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Abstract

The Büchi non-emptiness problem for timed automata refers to de-
ciding if a given automaton has an infinite non-Zeno run satisfying the

Büchi accepting condition. The standard solution to this problem involves
adding an auxiliary clock to take care of the non-Zenoness. In this paper,
it is shown that this simple transformation may sometimes result in an ex-

ponential blowup. A construction avoiding this blowup is proposed. It is
also shown that in many cases, non-Zenoness can be ascertained without
extra construction. An on-the-fly algorithm for the non-emptiness prob-
lem, using non-Zenoness construction only when required, is proposed.

Experiments carried out with a prototype implementation of the algo-
rithm are reported.

1 Introduction

Timed automata [1] are widely used to model real-time systems. They are ob-
tained from finite automata by adding clocks that can be reset and whose values
can be compared with constants. The crucial property of timed automata is that
their emptiness is decidable. This model has been implemented in verification
tools like Uppaal [4] or Kronos [10], and used in industrial case studies [17, 5, 20].

While most tools concentrate on the reachability problem, questions con-
cerning infinite executions of timed automata are also of interest. In the case
of infinite executions one has to eliminate the so-called Zeno runs. These are
executions that contain infinitely many steps taken in a finite time interval. For
obvious reasons such executions are considered unrealistic. One way to treat
Zeno runs would be to say that a timed automaton admitting such a run is
faulty and should be disregarded. This gives rise to the problem of detecting
the existence of Zeno runs in an automaton [9, 16, 19]. The other approach to
handling Zeno behaviours, that we adopt here, is to say that due to imprecisions
introduced by the modeling process one may need to work with automata having
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Zeno runs. This leads to the problem of this paper: given a timed automaton
decide if it has a non-Zeno run passing through accepting states infinitely often.
We call this the Büchi non-emptiness problem.

This basic problem [1] has been studied already in the paper introducing
timed automata. It has been shown that using so-called region abstraction the
problem can be reduced to the problem of finding a path in a finite region graph
satisfying some particular conditions. The main difference between the cases of
finite and infinite executions is that in the latter one needs to decide if the path
that has been found corresponds to a non-Zeno run of the automaton.

Subsequent research has shown that the region abstraction is very inefficient
for reachability problems. Another method using zones instead of regions has
been proposed [14]. It is used at present in all timed-verification tools. While
simple at the first sight, the zone abstraction was delicate to get right [7]. This
is mainly because the basic properties of regions do not transfer to zones. The
zone abstraction also works for infinite executions, but unlike for regions, it is
impossible to decide if a path in a zone graph corresponds to a non-Zeno run of
the automaton.

There exists a simple solution to the problem of Zeno runs that amounts to
transforming automata in such way that every run passing through an accepting
state infinitely often is non-Zeno. An automaton with such a property is called
strongly non-Zeno. The transformation is easy to describe and requires the
addition of one new clock. This paper is motivated by our experiments with
an implementation of this construction. We have observed that this apparently
simple transformation can give a big overhead in the size of a zone graph.

In this paper we closely examine the transformation to strongly non-Zeno
automata [25], and show that it can inflict a blowup of the zone graph; and this
blowup could even be exponential in the number of clocks. To substantiate, we
exhibit an example of an automaton having a zone graph of polynomial size,
whose transformed version has a zone graph of exponential size. We propose an-
other solution to avoid this phenomenon. Instead of modifying the automaton,
we modify the zone graph. We show that this modification allows us to detect
if a path in the zone graph can be instantiated to a non-Zeno run. Moreover
the size of the modified graph is |ZG(A)| · O(|X |), where |ZG(A)| is the size of
the zone graph and |X | is the number of clocks.

In the second part of the paper we propose an on-the-fly algorithm for testing
the existence of accepting non-Zeno runs in timed Büchi automata. The problem
we face highly resembles the emptiness testing of finite automata with gener-
alized Büchi conditions. Since the most efficient solutions for the latter prob-
lem are based on Tarjan’s algorithm to detect strongly-connected-components
(SCCs) [22, 15], we take the same route here. We additionally observe that
Büchi emptiness can sometimes be decided directly from the zone graph. This
permits to restrict the use of the modified zone graph construction only to
certain parts of the zone graph. In cases when no clock comparisons of the
form x = 0 are reachable from the initial state of the automaton, the algo-
rithm runs in time O(|ZG(A)| · |X |). Further, the optimized algorithm runs
in time O(|ZG(A)|) when no reachable SCC contains a blocking clock: that
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is, a clock that is bounded (e.g. x ≤ 1) but never reset in the SCC. We also
give additional optimizations that prove to be powerful in practice. We include
experiments conducted on examples in the literature.

1.1 Related work

The zone approach has been introduced in the Petri net context [6], and then
adapted to the framework of timed automata [14]. The advantage of zones over
regions is that they do not require to consider every possible unit time interval
separately. The delicate point about zones was to find a right approximation
operator. Usual approximation operators are sound and complete: each path
in the zone graph can be instantiated as a run in the automaton and vice-
versa. While this is enough for correctness of the reachability algorithm, it does
not allow however to determine if a path can be instantiated to a non-Zeno
run. The solution involving adding one clock has been discussed in [23, 25, 2].
Recently, Tripakis [24] has shown a way to extract an accepting run from a
zone graph of the automaton. Combined with the construction of adding one
clock this gives a solution to the Büchi emptiness problem. Since, as we show
here, adding one clock may be costly, this solution is costly too. A different
approach has been considered in [9, 16] where some sufficient conditions are
proposed for a timed automaton to be free from Zeno runs. Notice that for
obvious complexity reasons, any such condition must be either not complete, or
of the same algorithmic complexity as the emptiness test itself.

1.2 Organization of the paper

In the next section we formalize our problem, and discuss region and zone
abstractions. As an intermediate step we give a short proof of the above men-
tioned result from [24]. Section 3 explains the problems with the transformation
to strongly non-Zeno automata, and describes our alternative method. The fol-
lowing section is devoted to a description of the algorithm. We conclude with
the results of the experiments performed.

2 The Emptiness Problem for Timed Büchi Au-

tomata

2.1 Timed Büchi Automata

Let X be a set of clocks, i.e., variables that range over R≥0, the set of non-
negative real numbers. Clock constraints are conjunctions of comparisons of
variables with integer constants: x#c where x ∈ X is a clock, c ∈ N and
# ∈ {<,≤,=,≥, >}. For instance (x ≤ 3 ∧ y > 0) is a clock constraint. Let
Φ(X) denote the set of clock constraints over clock variables X .

A clock valuation over X is a function ν : X → R≥0. We denote RX
≥0 for

the set of clock valuations over X , and 0 : X → {0} for the valuation that
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associates 0 to every clock in X . We write ν |= φ when ν satisfies φ, i.e. when
every constraint in φ holds after replacing every x by ν(x).

For a valuation ν and δ ∈ R≥0, let (ν + δ) be the valuation such that
(ν + δ)(x) = ν(x) + δ for all x ∈ X . For a set R ⊆ X , let [R]ν be the valuation
such that ([R]ν)(x) = 0 if x ∈ R and ([R]ν)(x) = ν(x) otherwise.

A Timed Büchi Automaton (TBA) is a tuple A = (Q, q0, X, T,Acc) where
Q is a finite set of states, q0 ∈ Q is the initial state, X is a finite set of clocks,
Acc ⊆ Q is a set of accepting states, and T ⊆ Q×Φ(X)× 2X ×Q is a finite set
of transitions (q, g, R, q′) where g is a guard, and R is a reset of the transition.

A configuration of A is a pair (q, ν) ∈ Q × RX
≥0; with (q0,0) being the

initial configuration. A transition (q, ν)
δ,t
−→ (q′, ν′) for t = (q, g, R, q′) ∈ T and

δ ∈ R≥0 is defined when ν + δ ! g and ν′ = [R](ν + δ).
A run of A is an infinite sequence of configurations connected by transitions,

starting from the initial state q0 and the initial valuation ν0 = 0:

(q0, ν0)
δ0,t0−−−→ (q1, ν1)

δ1,t1−−−→ · · ·

A run σ satisfies the Büchi condition if it visits accepting configurations infinitely
often, that is configurations with a state from Acc. The duration of the run is
the accumulated delay:

∑

i≥0 δi. An infinite run σ is Zeno if it has a finite
duration.

Definition 1 The Büchi non-emptiness problem is to decide if A has a non-
Zeno run satisfying the Büchi condition.

