
An alternate proof of Statman’s finite completeness
theorem

B. Srivathsan, Igor Walukiewicz

LaBRI, Université de Bordeaux, 351 cours de la libération, 33400 Talence, France

Abstract

Statman’s finite completeness theorem says that for every pair of non-equivalent
terms of simply-typed lambda-calculus there is a model that separates them. A
direct method of constructing such a model is provided using a simple induction
on the Böhm tree of the term.

Keywords: Simply typed lambda calculus, formal semantics, theory of
computation

1. Introduction

Statman’s finite completeness theorem [5, 6] shows that standard models [1]
are strong enough to separate terms, up to βη-reductions. It states that given
a simply typed lambda term M , there exists a finite standard model such that
for every term N that is not βη-equivalent to M there is a variable assignment
separating the two terms, that is, making their values in the model different.
At the time of publication of this work, a crucial corollary of this theorem was
that the λ-definability conjecture implies the higher order matching conjecture
[5, 6, 7]. However, λ-definability was shown to be undecidable later by Loader
[2].

The first proof of Statman’s theorem appeared in [5]. It was explained
in more detail in [6] since the previous proof was considered “not accessible
to readers not familiar with this subject”. The proof proceeds by defining a
suitable syntactic equivalence over the lambda terms. The required model is
then the quotient of the set of lambda terms by this equivalence.

Salvati [4] proves that singleton sets, that is sets of the form {N |N =βη M}
for a fixed M can be characterized by suitable intersection types. In another
paper [3], Salvati gives a notion of recognizability of languages of lambda terms
based on these intersection types. He shows that this notion coincides with a
notion of recognizability defined in terms of finite standard models. This gives
an alternate proof to Statman’s theorem.

In this paper, we give yet another proof of this theorem. Our proof carries
a semantic flavour, constructing the required model for a term M step-by-step,
by performing an induction on the Böhm tree of the η-long β-normal form of



M . The Böhm trees are the only syntactic tools used. This proof is very direct,
especially in comparison to the existing proofs mentioned above. The proof also
gives a slightly stronger result: for every term M there is a model and a variable
assignment such that if N evaluates to the same value as M then M =βη N .

In Section 2, we give the necessary preliminaries. In Section 3, we define the
notion of an extended model, and explain the relation between the elements of
the initial model and the extended model. Section 4 contains our proof of the
finite completeness theorem.

2. Simply typed λ-calculus

The set of types T is constructed from a unique basic type 0 using a binary
operator →. Thus 0 is the unique basic type, and if α, β are types, then
α → β is also a type. The order of a type is defined by: order(0) = 1, and
order(α→ β) = max(1 + order(α), order(β)).

The set of simply typed λ-terms is defined inductively as follows. For each
type α, there is a countable set of variables xα, yα, . . . which are also terms of
type α. If M is a term of type β and x is a variable of type α, then λxα.M is
a term of type α→ β. Such a term is called a λ-abstraction. If M is a term of
type α→ β and N is a term of type α then MN is a term of type β. Terms of
this kind are called applications.

A standard finite model D is a family of finite sets (Dα)α∈T indexed by the
set of types. D is determined by D0 which is a finite set of elements of type 0.
For types α, β, the set Dα→β is the set of functions from Dα to Dβ .

A variable assignment is a function assigning to every variable xα an element
of Dα. If d is an element of Dα and xα is a variable of type α, v[d/xα] denotes
the variable assignment which assigns d to xα and is identical to v otherwise.

The interpretation of a simply typed λ-term M in the model D and variable
assignment v is defined inductively:

• [[xα]]
v
D = v(xα)

• [[MN ]]
v
D = [[M ]]

v
D[[N ]]

v
D

• [[λxα.M ]]
v
D is a function mapping d ∈ Dα to [[M ]]

v[d/xα]
D

We recall the two types of reduction over simply typed λ-terms.

