation invariant. So it is not decidable if an MSOL formula can be
written in the mu-calculus.

4.2 Embedding of program logics

The mu-calculus is one of the numerous program logics designed to express
properties of transition systems. Theorem 22 implies that the mu-calculus is
as expressive as any logic that is at the same time bisimulation invariant,
and not more expressive than MSOL. This covers most program logics as
for example: propositional dynamic logic (PDL), computational tree logic
(CTL) and its extension CTL∗ [51, 44]. It is anyway worthwhile to see explicit
translations of these logics into the mu-calculus and discuss their relative
expressive powers.

Translating PDL or CTL to the mu-calculus is easy. For sake of example
let us look at CTL. The formulas of this logic are built from tt and ff using
boolean connectives, the 〈a〉 modality, and two operators:

E(αUβ) E¬(αUβ)

As for the mu-calculus, the meaning of a CTL formula is a set of states. The
only construct with non-obvious semantics is the until operator:

M, s � E(αUβ) iff there is a path s0, s1, . . . , sk such that s0 = s, sk � β,
and si � α for i = 0, . . . , k − 1.

For the translation to the mu-calculus, denoted [α]\, we just need to take
care of the two new operators. We show the translation only for the first one:
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[E(αUβ)]\ is µX.[β]\ ∨ ([α]\ ∧
∨
a∈Σ
〈a〉X).

The translation produces an alternation-free formula and is linear in size.
The translation for PDL is equally easy, but to get linear size formulas we
need to use vectorial syntax of the mu-calculus (cf. page 8).

Translating linear time logics, like LTL, is much more complicated. First
one needs to make LTL express properties of transition systems. This can
be done easily by saying that a formula is true in a state if it is true on all
maximal paths from that state. For example, a formula is true in a structure
with one state and self-loops on every action iff it is true on every infinite
path. Since validity of LTL formulas is Pspace-complete, this indicates that
one can expect an exponential blowup when translating from LTL to the
mu-calculus. It is easy to write a mu-calculus formula that is equivalent to
LTL over linear models, i.e., transition systems consisting of only one path.
For the general case, the problem is that mu-calculus does not have an ex-
plicit path quantifier, and there is no way to say easily “every path satisfies
some formula”. The solution for translating LTL is more complicated. One
translates an LTL formula to a Büchi automaton accepting the sequences
not satisfying the formula (cf. [55] or [77] in this Handbook). Then this au-
tomaton is translated into a mu-calculus formula over linear models. It can
be shown that such a formula can be directly used to express the property
that there is a path in a transition system not satisfying the initial LTL for-
mula. The negation of this formula is the desired translation. Since CTL∗ is a
common extension of both CTL and LTL, its translation to the mu-calculus
combines the two translations described above [39, 17]. One can show that
CTL∗ is contained in Σµ

3 level of the alternation hierarchy. In the translation
described above one can use nondeterministic Büchi automata instead of par-
ity automata. This would give a Πµ

2 formula for every path quantifier. Due
to negation and other constructs of CTL∗, the complete translation gives a
combination of Πµ

2 and Σµ
2 formulas.

Fact 23 (Embedding of program logics) Every formula of CTL, PDL,
or CTL∗ can be translated into an equivalent mu-calculus formula.

Concerning expressiveness, CTL is quite a weak logic. It cannot express
for example that there is a path with infinitely many b events on it. This
follows from the strictness of the mu-calculus hierarchy (Theorem 16) as
CTL can be translated into alternation-free mu-calculus. Even though CTL∗

can express the “infinitely many” property, it is still expressively weaker
than the mu-calculus. For example, it cannot express properties describing
infinite interaction of the type “there is a way of repeatedly choosing an
output for a given input so that the resulting infinite sequence of inputs
and outputs satisfies some given LTL property”. In particular, CTL∗ cannot
express all game formulas (1) on page 19, as these formulas can express
properties arbitrarily high in the alternation hierarchy (cf. page 31).
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The last remark provided an inspiration for the introduction of alternating-
time temporal logic [2]. It has been defined over a large class of so called game
models, so it is not immediate to compare it to the mu-calculus. Yet, in the
cases when alternating-time temporal logic behaves well, the logic can be
translated to the mu-calculus. Another interesting logic is game logic [94].
This logic can be translated to the mu-calculus with only two variables, yet
it can express properties arbitrarily high in the alternation hierarchy [13].