The Büchi non-emptiness problem is known to be Pspace-complete [1].
The class of TBA we consider is usually known as diagonal-free TBA since

clock comparisons like x − y ≤ 1 are disallowed. Since we are interested in
the Büchi non-emptiness problem, we can consider automata without an input
alphabet and without invariants since they can be simulated by guards.

2.2 Regions and region graphs

A simple decision procedure for the Büchi non-emptiness problem builds from
A a graph called the region graph and tests if there is a path in this graph
satisfying certain conditions. We will define two types of regions.

Fix a constant M and a finite set of clocks X . Two valuations ν, ν′ ∈ RX
≥0

are region equivalent w.r.t. M , denoted ν ∼M ν′ iff for every x, y ∈ X :

1. ν(x) > M iff ν′(x) > M ;

2. if ν(x) ≤ M , then *ν(x)+ = *ν′(x)+;

3. if ν(x) ≤ M , then {ν(x)} = 0 iff {ν′(x)} = 0;

4. if ν(x) ≤ M and ν(y) ≤ M then {ν(x)} ≤ {ν(y)} iff {ν′(x)} ≤ {ν′(y)}.
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The first three conditions ensure that the two valuations satisfy the same
guards as clock constraints are defined with respect to integer bounds and M is
the maximal constant in A. The last one enforces that for every δ ∈ R≥0 there
is δ′ ∈ R≥0, such that valuations ν + δ and ν′ + δ′ satisfy the same guards since
the difference of x and y is invariant by time elapse.

We will also define diagonal region equivalence (d-region equivalence for
short) that strengthens the last condition to

4d. for every integer c ∈ (−M,M): ν(x) − ν(y) ≤ c iff ν′(x) − ν′(y) ≤ c

This region equivalence is denoted by ∼d
M . Observe that it is finer than ∼M .

A region is an equivalence class of ∼M . We write [ν]∼M
for the region of

ν, and RM for the set of all regions with respect to M . Similarly, for d-region
equivalence we write: [ν]d∼M

and Rd
M . If r is a region or a d-region then we will

write r ! g to mean that every valuation in r satisfies the guard g. Observe
that all valuations in a region, or a d-region, satisfy the same guards.

For an automaton A, we define its region graph, RG(A), using the ∼M rela-
tion, where M is the biggest constant appearing in the guards of its transitions.
Without loss of generality we assume that M ≥ 0, in other words there is at
least one guard in A. Nodes of RG(A) are of the form (q, r) for q a state of

A and r ∈ RM a region. There is a transition (q, r)
t
−→ (q′, r′) if there are

ν ∈ r, δ ∈ R≥0 and ν′ ∈ r′ with (q, ν)
δ,t
−→ (q′, ν′). Observe that a transition in

the region graph is not decorated with a delay. The graph RGd(A) is defined
similarly but using the ∼d

M relation.
It will be important to understand the properties of pre- and post-stability of

regions or d-regions [25]. We state them formally. A transition (q, r)
t
−→ (q′, r′)

in a region graph or a d-region graph is:

• Pre-stable if for every ν ∈ r there are ν′ ∈ r′, δ ∈ R≥0 s.t. (q, ν)
δ,t
−→

(q′, ν′).

• Post-stable if for every ν′ ∈ r′ there are ν ∈ r, δ ∈ R≥0 s.t. (q, ν)
δ,t
−→

(q′, ν′).

The following lemma explains our interest in ∼d
M relation. The main fact is

that both region graphs are pre-stable and this allows to decide the existence
of a non-Zeno run easily by Theorem 4.

Lemma 2 (Pre and post-stability [8]) Transitions inRGd(A) are pre-stable
and post-stable. Transitions in RG(A) are pre-stable but not necessarily post-
stable.

Consider two sequences

(q0, ν0)
δ0,t0−−−→ (q1, ν1)

δ1,t1−−−→ · · · (1)

(q0, r0)
t0−→ (q1, r1)

t1−→ · · · (2)
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where the first is a run in A, and the second is a path in RG(A) or RGd(A).
We say that the first is an instantiation of the second if νi ∈ ri for all i ≥ 0.
Equivalently, we say that the second is an abstraction of the first. The following
lemma is a direct consequence of the pre-stability property.

Lemma 3 Every path in RG(A) is an abstraction of a run ofA, and conversely,
every run of A is an instantiation of a path in RG(A). Similarly for RGd(A).

This lemma allows us to relate the existence of an accepting run of A to the
existence of paths with special properties in RG(A) or RGd(A). We say that a
path as in (2) satisfies the Büchi condition if it has infinitely many occurrences
of states from Acc. The path is called progressive [1, 25] if for every clock x ∈ X :

• either x is almost always above M : there is n with ri ! x > M for all
i > n;

• or x is reset infinitely often and strictly positive infinitely often: for every
n there are i, j > n such that ri ! (x = 0) and rj ! (x > 0).

Theorem 4 ([1]) A TBA A has a non-Zeno run satisfying the Büchi condi-
tions iff RG(A) has a progressive path satisfying the Büchi condition. Similarly
for RGd(A).

The progress criterion above can be encoded adding an extra Büchi accepting
condition [1, 25]. While theorem 4 gives an algorithm for solving our problem,
it turns out that this method is very impractical. The number of regions for
clocks X and constant M turns out to be O(|X |!.2|X|M |X|) [1] and constructing
all of them, or even searching through them on-the-fly, has proved to be very
costly.

2.3 Zones and zone graphs

Timed verification tools use zones instead of regions. A zone is a set of valuations
defined by a conjunction of two kinds of constraints: comparison of the difference
between two clocks with a constant like x−y#c, or comparison of the value of a
single clock with a constant like x#c for x ∈ X , c ∈ N and # ∈ {<,≤,=,≥, >}.
For example (x − y ≥ 1) ∧ (y < 2) is a zone. While at first sight it may seem
that there are more zones than regions, this is not the case if we count only
those that are reachable from the initial valuation.

Since zones are sets of valuations defined by constraints, one can define
transitions directly on zones. For a transition t in A and a zone Z, we have

(q, Z)
t
−→ (q′, Z ′) if Z ′ is the set of valuations ν′ such that there exists ν ∈

Z and δ ∈ R≥0 and (q, ν)
δ,t
−→ (q′, ν′). It is well-known that Z ′ is a zone.

Moreover zones can be represented using Difference Bound Matrices (DBMs),
and transitions can be computed efficiently on DBMs [14]. The problem is that
the number of reachable zones is not guaranteed to be finite [13].
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In order to ensure that the number of reachable zones is finite, one intro-
duces abstraction operators. We mention the three most common ones in the
literature. They refer to region graphs, RG(A) or RGd(A), and use the constant
M that is the maximal constant appearing in the guards of A.

• ClosureM (Z): the smallest union of regions containing Z;

• ClosuredM (Z): similarly but for d-regions;

• ApproxM (Z): the smallest union of d-regions that is convex and that
contains Z.

The following lemma establishes the links between the three abstraction op-
erators, and is very useful to transpose reachability results from one abstraction
to the other.

Lemma 5 ([8]) For every zone Z: Z ⊆ ClosuredM (Z) ⊆ ApproxM (Z) ⊆
ClosureM (Z).

Similar to region graphs, we define simulation graphs where after every tran-
sition a specific approximation operation is used. So we have three graphs corre-
sponding to the three approximation operations above. Notice that ClosureM (Z)
and ClosuredM (Z) may not be convex, hence they may not be zones [8].

Take an automaton A and let M be the biggest constant that appears in
the guards of its transitions. The simulation graph SG(A) has nodes of the
form (q, S) where q is a state of A and S is a set of valuations. The initial

node is (q0, {0}). There is a transition (q, S)
t
−→ (q′,ClosureM (S′)) in SG(A)

if S′ is the set of valuations ν′ such that (q, ν)
δ,t
−→ (q′, ν′) for some ν ∈ S and

δ ∈ R≥0. Similarly, we define SGd(A) and SGa(A) by replacing ClosureM with
ClosuredM and ApproxM respectively. Observe that for every node (q, S) that is
reachable in one of the three graphs above, S is a union of regions or d-regions.
The notions of an abstraction of a run of A, and an instantiation of a path in
the simulation graph, are defined in the same way as that of region graphs.

Tools like Kronos or Uppaal use the ApproxM abstraction. The two other
abstractions are less interesting for implementations since the result may not be
convex. Nevertheless, they are useful in proofs. The following Lemma (cf. [13])
says that transitions in SG(A) are post-stable with respect to regions.