β-reduction (λx.M)N →β M [N/x]

η-reduction (λx.Mx)→η M , provided x is not free in M .

A lambda term in long normal form is of the shape λ~x.zM1 . . .Mk where
M1, . . . ,Mk are in long normal form, z is a variable, the term zM1 . . .Mk is of
type 0 and the sequence λ~x might be empty.

For a lambda term M in long normal form, its Böhm tree, BT (M) is defined
inductively as follows. If M = λ~x.zM1 . . .Mk, with z being a variable, then the
root of BT (M) is labeled λ~x.z and it has BT (M1) to BT (Mk) as its children.

2



M is said to be uniquely determined in a model D with a variable assignment
v if for all lambda terms N , [[N ]]

v
D = [[M ]]

v
D iff N =βη M .

In the following sections, we prove Statman’s finite completeness theorem in
a slightly stronger form:

Theorem 1 For every λ-term M , there exists a finite model D and a variable
assignment v such that M is uniquely determined in D and v.

To prove this theorem, we consider a lambda term in long normal form. We
construct a model in which all its subterms are uniquely determined. We add a
fresh element and alter the interpretations to make the lambda term interpret
uniquely to this newly added element.

3. Extended model

Consider a lambda term M of type 0. Let D be a standard finite model
and v a variable assignment, so that [[M ]]

v
D = e, with e ∈ D0. In general, there

exist many lambda terms that interpret to e. Our objective is to add a new
element to D0 and make M interpret to this new element. In addition, the other
lambda terms of type 0 should interpret as before. This would ensure that M
interprets uniquely to this new element. Intuitively, the other lambda terms
should not “notice” a difference between e and this new element. We call this
new element eclone. Given a model D = (Dα)α∈T and an element e ∈ D0, the
extended model De = (De

α)α∈T is the model determined by De
0 = D0 ]{eclone}.

As a consequence of adding this extra element, many new higher order functions
are generated. Hence we force the λ-terms to interpret to those functions that
behave identically on eclone and on e. In the subsequent sections, we study this
new extended model and furnish a variable assignment so that M gets uniquely
interpreted to eclone.

3.1. Relating the models

Consider the function f ∈ D0→0 shown in Figure 1. The same figure shows
some functions in the extended model De. The function f ′1 acts the same way as
f on all the common elements. However, f ′1(eclone) is not equal to f ′1(e) which
is undesirable. Hence we would like to ignore such a function. The function f ′2
on the other hand acts the same way as f on all the common elements and in
addition f ′2(eclone) is equal to f ′2(e). We consider f ′2 as the representative of f
in De. An interesting case is given by f ′3 that instead of mapping the element
to e maps it to eclone. By the intuition that eclone is equivalent to e, we wish to
say that f ′3 is equivalent to f ′2.

We define two notions to relate the elements of the extended model De to
elements of the original model D:

• an injection function inα : Dα → De
α that for every element f ∈ Dα gives

its representative f ′ ∈ De
α,

3



D0 D0

e e

f

De
0 De

0

e

eclone

e

eclone

f ′
1

De
0 De

0

e

eclone

e

eclone

f ′
2

De
0 De

0

e

eclone

e

eclone

f ′
3

Figure 1: Higher order functions in the extended model De

• an equivalence relation ↔α over De
α that groups e and eclone at type 0

and propagates this basic equivalence to higher order functions.

In general, we would like to visualize each set De
α as shown in Figure 2.

Before formally defining these notions we designate a null element for every
type.

Definition 2 The null element ∆0 is any arbitrary element of De
0 different from

eclone. For a type α→ β, element ∆α→β is the constant function mapping every
element to ∆β .