4.3 Beyond mu-calculus

Because of its simple formulation, its expressive power, and its algorithmic
properties, the mu-calculus has proved to be a very valuable logic for ver-
ification. As every system, the logic has its limitations, and some of them
we have already mentioned in this chapter. The mu-calculus does not allow
any form of equality: we cannot say that a transition is a self loop, or that
transitions on a and b go to the same state. It permits no form of counting:
we cannot say that there is only one a transition from a state. It does not
have quantification: we cannot say that a formula holds in every state. It does
not allow derived transition relations: we cannot talk about the reverse of a
transition relation. Obviously, such a wish list has no end, but it provides
good motivation in a search for extensions of the mu-calculus. Of course it
is not very difficult to define very expressive logics. What is important is to
find extensions without losing good properties of the logic, or at least not all
of them.

In this subsection we will present two extensions of the mu-calculus of
somehow different natures. The first starts from model-theoretic ideas, the
second is motivated by the syntax. The two extensions are quite different in
what they accomplish, but both proved to be very useful.

4.3.1 Iterated structures

Till now we have considered logics over transition systems. Here we would
like to consider what happens when we put some structure on the set of
successors of a state of a transition system. For example, what would happen
if we added an order between successors. Instead of considering particular
cases we will introduce a general method of constructing transition systems
with additional structure. Then we will discuss how to handle this added
structure in extensions of the mu-calculus. For this we will define automata
that are a generalization of modal automata. We will present their closure
properties as well as the relation to MSOL.

Let N = 〈D, r1, . . .〉 be a structure over a relational signature; this means
that functional symbols are not allowed. For example: 〈N,≤〉 is a structure
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over a signature containing one relation, the standard ordering; the structure
〈N,+〉 is allowed when + is considered as ternary addition relation, and not
as a binary function.

An iterated structure is a structure N ∗ = 〈D∗, child , clone, r∗1 , . . .〉 where
D∗ is the set of all finite sequences over D, and the relations are defined by:

child = {(w,wd) : w ∈ D∗, d ∈ D},
r∗ = {(wd1, . . . , wdk) : w ∈ D∗, (d1, . . . , dk) ∈ r},

clone = {wdd : w ∈ D∗, d ∈ D}.

So N ∗ is a tree where every node has a rank equal to the size of D; indeed a
node w ∈ D∗ has wd as successors for every d ∈ D. The relation child gives
the successors of a node. The relations r∗ induce additional dependencies
between siblings that come from the initial structure. The unary relation
clone is a curious predicate saying that a node is exactly the same as its
parent. This predicate is very useful in encoding of other structures into
iterated structures.

Example: Consider a two element structure N2 = 〈{0, 1}, left〉 with one unary
relation that holds only for 0. The structure N ∗2 has elements {0, 1}∗. The
relation left∗(w) holds if w ends with 0. Hence N ∗2 is the full binary tree with
left∗ designating left sons. The clone relation is not important here: it holds
in a left child whose parent is also a left child (or analogously for right).

Example: Consider the set of natural numbers with the standard ordering:
N≤ = 〈N,≤〉. In this case N ∗≤ is a tree of infinite branching where siblings
are linearly ordered. Moreover, the clone predicate designates a node whose
position between its siblings is the same as that of the father. The structure
is shown in Figure 7, where the circled nodes satisfy the clone predicate. The
clone predicate allows us to define in this tree paths representing a possible
behavior of one register with +1 and −1 operations: paths of the form i1i2, . . .
with i1 = 0 and |ik+1 − ik| ≤ 1. The idea is presented in Figure 7. The clone
predicate allows us to go one step to the left or one step to the right in the
horizontal linear order when going one level down in the tree.