Lemma 6 Let (q, S)
t
−→ (q′, S′) be a transition in SG(A) such that both S and

S′ are unions of regions. For every region r′ ⊆ S′, there is a region r ⊆ S such

that (q, r)
t
−→ (q′, r′) is a transition in RG(A).

Proof
Take a transition (q, S)

t
−→ (q′, S′) and let us examine what it means. By

definition, S′ = ClosureM (S′′) where S′′ is the set of valuations ν′′ that satisfy

(q, ν)
δ,t
−→ (q′, ν′′) for some ν ∈ S and δ ∈ R≥0. Consider r′ ⊆ S′; the intersection

r′ ∩ S′′ is not empty. Take ν′ ∈ r′ ∩ S′′, and let ν ∈ S be a valuation such that
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(0, 0 = x = y) (1, 0 = x = y)

(1, 0 = x < y)

(0, 0 = x = y) (2, 0 = y = x)

(2, 0 = y < x)

(0, 0 = x = y) · · ·

Figure 1: A part of the region graph for the automaton A2 in Figure 9.

(0, 0 = x = y) (1, 0 = x ≤ y) (0, 0 = x = y) (2, 0 = y ≤ x) (0, 0 = x = y) · · ·

Figure 2: A part of the symbolic graph for the automaton A2 in Figure 9.

(q, ν)
δ,t
−→ (q′, ν′) for some δ ∈ R≥0. Let r be the region of ν. We have that

r ∩ S is not empty, hence r ⊆ S as S is a union of regions. By definition

(q, r)
t
−→ (q′, r′) is a transition in RG(A). "

We get a correspondence between paths in simulation graphs and runs of A.

Theorem 7 ([24]) Every path in SG(A) is an abstraction of a run of A, and
conversely, every run of A is an instantiation of a path in SG(A). Similarly
for SGd and SGa.

Proof
We first show that a path in SG(A) is an abstraction of a run of A. Take a path

(q0, S0)
t0−→ (q1, S1)

t1−→ . . . in SG(A). Construct a DAG with nodes (i, qi, ri)
such that ri is a region in Si. We put an edge from (i, qi, ri) to (i+1, qi+1, ri+1)

if (qi, ri)
ti−→ (qi+1, ri+1). By Lemma 6, every node in this DAG has at least

one predecessor, and the branching of every node is bounded by the number of
regions. Hence, this DAG has an infinite path that is a path in RG(A). By
Lemma 3 this path can be instantiated to a run of A.

To conclude the proof one can easily verify that a run of A can be abstracted
to a path in SGd(A). Then using Lemma 5 this path can be converted to a
path in SGa(A), and later to one in SG(A). "

Observe that Theorem 7 does not guarantee that a path we find in a sim-
ulation graph has an instantiation that is non-Zeno. This cannot be decided
from SG(A) by using the progress criterion defined in page 6 as we show now.
Consider for instance the automaton A2 in Figure 9 which has only Zeno runs
as both x and y must remain equal to 0 on every run. Figure 1 shows a part of
RG(A2). The infinite path starting from node (0, 0 = x = y) is not progressive
as none of the clocks can have a positive value. Moreover, it can be seen that ev-
ery node where a clock has a positive value is a deadlock node. Figure 2 depicts
the corresponding part of SG(A2). This path satisfies the progress criterion as
both x and y are reset and may have positive values infinitely often, despite
all its instantiations being Zeno. The progress criterion fails due to the loss of
pre-stability in SG(A2): none of the valuations with either x > 0 or y > 0 have
a successor. In Section 3, we show how to avoid this problem.
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bk

ak

. . . . . .

y ≤ d {x1, . . . , xk−1}

Vk

bk

ak1 ak2

. . . . . .

y ≤ d ∧
z ≥ 1

{z} y ≤ d

{x1, . . . , xk−1}

Wk = SNZ(Vk)

Figure 3: The gadgets Vk (left) and Wk = SNZ(Vk) (right).

In the subsequent sections, we are interested only in the simulation graph
SGa(A). Observe that the symbolic zone obtained by the approximation of a
zone using ApproxM is in fact a zone. Hence, we prefer to call it a zone graph
and denote it as ZGa(A). Every node of ZGa(A) is of the form (q, Z) where Z
is a zone.

3 Finding non-Zeno paths

As we have remarked above, in order to use Theorem 7 we need to be sure that
a path we get can be instantiated to a non-Zeno run. We discuss the solutions
proposed in the literature, and then offer a better one. Thanks to pre-stability
of the region graph, the progress criterion on regions has been defined in [1] for
selecting runs from RG(A) that have a non-Zeno instantiation (see Section 2.2).
Notice that the semantics of TBA in [1] constrains all delays δi to be strictly
positive, but the progress criterion can be extended to the stronger semantics
that is used nowadays (see [25] for instance). However, since zone graphs are
not pre-stable, this method cannot be directly extended to zone graphs.

3.1 Adding one clock

A common solution to deal with Zeno runs is to transform an automaton into
a strongly non-Zeno automaton, i.e. such that all runs satisfying the Büchi
condition are guaranteed to be non-Zeno. We present this solution here and
discuss why, although simple, it may add an exponential factor in the decision
procedure.

The main idea behind the transformation of A into a strongly non-Zeno
automaton SNZ(A) is to ensure that on every accepting run, time elapses for
1 time unit infinitely often. Hence, it is sufficient to check for the existence
of an accepting run as it is non-Zeno for granted. Consider the automaton Vk

and its transformation into Wk = SNZ(Vk) in Figure 3. The transformation
adds one clock z and duplicates accepting states (e.g. ak in Vk). One copy
is no longer accepting whereas the other is accepting, but it can be reached
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b2

0 ≤ y ≤ x1 ≤ x2

a2

0 ≤ y ≤ x1 ≤ x2

∧ y ≤ d

b2

0 = x1 ≤ y ≤ x2

a2

0 ≤ x1 ≤ y ≤ x2

∧ y ≤ d

. . .

. . .

. . .

y ≤ d

{x1}

y ≤ d

{x1}

Figure 4: Part of ZG(V2)

. . . ck0 ck1 . . . ckk cky . . .
{xk} {xk−1} {x1} {y}

Figure 5: The gadget Rk.

only when z ≥ 1 (these are respectively ak2 and ak1 in Wk). Moreover, when an
accepting state is reached z is reset to 0. As a result, every accepting run in
Vk has a corresponding run in Wk where every occurrence of ak is replaced by
an occurrence of either ak1 or ak2 . Since two occurrences of the accepting state
ak1 have to be separated by at least one time unit, an accepting run in Wk is
necessarily non-Zeno.

A slightly different construction is mentioned in [2]. Of course one can
also have other modifications, and it is impossible to treat all the imaginable
constructions at once. Our objective here is to show that the constructions
proposed in the literature produce a phenomenon causing proliferation of zones
that can sometimes be exponential in the number of clocks. The discussion
below will focus on the construction from [25], but the one from [2] suffers from
the same problem.

The problem comes from the fact that the constraint z ≥ 1 may be a source
of rapid multiplication of the number of zones in the zone graph of SNZ(A).
Consider Vk and Wk from Figure 3 and let us say that k = 2. Starting at the
state b2 of V2 in the zone 0 ≤ y ≤ x1 ≤ x2, there are two reachable zones with
state b2. This is depicted in Figure 4 where after two traversals of the cycle
formed by b2 and a2, we reach a zone that is invariant for the cycle. Moreover,
from the two zones with state b2 in Figure 4, reseting x1 followed by y as R1

(in Figure 5) does, we reach the same zone 0 ≤ y ≤ x1 ≤ x2.
In contrast starting in b2 of W2 = SNZ(V2) from 0 ≤ y ≤ x1 ≤ x2 ≤ z

gives at least d zones. The part of ZG(W2) in Figure 6 gives the sequence of
transitions in the zone graph of W2 starting from the zone (b2, 0 ≤ y ≤ x1 ≤
x2 ≤ z) by successive iterations of the cycle that goes through b2, a21 and a22.
After a certain point, every traversal induces an extra distance between the
clocks y and z. Clearly, there are at least d zones in this case. Resetting x1

followed by y as R1 (in Figure 5) does still yield d zones
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. . .