The definitions of inα and↔α are mutually dependent. For an element d′ in De
α,

let [d′] denote the equivalence class of d′ with respect to↔α. For a higher order
type α → β and for a function f ∈ Dα→β , inα→β(f) maps every element d′ in
[inα(d)] to inβ(f(d)). We say that a function f ′ ∈ De

α→β simulates a function
f ∈ Dα→β , written as sim(f ′, f) if f ′ maps every element in an equivalence
class [inα(d)] to an element in the equivalence class [inβ(f(d))]. These notions
are pictorially represented in Figure 3. The equivalence relation ↔α→β groups
functions of De that simulate the same function of D. The formal definitions
follow.

Definition 3 inα, simα, ↔α

• in0, sim0, ↔0

– in0 : D0 → De
0 is the identity.

– sim0(d, d) for every element d ∈ D0.

– ↔0 is the smallest equivalence containing e↔0 eclone.

4



Dα De
α

d1

d2

d3

[inα(d1)]

[inα(d2)]

[inα(d3)]

equivalence class
representing elements
that can be ignored

Figure 2: Visualizing a set in the extended model

• inα→β

For an element f ∈ Dα→β , inα→β(f) is a function f ′ ∈ De
α→β such that

for all elements d′ ∈ De
α,

f ′(d′) =

{
inβ(f(d)) if d′ ∈ [inα(d)]

∆β otherwise

• simα→β

For f ∈ Dα→β , f ′ ∈ De
α→β , we say f ′ simulates f , written as sim(f ′, f),

if for all d ∈ Dα, for all d′ ∈ [inα(d)]: f ′(d′)↔β inβ(f(d)).

• ↔α→β

For f ′, g′ ∈ De
α→β , f ′ ↔α→β g

′ if for all h ∈ Dα→β , sim(f ′, h)⇔ sim(g′, h).

Remark 4 Subsequently, we drop the type subscript in inα, simα and↔α since
it is the same as the type of the elements associated.

Directly from the definitions, we get

Lemma 5 For every d ∈ D, in(d) simulates d.

Before giving a suitable interpretation to the lambda terms in the extended
model De, we need to understand the interplay of the just introduced notions.

Lemma 6 For d, d1, d2 ∈ Dα and d′ ∈ De
α,

1. if sim(d′, d1) and sim(d′, d2) then d1 = d2;

2. sim(d′, d) if and only if d′ ↔ in(d);

3. If d1 6= d2 then in(d1) = in(d1).

Proof
The proof proceeds by induction on the types. The lemma is clear for type 0.
We prove the lemma for a higher order type α→ β. Consider f, f1, f2 ∈ Dα→β

and f ′ ∈ De
α→β .

5



Dα Dβ

f

d f(d)

Deα Deβ

inα→β(f)

[inα(d)]
{

inβ(f(d))

Deα Deβ

inα→β(f), f
′

Figure 3: f , inα→β(f), sim(f ′, f)

1. Suppose sim(f ′, f1) and sim(f ′, f2). Take d ∈ Dα and d′ ∈ [in(d)]. By
definition of sim, f ′(d′) ↔ in(f1(d)) and f ′(d′) ↔ in(f2(d)). Hence
in(f1(d)) ↔ in(f2(d)) and by (3), f1(d) = f2(d). Since d is arbitrary,
f1 = f2.

2. For the direction from left to right, suppose sim(f ′, f). By (1) if sim(f ′, h)
then h = f . Since from Lemma 5, sim(in(f), f), the same holds for in(f).
Therefore, for all h, sim(f ′, h)⇔ sim(in(f), h) and hence by definition of
↔, f ′ ↔ in(f).
For the opposite direction, suppose f ′ ↔ in(f). By Lemma 5, sim(in(f), f)
and by definition of sim, sim(f ′, f).

3. Suppose f1 6= f2. From Lemma 5, sim(in(f1), f1). Hence by (1), not
sim(in(f1), f2). But since sim(in(f2), f2), we get in(f1) = in(f2).

�

3.2. Interpreting the lambda terms in the extended model

To interpret the lambda terms in De, we need to define the variable as-
signment ve that interprets the variables. We intend to pick one from a set of
variable assignments that simulate v.