ε

0 ≤ 1 ≤ · · · ≤ k ≤ · · ·

00 ≤ 01 ≤ · · · ≤ 0k ≤ · · · k0 ≤ k1 ≤ · · · ≤ kk ≤ · · ·

ε

0 1 · · ·

0 1 2 · · ·

0 1 2 3 · · ·

Fig. 7 Structure N ∗
≤, and a representation of the sequence 1, 2, 1, . . . in N ∗

≤



42 Julian Bradfield and Igor Walukiewicz

In general, for a given structure N = 〈D, r1, . . .〉, the structure N ∗ can be
seen as a generalization of the notion of the full binary tree. Given a finite
alphabet Σ, a Σ-labeling of N is just a function t : N ∗ → Σ. We are going to
define a notion of automaton that accepts sets of labeled iterated structures.

First, let MF(Σ,Q) be the set of monadic second-order formulas with
free variables {Xclone} ∪ {Xq : q ∈ Q} over the signature of N enriched with
monadic predicates Pa for a ∈ Σ. The automaton is:

A = 〈Q,Σ, q0 ∈ Q, δ : Q→MF(Σ,Q), Ω : Q→ N〉

The acceptance of t : N ∗ → Σ by A is defined in terms of the acceptance
game G(t,A).

• The positions for Eve are D∗ ×Q, the positions for Adam are D∗ × (Q→
P(D)). The initial position is (ε, q0). Recall that D∗ is the set of elements
of N ∗, in particular ε is the root of N ∗.

• In a position (w, q) Eve chooses a function f : Q→ P(D) so that N ,V �
δ(q) where V(Xq) = f(q) and V(Xclone) is the set consisting of the last
element of w, or ∅ if w has length ≤ 1. The game moves to the position
(w, f).

• In a position (w, f) Adam chooses q′ ∈ Q and d′ ∈ f(q′). The game moves
to (wd′, q′).

• The rank of a position (w, q) is Ω(q). All the positions for Adam have rank
0.

A labeled iterated structure is accepted if Eve has a winning strategy in this
game from the initial position. Hence an automaton accepts a set of labeled
iterated structures, for a fixed initial structure. The following theorem has
been formulated by A. Muchnik. The sketch of his proof can be found in [110].
The result is proved with a different proof method in [124].

Theorem 24 (Transfer theorem [110, 124]). Let N be a relational struc-
ture. Automata over labeled N -iterated structures are closed under boolean
operations and projection. If the MSOL theory of N is decidable then the
emptiness of automata over labeled N -iterated structures is decidable.

In particular, when N2 is the two element structure from the example
above, Theorem 24 gives decidability of the MSOL theory of the binary tree.
Observe that modal automata (cf. Section 3.2) are a special case of automata
from this section for the structures of empty signature. We have seen that
modal automata and the mu-calculus are essentially the same. Following the
same ideas one can construct mu-calculi for different kinds of relations on the
set of successor states.

Structure iteration is a powerful operation preserving decidability of
MSOL theories: that is transforming a structure with decidable MSOL theory
into another structure with decidable MSOL theory. Among others, it is an
entry point to the so-called pushdown hierarchy, model-checking higher-order
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pushdown systems, and higher-order recursive schemes. This is a vast subject
that would require a chapter on its own [74, 116, 31, 93, 75, 30].

4.3.2 Guarded logics

The idea of guarded logics comes from looking at the translation of the modal
logic into first-order logic. In this translation the boolean connectives are
translated to themselves, and the modalities are translated as follows:

[〈a〉α]∗(x) is ∃y. Ra(x, y) ∧ [α]∗(y)

[[a]α]∗(x) is ∀y. Ra(x, y)⇒ [α]∗(y) .

As for MSOL, the translation is parameterized by a free variable intended to
stand for the current state.

The image of this translation is called the modal fragment of first-order
logic. Recall that the satisfiability problem for first-order logic over transition
systems is undecidable. But it is decidable for the modal fragment since it
is decidable for modal logic. This immediately brings on the question: what
makes the modal fragment so special, and can it be extended? The idea
behind guarded fragment is to provide an answer to this question by focusing
on the restricted use of quantifiers.

We say that a quantification is guarded if it is of the form

∃y.γ(x, y) ∧ ψ(x, y) or ∀y.γ(x, y)⇒ ψ(x, y),

where γ(x, y) is Rb(x, y) or Rb(y, x) for some action b, and ψ(x, y) is a formula
whose free variables are at most x and y. The name “guarded” comes from
the fact that the quantified variable has to be related to the free variable by
the transition relation. For example the formula

∀y.Ra(x, y)⇒ x = y

says that all transitions on a are self-loops. The syntax also permits to talk
directly about the reverse of transitions.