. . .

b2

0 ≤ y ≤ x1 ≤ x2 ≤ z
a2
1

0 = z ≤ y ≤ x1 ≤ x2

∧ y − z ≥ 0 ∧ y ≤ d

a2
2

0 ≤ z ≤ y ≤ x1 ≤ x2

y − z ≥ 0

. . .
b2

0 = x1 ≤ z ≤ y ≤ x2

a2
1

0 = z ≤ x1 ≤ y ≤ x2

∧ y − z ≥ 1 ∧ y ≤ d

a2
2

0 ≤ z ≤ x1 ≤ y ≤ x2

∧ y − z ≥ 1

. . .
b2

0 = x1 ≤ z ≤ y ≤ x2

∧ y − z ≥ 1

. . . . . .

. . .
b2

0 = x1 ≤ z ≤ y ≤ x2

∧ y − z ≥ d− 1

a2
1

0 = z ≤ x1 ≤ y ≤ x2

∧ y − z = d ∧ y = d

a2
2

0 ≤ z ≤ x1 ≤ y ≤ x2

∧ y − z = d

. . .
b2

0 = x1 ≤ z ≤ y ≤ x2

∧ y − z = d

y ≤ d

∧ z ≥ 1

{z}

{x1}

y ≤ d

∧ z ≥ 1

{z}

{x1}

y ≤ d

∧ z ≥ 1

{z}

{x1}

y ≤ d

∧ z ≥ 1

{z}

{x1}

Figure 6: Part of ZG(W2).
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Rn Vn
. . . R2 V2

An

Rn Wn
. . . R2 W2

Bn

Figure 7: Automata An (left) and Bn = SNZ(An) (right).

We now exploit this fact to give an example of a TBA An whose zone graph
has a number of zones linear in the number of clocks, but Bn = SNZ(An) has
a zone graph of size exponential in the number of clocks.

An, in Figure 7, is constructed from the automata gadgets Vk and Rk as
shown in Figures 3 and 5. Observe that the role of Rk is to enforce an order
0 ≤ y ≤ x1 ≤ · · · ≤ xk between clock values. By induction on k one can
compute that there are only two zones at locations bk since Rk+1 made the two
zones in bk+1 collapse into the same zone in bk. Hence the number of nodes in
the zone graph of An is O(n).

Let us now consider Bn, the strongly non-Zeno automaton obtained from An

following [25]. Every gadget Vk gets transformed to Wk as shown in Figure 7.
While exploring Wk, one introduces a distance between the clocks xk−1 and xk.
So when leaving it one gets zones with xk −xk−1 ≥ c, where c ∈ {0, 1, 2, . . . , d}.
The distance between xk and xk−1 is preserved by Rk. In consequence, Wn

produces at least d + 1 zones. For each of these zones Wn−1 produces d + 1
more zones. In the end, the zone graph of Bn has at least (d + 1)n−1 zones at
the state b2. The zones obtained with the state bk are of the form

0 = x1 = . . . = xk−1 ≤ z ≤ y ≤ xk ≤ . . . ≤ xn

∧
∧

i∈{k,...,n−1}

xi+1 − xi ≥ ci where each ci ∈ {0, 1, . . . , d}

So the zone graph has at least (d + 1)n−k+1 zones at state bk. Hence, the
zone graph of Bn contains at least (d+ 1)n−1 zones.

We have thus shown that An has O(n) zones while Bn = SNZ(An) has an
exponential number of zones even when the constant d is 1. One could argue
that the transformation in [25] can be transformed in such a way to prevent the
combinatorial explosion. In particular, it is often suggested to replace z ≥ 1 by
a guard that matches the biggest constant in the automaton, that is z ≥ d in our
case. However, this would still yield an exponential blowup as every zone with
state bk yields two different zones with state bk−1 that do not collapse going
through Rk−1. Observe also that the construction shows that even with two
clocks the number of zones blows exponentially in the binary representation of
d. Note that the automaton An does not have a non-Zeno accepting run. Hence,
every search algorithm is compelled to explore all the zones of Bn.

12



3.2 A more efficient solution

We aim to decide if a given path in a zone graph has a non-Zeno instantiation.
This is equivalent to deciding if all instantiations of a path are Zeno. There are
essentially two reasons for this:

• there may be a clock x that is reset finitely many times but bound infinitely
many times by guards x ≤ c:

•
x≤1
−−−→ •

{x}
−−→ • −→ · · ·−→ •

x≤2
−−−→ • −→ •

x≤1
−−−→ • −→ · · ·

︸ ︷︷ ︸

suffix with no reset of x

• or time may not be able to elapse at all due to infinitely many transitions
that check x = 0, forcing x to stay at 0:

•
{y}
−−→ •

x=0
−−→ •

{x}
−−→ •

y=0
−−→ •

{y}
−−→ •

x=0
−−→ · · ·

Our solution stems from a realization that we only need one non-Zeno run
satisfying the Büchi condition and so in a way transforming an automaton to
strongly non-Zeno is excessive. We propose not to modify the automaton, but
to introduce additional information to the zone graph ZGa(A). The nodes will
now be triples (q, Z, Y ) where Y ⊆ X is the set of clocks that can potentially
be equal to 0. It means in particular that other clock variables, i.e. those from
X−Y are assumed to be bigger than 0. We write (X−Y ) > 0 for the constraint
saying that all the variables in X − Y are not 0.

Definition 8 Let A be a TBA over a set of clocks X . The guessing zone graph
GZGa(A) has nodes of the form (q, Z, Y ) where (q, Z) is a node in ZGa(A) and
Y ⊆ X . The initial node is (q0, Z0, X), with (q0, Z0) the initial node of ZGa(A).
In GZGa(A) there are transitions:

• (q, Z, Y )
t
−→ (q′, Z ′, Y ∪ R) if there is a transition (q, Z)

t
−→ (q′, Z ′) in

ZGa(A) with t = (q, g, R, q′), and there are valuations ν ∈ Z, ν′ ∈ Z ′,

and δ ∈ R≥0 such that ν + δ ! (X − Y ) > 0 and (q, ν)
δ,t
−→ (q, ν′);

• (q, Z, Y )
τ
−→ (q, Z, Y ′), on a new auxiliary letter τ , for Y ′ = ∅ or Y ′ = Y .

The additional component Y expresses some information about possible valu-
ations with which we can take a transition. The first case is about transitions
that are realizable when clocks outside Y are positive. While it is formulated
in a more general way, one can think of this transition as being instantaneous:
δ = 0. Then we have the second kind of transitions, namely the transitions on
τ , that allow us to nondeterministically guess when time can pass.

It will be useful to distinguish some types of transitions and nodes ofGZGa(A).

Definition 9 We call a transition of GZGa(A) a zero-check when some clock
is forced to be equal to 0 by the guard g of the transition; formally, for some
clock x, for all ν ∈ Z, and all δ ∈ R≥0 such that ν+δ ! g we have (ν+δ)(x) = 0.
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The role of Y sets will become obvious in the construction below. In short,
from a node (q, Z, ∅), that is with Y = ∅, every reachable zero-check will be
preceded by the reset of the variable that is checked, and hence nothing prevents
a time elapse in this node. We will be particularly interested in the following
types of nodes to find non-Zeno accepting runs.

Definition 10 A node (q, Z, Y ) of GZGa(A) is clear if the third component is
empty: Y = ∅. A node is A node is accepting if q is an accepting state.

Example 11 Figure 8 depicts a TBA A1 along with its zone graph ZGa(A1)
and its guessing zone graph GZGa(A1) where τ -loops have been omitted.

The guessing zone graph construction can be optimized by restricting the
guessed sets to clocks that are indeed equal to zero in some valuation in the
zone. For instance, from the node (b, x ≥ 1, {x}) in Figure 8, x cannot be
checked for zero unless it is first reset. Hence, this node can safely be removed
from GZGa(A1), yielding a smaller graph. In the resulting graph, the only loop
goes through a τ transition. This emphasizes that time must elapse from node
(a, x = 0, {x}) in order to take a transition with guard x ≥ 1. An optimized
guessing zone graph construction is given in [19].

a

b

x ≥ 1
x ≤ 1
{x}

A1

a, x = 0

b, x ≥ 1

x ≥ 1
x ≤ 1
{x}

ZGa(A1)

a, x = 0, {x} a, x = 0, ∅

b, x ≥ 1, {x} b, x ≥ 1, ∅

x ≥ 1

τ

x ≥ 1
x ≤ 1
{x}

τ

x ≤ 1{x}

GZGa(A1)

Figure 8: A TBA A1 and the guessing zone graph GZGa(A1) (with τ self-loops
omitted for clarity).