Definition 7 A variable assignment v′ on De simulates a variable assignment
v on D if for all variables x: sim(v′(x), v(x)).

Lemma 8 If v′ simulates v then for every lambda term M :

sim(JMKv
′

De , JMKvD)

6



Proof
We proceed by induction on the structure of the lambda term.

1. For variables, the lemma follows from the hypothesis.
2. Consider an application MN , with M of type α → β and N of type

α. By induction, sim([[N ]]
v′

De , [[N ]]
v
D) and hence from (2) of Lemma 6,

[[N ]]
v′

De ↔ in([[N ]]
v
D). Also by induction, sim([[M ]]

v′

De , [[M ]]
v
D) and hence

from definition, [[M ]]
v′

De([[N ]]
v′

De) ↔ in([[M ]]
v
D([[N ]]

v
D)). Therefore by (2) of

Lemma 6, sim([[MN ]]
v′

De , [[MN ]]
v
D).

3. Consider a lambda abstraction λxα.M . Take d ∈ Dα and d′ ∈ [in(d)].
Since sim(v′, v), we have sim(v′[d′/xα], v[d/xα]) and hence by induc-

tion sim([[M ]]
v′[d′/xα]
De , [[M ]]

v[d/xα]
D ). From 2) of Lemma 6, [[M ]]

v′[d′/xα]
De ↔

[[M ]]
v[d/xα]
D . This is true for all d ∈ Dα. Hence, by definition, we get

sim([[λxα.M ]]
v′

De , [[λx
α.M ]]

v
D).

�

Corollary 9 If v′ simulates v, then every term uniquely determined in (D, v)
is uniquely determined in (De, v′).

Proof
Let M be uniquely determined in (D, v) but not in (De, v′). Therefore, there

exists N 6=βη M such that [[N ]]
v′

De = [[M ]]
v′

De . From Lemma 8, this would mean

that sim([[M ]]
v′

De , [[M ]]
v
D) and sim([[M ]]

v′

De , [[N ]]
v
D). Hence by (1) of Lemma 6,

[[M ]]
v
D = [[N ]]

v
D. A contradiction. �

4. Proof of the theorem

The proof proceeds by an induction on the size of the Böhm tree BT (M)
of the lambda term M . Let BT (M) contain m nodes. Consider an ordering
s1 < · · · < sm of the nodes of BT (M) that is compatible with the child relation:
if a node si is a child of sj , then si < sj . Assume that Dk is a model and
vk a variable assignment such that all the lambda terms rooted in the nodes si
with i ≤ k are uniquely determined in (Dk, vk). We then construct (Dk+1, vk+1)
where all the lambda terms rooted in the nodes si with i ≤ k + 1 are uniquely
determined. Consequently M gets uniquely determined in (Dm, vm).

Base case

The base case refers to (D1, v1) which uniquely determines a leaf of BT (M).
A leaf is variable z of type 0. Starting with the trivial model D0 which has a
singleton {⊥} in its basic set and the trivial variable assignment v0, we construct
the extended model De0 by adding a new element ⊥clone to the atomic set. The
new variable assignment ve0 assigns z to ⊥clone and the rest of the variables are
maintained with the same interpretation. Clearly, z is uniquely determined in
(De0, ve0). Set D1 as De0 and v1 as ve0.

7



Induction case
Let the lambda term rooted at sk be λ~x.yM1 . . .Mn and let [[yM1 . . .Mn]]

vk
Dk =

e. For notational simplicity let D = Dk and v = vk. By induction hypothesis,
M1, . . . ,Mn are uniquely determined in (D, v).

Construct the extended model De by adding an element eclone to the basic
set D0 of D. Consider the variable assignment ve defined below.

• ve(x) = in(v(x)), if x 6= y.