The guarded fragment [5] is the set of formulas of first order logic that
contains atomic formulas, and is closed under boolean operations and guarded
quantification. The presentation here is limited to the simplest variant. The
fragment gets even more interesting for signatures with relations of higher
arity.

Since the guarded fragment inherits many good properties of modal logic,
its extension with fixpoints should inherit those of the mu-calculus. This is
indeed the case. If one takes some care as to how fixpoints are applied, one
can even recover many good properties of the mu-calculus.

Let W be a unary relation variable, let ψ(W,x) be a guarded formula
whose free variables are as displayed, and where W appears only positively
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and not in guards. Then we can build formulas:

[lfp Wx. ψ](x) and [gfp Wx. ψ](x) .

The semantics is as expected: The formula [lfpWx.ψ](s) is true in a transition
systemM iff s is in the least fixpoint of the operator mapping a set of states
S′ to {s′ : M � ψ(S′, s′)}, i.e., to the set of states s′ that make ψ(W,x)
satisfied when W is interpreted by S′. The extension of the guarded logic
with these two constructs is called guarded fixpoint logic.

Let us see an example formula of guarded fixpoint logic that is not equiv-
alent to a mu-calculus formula:(
∃xy. Rb(x, y)

)
∧
(
∀xy. Rb(x, y)⇒ ∃z. Rb(y, z)

)
∧

∀xy. Rb(x, y)⇒ [lfp Wz. ∀y. Rb(y, z)⇒W (y))](x) .

The first two conjuncts say that there is a transition labeled by b, and that
every such transition can be extended to an infinite path. The third conjunct
says that every source of a b-transition has only finitely many predecessors
on b transitions. Thus the formula implies that there is an infinite forward
chain of b-transitions but no infinite backward chain. This example shows
the use of backwards modalities and the price to pay for them: we can write
formulas having only infinite models.

Despite this observation the satisfiability problem for the guarded fragment
extended with fixpoints is decidable, and the complexity is the same as for
the mu-calculus.

Theorem 25 (Guarded fixpoint logic [61]). The satisfiability problem
for guarded fixpoint logic over transition systems is Exptime-complete.

Adaptations of many results presented in this chapter hold for guarded fix-
point logic: game characterization of model-checking, a tree model property,
bisimulation invariance, iteration of structures [57, 58, 21].

5 Related work

As with any good concept, the mu-calculus can be approached from many
directions. The first point of view is to consider it as a logic of programs. The
family of logics of programs is divided into two groups. In exogenous logics,
a program is a part of a formula; in endogenous logics, a program is a part
of a model. Dynamic logic and Hoare logic are examples of exogenous logics.
Temporal logic, and Floyd diagrams are endogenous logics. The mu-calculus
also belongs to this second group.

Exogenous logics merit a small digression. Among them, dynamic log-
ics are the closest to the mu-calculus. Historically, the research on dynamic
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logics has been an intermediate step to major results of the theory of the mu-
calculus [111, 112]. Dynamic logics were developed independently by Slaw-
icki [102], and Pratt [102]. A propositional version of dynamic logic has been
proposed and studied by Fisher and Ladner [50]. A survey of Harel gives a
very good overview of the subject [62]. A more recent reference is a book of
Harel, Kozen and Tiuryn [63].

The second point of view is that the mu-calculus is a propositional ver-
sion of the least fixpoint logic: an extension of first-order logic with fixpoint
operators. From this point of view Y. Moschovakis’ work in model theory
have laid foundations for the logic [86]. Least fixpoint logic and the closely
related inflationary fixpoint logic are intensively studied in finite-model the-
ory [41, 67, 78, 59]. Inflationary fixpoint logic has its propositional version
too [40]; while it has greater expressive power, it is less algorithmically man-
ageable than the mu-calculus.