Notice that directly from the definition it follows that a path in GZGa(A)
determines a path in ZGa(A) obtained by removing τ transitions and the third
component from nodes.

In order to state the main theorem succinctly we need some notions

Definition 12 A variable x is bounded by a transition of GZGa(A) if the guard
of the transition implies x ≤ c for some constant c. More precisely: x is bounded

by the transition (q, Z, Y )
(q,g,R,q′)
−−−−−−→ (q′, Z ′, Y ′), if for all ν ∈ Z and δ ∈ R≥0

such that ν + δ ! g, we have (ν + δ)(x) ≤ c for some c ∈ N. A variable is reset
by the transition if it belongs to the reset set R of the transition.
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Definition 13 We say that a path is blocked if there is a variable that is
bounded infinitely often and reset only finitely often by the transitions on the
path. Otherwise the path is called unblocked.

Obviously, paths corresponding to non-Zeno runs are unblocked.

Theorem 14 A TBA A has a non-Zeno run satisfying the Büchi condition iff
there exists an unblocked path in GZGa(A) visiting both an accepting node and
a clear node infinitely often.

The proof of Theorem 14 follows from Lemmas 15 and 16 below. It is in
Lemma 16 that the third component of states is used.

At the beginning of the section we had recalled that the progress criterion [1]
stated in page 6 characterizes the paths in region graphs that have non-Zeno
instantiations. We had mentioned that it cannot be directly extended to zone
graphs since their transitions are not pre-stable. Lemma 16 below shows that
by slightly complicating the zone graph we can recover a result very similar to
Lemma 4.13 in [1].

Lemma 15 If A has a non-Zeno run satisfying the Büchi condition, then in
GZGa(A) there is an unblocked path visiting both an accepting node and a
clear node infinitely often.

Proof
Let ρ be a non-Zeno run of A:

(q0, ν0)
δ0,t0−−−→ (q1, ν1)

δ1,t1−−−→ · · ·

By Theorem 7, it is a concretization of a path σ in ZGa(A):

(q0, Z0)
t0−→ (q1, Z1)

t1−→ · · ·

Let σ′ be the following sequence:

(q0, Z0, Y0)
τ
−→ (q0, Z0, Y

′
0)

t0−→ (q1, Z1, Y1)
τ
−→ (q1, Z1, Y

′
1)

t1−→ · · ·

where Y0 = X , Yi is determined by the transition, and Y ′
i = Yi unless δi > 0

when we put Y ′
i = ∅. We need to see that this is indeed a path in GZGa(A).

For this we need to see that every transition (qi, Zi, Y ′
i )

ti−→ (qi+1, Zi+1, Yi+1) is
realizable from a valuation ν such that ν ! (X−Y ′

i ) > 0. But an easy induction
on i shows that actually νi ! (X − Y ′

i ) > 0.
Since ρ is non-Zeno there are infinitely many i with Y ′

i = ∅. Since the initial
run is non-Zeno, σ′ is unblocked. "

Lemma 16 Suppose GZGa(A) has an unblocked path visiting infinitely often
both a clear node and an accepting node then A has a non-Zeno run satisfying
the Büchi condition.
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Proof
Let σ be a path in GZGa(A) as required by the assumptions of the lemma
(without loss of generality we assume every alternate transition is a τ transition):

(q0, Z0, Y0)
τ
−→ (q0, Z0, Y

′
0)

t0−→ · · · (qi, Zi, Yi)
τ
−→ (qi, Zi, Y

′
i )

ti−→ · · ·

Take a corresponding path in ZGa(A) and one instantiation ρ = (q0, ν0), (q1, ν1) . . .
that exists by Theorem 7. If it is non-Zeno then we are done.

Suppose ρ is Zeno. We now show how to build a non-Zeno instantiation
of σ from ρ. Let Xr be the set of variables reset infinitely often on σ. As σ
is unblocked, every variable not in Xr is bounded only finitely often. Since
ρ is Zeno, there is an index m such that the duration of the suffix of the run
starting from (qm, νm) is bounded by 1/2, and no transition in this suffix bounds
a variable outside Xr. Let n > m be such that every variable from Xr is reset
between m and n. Observe that νn(x) < 1/2 for every x ∈ Xr.

Take positions i, j such that i, j > n, Yi = Yj = ∅ and all the variables from
Xr are reset between i and j. We look at the part of the run ρ:

(qi, νi)
δi,ti−−−→ (qi+1, νi+1)

δi+1,ti+1

−−−−−−→ . . . (qj , νj)

and claim that for every ζ ∈ R≥0 the sequence of the form

(qi, ν
′
i)

δi,ti−−−→ (qi+1, ν
′
i+1)

δi+1,ti+1

−−−−−−→ . . . (qj , ν
′
j)

is a part of a run of A where ν′k for k = i, . . . , j satisfy:

1. ν′k(x) = νk(x) + ζ + 1/2 for all x /∈ Xr,

2. ν′k(x) = νk(x) + 1/2 if x ∈ Xr and x has not been reset between i and k.

3. ν′k(x) = νk(x) otherwise, i.e., when x ∈ Xr and x has been reset between
i and k.

Before proving this claim, let us explain how to use it to conclude the proof.
The claim shows that in (qi, νi) we can pass 1/2 units of time and then construct
a part of the run of A arriving at (qj , ν′j) where ν′j(x) = νj(x) for all variables
in Xr, and ν′j(x) = νj(x) + 1/2 for other variables. Now, we can find l > j, so
that the pair (j, l) has the same properties as (i, j). We can pass 1/2 units of
time in j and repeat the above construction getting a longer run that has passed
1/2 units of time twice. This way we construct a run that passes 1/2 units of
time infinitely often, hence it is non-Zeno. By the construction it passes also
infinitely often through accepting nodes.

It remains to prove the claim. Take a transition (qk, νk)
δk,tk−−−→ (qk+1, νk+1)

and show that (qk, ν′k)
δk,tk−−−→ (qk+1, ν′k+1) is also a transition allowed by the

automaton. Let g and R be the guard of tk and the reset of tk, respectively.
First we need to show that ν′k + δk satisfies the guard of tk. For this, we

need to check if for every variable x ∈ X the constraints in g concerning x are
satisfied. We have three cases:
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• If x /∈ Xr then x is not bounded by the transition tk, that means that in g
the constraints on x are of the form (x > c) or (x ≥ c). Since (νk + δk)(x)
satisfies these constraints so does (ν′k + δk)(x) ≥ (νk + δk)(x).

• If x ∈ Xr and it is reset between i and k then ν′k(x) = νk(x) so we are
done.

• Otherwise, we observe that x /∈ Yk. This is because Yi = ∅, and then only
variables that are reset are added to Y . Since x is not reset between i
and k, it cannot be in Yk. By definition of transitions in GZGa(A) this
means that g∧ (x > 0) is consistent. We have that 0 ≤ (νk + δk)(x) < 1/2
and 1/2 ≤ (ν′k + δk)(x) < 1. So ν′k + δk satisfies all the constraints in g
concerning x as νk + δk does.

This shows that there is a transition (qk, ν′k)
δk,tk−−−→ (qk+1, ν′) for the uniquely

determined ν′ = [R](ν′k+δk). It is enough to show that ν′ = ν′k+1. For variables
not in Xr it is clear as they are not reset. For variables that have been reset
between i and k this is also clear as they have the same values in ν′k+1 and ν′.
For the remaining variables, if a variable is not reset by the transition tk then
its value is the same in ν′ and ν′k. If it is reset then its value in ν′ becomes 0;
but so it is in ν′k+1, and so the third condition holds. This proves the claim. "

Finally, we provide an explanation as to why the proposed solution does
not produce an exponential blowup. At first it may seem that we have gained
nothing because when adding arbitrary sets Y we have automatically caused
exponential blowup to the zone graph. We claim that this is not the case for
the part of GZGa(A) reachable from the initial node, namely a node with the
initial state of A, the zone putting every clock to 0, and Y = X .

We say that a zone orders clocks if for every two clocks x, y, the zone implies
that at least one of x ≤ y, or y ≤ x holds.

Lemma 17 If a node with a zone Z is reachable from the initial node of the
zone graph ZGa(A) then Z orders clocks. The same holds for GZGa(A).