• For the variable y,

ve(y)(d′1, . . . , d
′
n) =


eclone if d′i ∈ [in(JMiKvD)],

for i ∈ {1, . . . , n}
in(v(y))(d′1, . . . , d

′
n) otherwise

Since eclone ↔ e, ve simulates v. Hence we infer the following.

1. From Lemma 8, for every lambda term N , [[N ]]
ve

De simulates [[N ]]
v
D, and

hence from Lemma 6
[[N ]]

ve

De ↔ in([[N ]]
v
D)

2. [[yM1 . . .Mn]]
ve

De = eclone.

We now prove that [[yM1 . . .Mn]]
ve

De is uniquely interpreted to eclone. Let

zN1 . . . Np be a lambda term such that [[zN1 . . . Np]]
ve

De = eclone. We first prove
that in this case, z has to be equal to y.

If z 6= y, then ve(z) = in(v(z)). From the definition of the injection function
in, ve(z)(x1, . . . , xp) is not equal to eclone whenever each xi simulates some
element of D. Recall now that by choice, the null element (c.f. Definition 2) ∆0

is not equal to eclone. So even if some xi does not simulate an element of D,
ve(z)(x1, . . . , xp) which now equals the null element ∆0 cannot be eclone.

Therefore, z equals y and hence p equals n. We show that Ni =βη Mi for

all i. Now, if [[Ni]]
ve

De /∈ [in([[Mi]]
v
D)] for some i, by the same reasoning as above,

[[zN1 . . . Np]]
ve

De cannot be equal to eclone. Therefore, [[Ni]]
ve

De ↔ in([[Mi]]
v
D) for

all i. In addition, from Lemma 8, we know that [[Ni]]
ve

De ↔ in([[Ni]]
v
D) too.

Hence from the third part of Lemma 6, [[Ni]]
v
D = [[Mi]]

v
D. From the assumption

that each Mi is uniquely determined in (D, v), one can deduce that Ni =βη Mi

for i ∈ {1, . . . , n}. We hence infer that yM1 . . .Mk is uniquely determined in
(De, ve).

From the fact that yM1 . . .Mk is uniquely determined in (De, ve), we can
infer that λ~x.yM1 . . .Mk is uniquely determined too. To see this, consider a

lambda term λ~x.N such that [[λ~x.N ]]
ve

De = [[λ~x.yM1 . . .Mk]]
ve

De . This means
that both N and yM1 . . .Mk with ~x substituted by values from ve interpret to

the same element of De. That is, [[N ]]
ve

De = [[yM1 . . .Mk]]
ve

De . Hence, N =βη

yM1 . . .Mk as the latter term is uniquely determined in (De, ve).
Set Dk+1 = De and vk+1 = ve. Therefore, from the above argument and

from Corollary 9, the lambda terms rooted at nodes si with i ≤ k + 1 are
uniquely determined in (Dk+1, vk+1), thus proving the inductive step.

8



References

[1] L. Henkin. Completeness in the theory of types. Journal of symbolic logic,
15(2):81–91, 1950.

[2] R. Loader. The undecidability of-definability. Logic, meaning, and compu-
tation: essays in memory of Alonzo Church, page 331, 2001.

[3] S. Salvati. Recognizability in the simply typed lambda-calculus. Logic,
Language, Information and Computation, pages 48–60, 2009.

[4] S. Salvati. On the membership problem for non-linear Abstract Categorial
Grammars. Journal of Logic, Language and Information, 19(2):163–183,
2010.

[5] R. Statman. Completeness, invariance and λ-definability. Journal of Sym-
bolic Logic, 47(1):17–26, 1982.

[6] R. Statman and G. Dowek. On Statman’s Finite Completeness Theorem.
Carnegie Mellon University, School of Computer Science, 1992.

[7] DA Wolfram. The clausal theory of types. PhD thesis, 1989.

9


	Introduction
	Simply typed -calculus
	Extended model
	Relating the models
	Interpreting the lambda terms in the extended model

	Proof of the theorem