The third point of view is to consider the mu-calculus as a basic modal logic
extended with a fixpoint operator. Modal logic was proposed by philosophers
in the beginning of the 20th century [19]. In the 1950s a possible word seman-
tics was introduced, and since then modal logic has proven to be an appealing
language to describe properties of transition systems. A number of ways of us-
ing a fixpoint operator in program logics have been proposed [106, 65, 95, 98].
The mu-calculus as it is known now was formulated by Kozen in [76].

The expressive completeness theorem for the mu-calculus, Theorem 22, is
an analog of van Benthem’s theorem [12] saying that a first-order formula
is equivalent to a modal formula if and only if it is bisimulation invariant.
So Theorem 22 says that mu-calculus is to MSOL what modal-logic is to
first-order logic. Expressive completeness results have been also proved for
extensions of the mu-calculus as well as for its fragments [58, 68].

As stated in Theorem 8, the model-checking problem is equivalent to check-
ing emptiness of nondeterministic parity automata on infinite trees. Similarly,
the satisfiability problem is linked to automata emptiness, cf. Theorem 14.
Many arguments in this chapter have an automata-theoretic flavor. This ex-
plains the relevance of the study of determinization and complementation op-
erations for automata for the theory of the mu-calculus [101, 119, 105, 96, 35].

As with any successful formalism it is very tempting to extend the mu-
calculus while retaining most of its good properties. In some sense the ex-
pressive completeness theorem tells us that it is not possible to keep all the
good properties. In Section 4.3.2 we have described guarded fixpoint logics.
The mu-calculi with backwards modalities, loop modalities etc. have been
studied separately [118, 9, 26]. There exist also a mu-calculus for timed tran-
sition systems [27, 64]. Quantitative versions of the mu-calculus have also
been proposed: be it for probabilistic transition systems [82, 1, 56, 85], or
for some form of discounting [49]. In Section 4.3.1 we have seen how to ex-
tend mu-calculus to the case when the set of successors of a state has some
structure, as for example linear order. Another extension in a similar spirit
is coalgebraic mu-calculus [121].
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The results on the model-checking problem have been discussed in Sec-
tion 2.4. It is worth mentioning that the problem has also been studied on
some special classes of transition systems: bounded tree and clique-width [92],
bounded entanglement [14], undirected graphs [16, 38].

The alternation hierarchy discussed in Section 3.4 is the most established
way of stratifying mu-calculus properties. Another hierarchy is the variable
hierarchy obtained by limiting the number of variables that can be used to
write a formula. Most common program logics: CTL, PDL, CTL∗, and even
the game logic of Parikh [94] are contained in the first two levels of this
hierarchy. Still the variable hierarchy is strict [15].

As we have seen in Section 4.2 most program logics like CTL∗ or PDL
can be translated into the mu-calculus. It would be interesting to understand
which formulas of the mu-calculus correspond to formulas of, say, CTL. Put
it differently, for a logic L we would like to decide if a given mu-calculus
formula is equivalent to a formula of L. Decidability of this problem is known
for several fragments of first-order logic [24, 25, 11, 97, 22, 23]. Yet, the
problem is open for all major program logics like CTL, CTL∗, or PDL.

There exist two other surveys on the subject that present the logic from
different angles [29, 120]. For coverage in depth of the theory of the mu-
calculus we refer the reader to the book of Arnold and Niwiński [8].
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labeled Büchi automata. In: ICALP (2), LNCS, vol. 5556, pp. 151–162 (2009)

36. Condon, A.: The complexity of stochastic games. Inf. Comput. 96(2), 203–224 (1992)
37. D’Agostino, G., Hollenberg, M.: Logical questions concerning the mu-calculus: Inter-
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55. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Proceedings of
the 13th International Conference on Computer Aided Verification (CAV’01), LNCS,

vol. 2102, pp. 53–65. Springer (2001)

56. Gimbert, H., Zielonka, W.: Perfect information stochastic priority games. In: ICALP,
LNCS, vol. 4596, pp. 850–861 (2007)
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59. Grädel, E., Kolaitis, P., Libkin, L., Marx, M., Spencer, J., Vardi, M., Venema, Y.,

Weinstein, S.: Finite Model Theory and Its Applications. EATCS Series: Texts in

Theoretical Computer Science. Springer-Verlag (2007)
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