Proof
First notice that in the initial zone, all the clocks are equal to each other. Now,

consider a zone Z that orders clocks. Let (q, Z)
t
−→ (q′, Z ′) be a transition of

ZGa(A). This means that there exists a transition (q, Z)
t
−→ (q′, Z ′

1) in the
(unabstracted) zone graph ZG(A) such that Z ′ = ApproxM (Z ′

1). Directly from
the definition of transitions we have that Z ′

1 orders clocks. It remains to check
that, the clock ordering in Z ′

1 is preserved in Z ′ = ApproxM (Z ′
1). Suppose not,

then let x1 ≤ · · · ≤ xn be the ordering in Z ′
1. We get that Z ′ ∧ (x1 ≤ · · · ≤ xn)

is a smaller convex union of d-regions than Z ′ that contains Z ′
1 (recall that

M ≥ 0) – a contradiction. For the second statement observe that for every
node (q, Z, Y ) in GZGa(A), (q, Z) is reachable in ZGa(A). "

Suppose that Z orders clocks. We say that a set of clocks Y respects the
order given by Z if whenever y ∈ Y and Z implies x ≤ y then x ∈ Y . In other
words, Y is downward closed with respect to the ordering constraint in Z.
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Lemma 18 If a node (q, Z, Y ) is reachable from the initial node of the guessing
zone graph GZGa(A) then Y respects the order given by Z.

Proof
The proof is by induction on the length of a path. In the initial node (q0, Z0, X),
the set X obviously respects the order as it is the set of all clocks. Now take

a transition (q, Z, Y )
t
−→ (q′, Z ′, Y ′) with Y respecting the order in Z. We need

to show that Y ′ respects the order in Z ′. By the definition of transitions in

GZGa(A) there are ν ∈ Z, ν′ ∈ Z ′ and δ ∈ R≥0 such that (q, ν)
δ,t
−→ (q′, ν′)

and ν + δ ! (X − Y ) > 0. Take y ∈ Y ′ and suppose that Z ′ implies x ≤ y for
some clock x. There are three cases depending on which of the variables y, x
are being reset by the transition.

• If x is reset by the transition then, by definition x ∈ Y ′.

• If y is reset then Z ′ implies y = 0. Hence Z ′ implies that x = 0. When x
is not reset, x is checked for 0 on t. Hence, x ∈ Y and x ∈ Y ′.

• The remaining case is when none of the two variables is reset by the
transition. As ν′ ∈ Z ′, we have that ν′ ! x ≤ y; and in consequence
ν ! x ≤ y. Since Z orders clocks and ν ∈ Z, we must have that Z implies
x ≤ y. As y has not been reset, y ∈ Y . By assumption that Y orders
clocks, x ∈ Y .

"

The above two lemmas give us the desired bound.

Theorem 19 Let |ZGa(A)| be the size of the zone graph, and |X | be the number
of clocks in A. The number of reachable nodes of GZGa(A) is bounded by
|ZGa(A)|.(|X |+ 1).

The theorem follows directly from the above two lemmas. Of course, imposing
that zones have ordered clocks in the definition of GZGa(A) we would get the
same bound for the entire GZGa(A).

3.3 Examples of guessing zone graphs

Figure 8 in Section 3.2 depicts a TBA A1 along with ZGa(A1) and GZGa(A1)

(where the τ -loops have been omitted). In order to fire transition b
x≤1,{x}
−−−−−→ a

time must not elapse in b. The third component Y does not help to detect
that time cannot elapse in b as in GZGa(A1) the transition is allowed for both
Y = {x} and Y = ∅. However, as soon as a strongly-connected component
(SCC) contains a transition x ≥ 1 and a transition that resets x, it has a non-
Zeno run, and the third component does not play any role.

The third component is only useful for the case where an SCC contains no
transition with a guard implying x > 0 for some clock x that is also reset on
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some transition in the SCC. In such a case, zero-checks may prevent time to
elapse. We illustrate this case on the next two examples that emphasize how
the third component added to the states of the zone graph allows to distinguish
between Zeno runs and non-Zeno runs.

The TBA A2 shown in Figure 9 has only runs where the time cannot elapse
at all. This is detected in GZGa(A2) as all states in the only non-trivial SCC
have Y = {x, y} as the third component. This means that from every state
there exists a reachable zero-check that is not preceded by the corresponding
reset, hence preventing time to elapse. Notice that the correctness of this ar-
gument relies on the fact that for every (q, Z, Y ) in GZGa(A2), and for every
transition t = (q, g, R, q′), even if t is fireable in ZGa(A2) from (q, Z), it must
also be fireable under the supplementary hypothesis (X − Y ) > 0 given by Y in
GZGa(A2).

The TBA A3 in Figure 9 admits a non-Zeno run. This can be read from
GZGa(A3) since the SCC composed of the four zones with Y = {x, y} together
with (z2, ∅) and (z3, {y}) contains a clear node. This is precisely the state where
time can elapse as every reachable zero-check is preceded by the corresponding
reset.

4 Algorithm

In this section, we provide an on-the-fly algorithm for the Büchi non-emptiness
problem using the guessing zone graph construction developed in Section 3.2.
In the later part of the section, we observe that in most cases, non-Zenoness
could be detected directly from the standard zone graph, without extra con-
struction. We provide an optimized on-the-fly algorithm taking into account
these observations.

We will use Theorem 14 to algorithmically check if an automaton A has
a non-Zeno run satisfying the Büchi condition. The theorem requires to find
an unblocked path in GZGa(A) visiting both an accepting node and a clear
node infinitely often. This problem is similar to that of testing for emptiness of
automata with generalized Büchi conditions as we need to satisfy two infinitary
conditions at the same time. The requirement of a path being unblocked adds
additional complexity to the problem. The best algorithms for testing emptiness
of automata with generalized Büchi conditions are based on Tarjan’s algorithm
for strongly connected components (SCC) [22, 15]. So this is the way we take
here. In particular, we adopt the variant given by Couvreur [11, 12].

In general, the verification problem for timed systems involves checking if a
network of timed automata A1, . . . ,An satisfies a given property φ. Assuming
that φ can be translated into a (timed) Büchi automaton A¬φ, we reduce the
verification problem to the emptiness of a timed Büchi automaton A defined as
a product A1×A2× · · ·×An×A¬φ for some synchronization policy. Couvreur’s
algorithm is an extension of Tarjan’s algorithm for computing maximal SCCs in
a graph. One of its main features is that it stops as soon as a (non necessarily
maximal) SCC with an accepting state has been found. In addition, it handles
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Figure 9: Examples of guessing zone graphs (τ self-loops have been omitted for
clarity)
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multiple accepting conditions efficiently. To this regard, the algorithm computes
the set of accepting conditions in each SCC of A. Initially, each state s in A
is considered as a trivial SCC labelled with the accepting conditions of s. The
algorithm computes the states of A on-the-fly in a depth-first search (DFS)
manner starting from the initial state. During the search, when a cycle is
found, all the SCCs in the cycle are merged into a bigger SCC Γ that inherits
their accepting conditions. If Γ contains all the required accepting conditions,
the algorithm stops declaring A to be not empty. Notice that Γ need not be
maximal. Otherwise it resumes the DFS on A. We direct the reader to [11, 12,
18] for further details on the Couvreur’s algorithm.

In the next section, we show how to enhance Couvreur’s algorithm to detect
runs that are not only accepting but also non-Zeno. It is achieved by associating
extra information to the SCCs in A. This information is updated when SCCs
are merged like for accepting conditions.

4.1 Emptiness check on GZGa(A)

We apply Couvreur’s algorithm for detecting maximal SCCs in GZGa(A). Dur-
ing the computation of the maximal SCCs, we keep track of whether an accept-
ing node and a clear node have been seen. For the unblocked condition we
use two sets of clocks UΓ and RΓ that respectively contain the clocks that are
bounded and the clocks that are reset in the SCC Γ. A clock from UΓ − RΓ is
called blocking since being bounded and not reset it puts a limit on the time
that can pass. At the end of the exploration of Γ we check if:

1. we have passed through an accepting node and a clear node,

2. there are no blocking clocks: UΓ ⊆ RΓ.

If the two conditions are satisfied then we can conclude saying that A has an
accepting non-Zeno run. Indeed, a path passing infinitely often through all the
nodes of Γ would satisfy the conditions of Theorem 14, giving a required run of
A. If the first condition does not hold then the same theorem says that Γ does
not have a witness for a non-Zeno run of A satisfying the Büchi condition.

The interesting case is when the first condition holds but not the second.
The following lemma yields an algorithm in that case.

Lemma 20 Let Γ be an SCC in GZGa(A) with an accepting node and a clear
node, and such that UΓ /⊆ RΓ. There exists an unblocked path in Γ that visits
both an accepting node and a clear node infinitely often iff there exists a sub-
SCC Γ′ ⊆ Γ with an accepting node and a clear node and such that UΓ′ ⊆ RΓ′ .

Proof
Assume that Γ has an unblocked path that visits both an accepting node and
a clear node infinitely often. Then, define Γ′ as the set of nodes and edges that
are visited infinitely often on that path.

Conversely, if such a sub-SCC Γ′ exists, then consider an infinite path in Γ′

that goes infinitely often through each node and each transition in Γ′. This path
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is unblocked and visits both an accepting node and a clear node. This path is
also a path in Γ. "

We call blocking edges all the edges in Γ that bound a clock from UΓ\RΓ. We
proceed as follows. We discard all the blocking edges from Γ as every unblocked
path in Γ goes only finitely many times through these edges. In general, this
yields several candidates for Γ′. Each of them is a proper sub-SCC of Γ. Then,
we restart our algorithm on each such Γ′. Since we have discarded some edges
from Γ (hence some resets), a clock may be now blocking in Γ′. If this is the case,
the blocking edges in Γ′ will be discarded, and the resulting sub-SCCs of Γ′ will
be explored, and so on. Observe that each transition in GZGa(A) will be visited
at most |X |+1 times, as we eliminate at least one clock at each restart. If after
exploring the entire graph, the algorithm has not found a subgraph satisfying
the two conditions then it declares that there is no run of A with the desired
properties. The correctness of the procedure is based on Theorem 14. All the
procedure: exploring Γ, discarding blocking edges, exploring all Γ′ candidates,
etc, can be done on-the-fly without storing Γ as described in [18].

Recall that by Theorem 19 the size of GZGa(A) is O(|ZGa(A)| · |X |). The
complexity of the algorithm follows from the linear complexity of Couvreur’s al-
gorithm and the remark about the bound on the number of times each transition
is visited. We hence obtain the following.

Theorem 21 The above algorithm is correct and runs in time O(|ZGa(A)| ·
|X |2).

Although the guessing zone graph provides a way to detect non-Zeno paths,
it is useful only when the automaton indeed contains zero-checks. The next
challenge therefore lies in optimizing the use of the guessing zone graph con-
struction, that is, applying Couvreur’s algorithm directly on the standard zone
graph and using the guessing zone graph construction only when required.

4.2 Optimized use of guessing zone graph construction

The idea is to apply Couvreur’s algorithm directly on ZGa(A) and find an
SCC with an accepting node. An SCC is said to be unblocked if it contains
no blocking clock; recall that it is a clock x that is checked for a guard which
implies x ≤ c for a constant c and that is reset in no transition of the SCC.

Non-Zenoness can be ensured if the SCC satisfies one of the following con-
ditions:

• It is unblocked and free from zero-checks. A zero-check is detected for a
transition (q, Z)

g,R
−−→ (q′, Z ′) and some clock x when for each ν ∈ Z and

δ ∈ R≥0 such that ν + δ ! g, we have (ν + δ)(x) = 0.

• There is a clock x that is reset in the SCC and one of the transitions in
the SCC implies x ≥ 1.
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For the second condition, note that such a reachable SCC instantiates into
a path ρ of A whose suffix corresponds to repeated traversal of this SCC. Every
traversal resets x and checks for a guard that implies x ≥ 1. Therefore, at
least 1 time unit elapses in each traversal, implying that ρ is a non-Zeno run.
Notice that this relies on the same principle as the one used in the Strongly
Non-Zeno construction [25] (see Section 3.1). However, in our case we exploit
the information from A: we do not add any new clock. Our algorithm will
compute on the fly the set LΓ of clocks x such that x ≥ 1 is implied by some
guard in Γ. This is done in the same way as for UΓ in the previous subsection.
Then, Γ satisfies the second condition above if LΓ ∩RΓ is not empty.

The first condition is justified by the following lemma.

Lemma 22 If ZGa(A) has an unblocked path that visits an accepting node
infinitely often, and has only finitely many transitions with zero-checks, then A
has a non-Zeno run satisfying the Büchi condition.

Proof
Let σ be the path in ZGa(A) as required by the assumptions of the lemma:

(q0, Z0)
t0−→ . . . (qi, Zi)

ti−→ . . .

Since zero-checks occur only finitely often in σ, we can find j such that the

suffix (qj , Zj)
tj
−→ . . . of σ contains no zero-checks in its transitions. Let σ′ be

the following sequence:

(q0, Z0, Y0)
τ
−→ (q0, Z0, Y

′
0)

t0−→ (q1, Z1, Y1)
τ
−→ (q1, Z1, Y

′
1)

t1−→ · · ·

where Y0 = X , Yi is determined by the transition, and Y ′
i = Yi for all i ≤ j

and for i > j, Y ′
i = ∅. Note that σ′ is a path in GZGa(A). For this to be

true, each transition (qi, Zi, Y ′
i )

ti−→ (qi+1, Zi+1, Yi+1) should be realizable from
a valuation νi such that νi ! (X − Y ′

i ) > 0. This is vacuously true if i ≤ j
since Y ′

i = X for all i ≤ j. For i > j, Y ′
i = ∅ and since ti does not contain

a zero-check, the transition is realizable from a valuation νi in which all clocks
are strictly greater than 0.

Since σ is unblocked, σ′ is unblocked too. By definition all but finitely many
nodes for σ′ are clear. Finally, σ′ visits an accepting node infinitely often. By
Theorem 14, A has a non-Zeno run satisfying the Büchi condition. "

The above two observations give a sufficient condition for terminating with
a success when an SCC Γ with an accepting node is found in ZGa(A). If the
above two conditions do not hold, then Γ has no clock bounded from below (i.e.
x ≥ 1) and Γ either has blocking clocks or zero-checks. If it has only blocking
clocks, we apply the procedure that restarts the exploration with blocking edges
removed, as described in Section 4.1. If Γ has zero-checks, we indeed use the
guessing zone graph construction, however restricted only to the nodes of Γ. The
problem is to know the initial set of clocks that need to be zero. We first define
a few notations.
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Let (qΓ, ZΓ) be the root of Γ as determined by Couvreur’s algorithm. Let
GZGa

|Γ(A) be the part of GZGa(A) rooted at (qΓ, ZΓ, X) and restricted only
to the nodes and transitions that occur in Γ. We say that a run ρ of A is
trapped in an SCC Γ of ZGa(A) if a suffix of ρ is an instantiation of a path in
Γ. The following lemma justifies the use of the restricted guessing zone graph
construction starting from (qΓ, ZΓ, X).

Lemma 23 The automaton A has an accepting non-Zeno run trapped in an
SCC Γ of ZGa(A) iff GZGa

|Γ has an SCC that is accepting, unblocked and
contains a clear node.

Proof
For the left-right direction, consider the following run ρ of A trapped in Γ:

(q0, ν0)
δ0,t0−−−→ . . . (qm, νm)

δm,tm−−−−→ . . .

where qm = qΓ, νm ∈ ZΓ and (qΓ, ZΓ) is the root of Γ. Consider the sequence
σ′:

(q0, Z0, Y0)
τ
−→ (q0, Z0, Y

′
0)

t0−→ (q1, Z1, Y1)
τ
−→ (q1, Z1, Y

′
1)

t1−→ · · ·

where

• (q0, Z0) is the initial node of ZGa(A), the zone Zi is determined by the
transition ti−1,

• Y0 = X , Yi is determined by the transition,

• Y ′
i = Yi for all i ≤ m; for i > m, Y ′

i = ∅ if δi > 0 and Y ′
i = Yi otherwise.

Observe that Ym = X and the suffix of σ′ starting from (qm, Zm, Ym) is a
path of GZGa

|Γ(A). Since there are infinitely many i with δi > 0, this suffix
corresponds to an SCC that has a clear node. It is accepting and unblocked
since the run ρ that we started with is accepting and non-Zeno.

For the right-left direction, note that an accepting, unblocked SCC with
a clear node in GZGa

|Γ(A) corresponds to an accepting, unblocked path of

GZGa(A) starting from (qΓ, ZΓ, X) that visits a clear node infinitely often.
It is straightforward to see that (qΓ, ZΓ, X) is reachable from the initial node
(q0, Z0, X) of GZGa(A) through a path in which for all transitions (q, Z, Y )

τ
−→

(q′, Z ′, Y ′), Y ′ = Y . Indeed, the restriction of GZGa(A) to its nodes with
Y = X is isomorphic to the zone graph ZGa(A). From this path of GZGa(A)
and using Lemma 16, we can construct a accepting, non-Zeno run of A that is
trapped in Γ. "

Based on the above observations, we give the schema of the overall opti-
mized algorithm in Figure 10. In the worst case, the algorithm runs in time
O(|ZGa(A)| · |X |2). When the automaton does not have zero-checks it runs in
time O(|ZGa(A)| · |X |). When the automaton further has no blocking clocks,
it runs in time O(|ZGa(A)|).
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A

Compute ZGa(A)
using Couvreur’s algorithm

(
Finish

A is empty

Found SCC Γ
with accepting node

Γ has lower-bounded clock?

or is Γ
unblocked,free from zero-checks?

Yes
A is non-empty

No

Is Γ maximal?
No

Continue (

Yes

Γ has zero-checks?

No Yes

Is there a sub-SCC

with accepting node &

no blocking clocks?

GZGa
|Γ(A) has SCC

with accepting node,

clear node &

no blocking clocks?

No

Continue (

No

Continue (

Yes Yes

A is non-empty

Figure 10: Algorithm to check for Büchi emptiness of A. “Continue” loops back
to computing ZGa(A) using Couvreur’s Algorithm.

5 Experiments

We have implemented our algorithms in a prototype verification tool. Given a
network A1, . . . ,An of timed Büchi automata, we want to check if this network
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satisfies a property φ specified in some logic. We consider a property φ that
can be translated into a timed automaton A¬φ such that the network satisfies
φ iff the product timed automaton A1 × . . .An ×A¬φ has an empty language.
Table 1 presents the results that we obtained on several classical examples. The
“Models” column represents the product of the network Timed Büchi Automata
and the property to verify. We give the number of processes in the network for
each model. A tick in the “Sat.” columns tells that the property is satisfied
by the model. The “Zone Graph” column gives the number of nodes in the
zone graph. Next, for the “Strongly non-Zeno” construction, we give the size
of the resulting zone graph followed by the number of nodes that are visited
during verification using the Couvreur’s algorithm. Similarly for the “Guessing
Zone Graph” but using the algorithm in section 4.1. Finally, the last column
corresponds to our fully optimized algorithm as described in section 4.2.

We have considered three types of properties: reachability properties (mu-
tual exclusion, collision detection for CSMA/CD), liveness properties (access to
the resource infinitely often), and bounded response properties (which are reach-
ability properties with real-time requirements). Reachability properties require
to find a path to a target state starting from the initial state. Although this
path is a finite sequence, it is realistic only if this finite sequence can be extended
to a non-Zeno path of the automaton. Therefore, while verifying reachability
properties, we check if the automaton has a non-Zeno path that contains the
target state.

The strongly non-Zeno construction outperforms the guessing zone graph
construction for reachability properties. This is particularly the case for mutual
exclusion on the Fischer’s protocol and collision detection for the CSMA/CD
protocol. For liveness properties, the results are more balanced. On the one
hand, the strongly non-Zeno construction is once again more efficient for the
CSMA/CD protocol. On the other hand the differences are tight in the case of
Fischer protocol. The guessing zone graph construction distinguishes itself for
bounded response properties. Indeed, the Train-Gate model is an example of
exponential blowup for the strongly non-Zeno construction.

We notice that on-the-fly algorithms perform well. Even when the graphs
are big, particularly in case when automata are not empty, the algorithms are
able to conclude after having explored only a small part of the graph. Our
optimized algorithm outperforms the two others on most examples. Particularly,
for the CSMA/CD protocol with 5 stations our algorithm needs to visit only
4841 nodes while the two other methods visited 8437 and 21038 nodes. This
confirms our initial hypothesis: most of the time, the zone graph contains enough
information to ensure time progress. As a consequence, checking non-Zenoness
and emptiness is done at the same cost as checking emptiness only. This is in
turn achieved at a cost that is similar to reachability checking.

Our optimization using lower bounds on clocks also proves useful for the
FDDI protocol example. One of its processes has zero-checks, but since some
other clock is bounded from below and reset, it was not necessary to explore
the guessing zone graph to conclude non-emptiness.
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Models (A) Sat.
ZGa(A) ZGa(SNZ(A)) GZGa(A) Optimized

size size visited size visited visited
Train-Gate2 (mutex)

√
134 194 194 400 400 134

Train-Gate2 (bound. resp.) 988 227482 352 3840 1137 292
Train-Gate2 (liveness) 100 217 35 298 53 33
Fischer3 (mutex)

√
1837 3859 3859 7292 7292 1837

Fischer4 (mutex)
√

46129 96913 96913 229058 229058 46129
Fischer3 (liveness) 1315 4962 52 5222 64 40
Fischer4 (liveness) 33577 147167 223 166778 331 207
FDDI3 (liveness) 508 1305 44 3654 79 42
FDDI5 (liveness) 6006 15030 90 67819 169 88
FDDI3 (bound. resp.) 6252 41746 59 52242 114 60
CSMA/CD4 (collision)

√
4253 7588 7588 20146 20146 4253

CSMA/CD5 (collision)
√

45527 80776 80776 260026 260026 45527
CSMA/CD4 (liveness) 3038 9576 1480 14388 3075 832
CSMA/CD5 (liveness) 32751 120166 8437 186744 21038 4841

Table 1: Experimental Results. The “Sat.” column tells which properties
are satisfied by the model. The “size” columns give the number of nodes in
the corresponding graphs. The “visited” columns give the number of nodes
that are visited by the corresponding algorithm. The results correspond to
the Couvreur’s algorithm for ZGa(SNZ(A)), the algorithm in Section 4.1 for
GZGa(A) and the algorithm in Section 4.2 for the “Optimized” column.

6 Conclusions

The Büchi non-emptiness problem is one of the standard problems for timed
automata. Since the paper introducing the model, it has been widely accepted
that the addition of one auxiliary clock is an adequate method to deal with the
problem of Zeno paths. This technique is also used in the recently proposed
zone based algorithm for the problem [24].

In this paper, we have shown that in some cases the auxiliary clock may
cause exponential blowup in the size of the zone graph. We have proposed an-
other method that is based on a modification of the zone graph. The resulting
graph grows only by a factor that is linear in the number of clocks. In our opin-
ion, the efficiency gains of our method outweigh the fact that it requires some
small modifications in the code dealing with zone graph exploration. Moreover,
liveness can be checked at the same cost as reachability as demonstrated by
our experiments. This also shows that in most cases the zone graph already
contains enough information to handle non-Zenoness.

As future work we plan to extend our algorithm to commonly used syntactic
extensions of timed automata. For example, UPPAAL and Kronos allow reset
of clocks to arbitrary values, which is convenient for modeling real life systems.
This would require to extend the guessing zone graph construction and con-
sequently our algorithm. In this paper, we considered the Approx abstraction
that has been largely improved by later works [3]. It has been shown that these
new abstractions preserve Büchi conditions [21]. We plan to study the exten-
sion of our technique to these abstractions. Finally, we also plan to extend our
construction to extract non-Zeno strategies in timed games.
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checks for generalized Büchi automata. In P. Godefroid, editor, Model
Checking Software, 12th International SPIN Workshop, San Francisco, CA,
USA, August 22-24, 2005, Proceedings, volume 3639 of Lecture Notes in
Computer Science, pages 169–184. Springer, 2005.

[13] C. Daws and S. Tripakis. Model checking of real-time reachability proper-
ties using abstractions. In B. Steffen, editor, Tools and Algorithms for Con-
struction and Analysis of Systems, 4th International Conference, TACAS
’98, Held as Part of the European Joint Conferences on the Theory and
Practice of Software, ETAPS’98, Lisbon, Portugal, March 28 - April 4,
1998, Proceedings, volume 1384 of Lecture Notes in Computer Science,
pages 313–329, 1998.

[14] D. L. Dill. Timing assumptions and verification of finite-state concur-
rent systems. In J. Sifakis, editor, Automatic Verification Methods for
Finite State Systems, International Workshop, Grenoble, France, June 12-
14, 1989, Proceedings, volume 407 of Lecture Notes in Computer Science,
pages 197–212. Springer, 1990.

[15] A. Gaiser and S. Schwoon. Comparison of algorithms for checking empti-
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